Abstract

Speckle suppression in a two-diffuser system is examined. An analytical expression for the speckle space–time correlation function is derived, so that the speckle suppression mechanism can be investigated statistically. The grain size of the speckle field illuminating the second diffuser has a major impact on the speckle contrast after temporal averaging. It is shown that, when both the diffusers are rotating, the one with the lower rotating speed determines the period of the speckle correlation function. The coherent length of the averaged speckle intensity is shown to equal the mean speckle size of the individual speckle pattern before averaging. Numerical and experimental results are presented to verify our analysis in the context of speckle reduction.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription