Abstract

We propose a novel method to control the electro-optic modulator (EOM) applied in the phase-sensitive optical time-domain reflectometer (ϕ-OTDR) distributed sensor system, which uses the data of the OTDR curves rather than applying an independent control module. We explain the relationship between the accumulation value of the OTDR curve and the EOM’s extinction ratio, and utilize this relationship to feedback control the EOM. The experimental results show that it can compensate the drift of the EOM, and make the modulator run with a high extinction ratio for a long time. And this method can also ratify a small jump of the EOM’s bias point.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. F. Taylor and C. E. Lee, “Apparatus and method for fiber optic intrusion sensing,” U.S. patent5,194,847 (16March, 1993).
  2. J. C. Juarez and H. F. Taylor, “Polarization discrimination in a phase-sensitive optical time-domain reflectometer intrusion-sensor system,” Opt. Lett. 30, 3284–3286 (2005).
    [CrossRef]
  3. M. Froggatt and J. Moore, “High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh backscatter,” Appl. Opt. 37, 1735–1740 (1998).
    [CrossRef]
  4. S. V. Shatalin, V. N. Treschikov, and A. J. Rogers, “Interferometric optical time-domain reflectometry for distributed optical-fiber sensing,” Appl. Opt. 37, 5600–5604 (1998).
    [CrossRef]
  5. X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors 12, 8601–8639 (2012).
    [CrossRef]
  6. Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photon. Technol. Lett. 24, 542–544 (2012).
    [CrossRef]
  7. Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photon. Technol. Lett. 23, 1091–1093 (2011).
    [CrossRef]
  8. Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28, 3243–3249 (2010).
  9. T. Zhu, Q. He, X. Xiao, and X. Bao, “Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution,” Opt. Express 21, 2953–2963 (2013).
    [CrossRef]
  10. X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
    [CrossRef]
  11. J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber optic intrusion sensor system,” J. Lightwave Technol. 23, 2081–2087 (2005).
    [CrossRef]
  12. J. Snoddy, Y. Li, F. Ravet, and X. Bao, “Stabilization of electro-optic modulator bias voltage drift using a lock-in amplifier and a proportional-integral-derivative controller in a distributed Brillouin sensor system,” Appl. Opt. 46, 1482–1485 (2007).
    [CrossRef]

2013 (1)

2012 (2)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors 12, 8601–8639 (2012).
[CrossRef]

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photon. Technol. Lett. 24, 542–544 (2012).
[CrossRef]

2011 (2)

Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photon. Technol. Lett. 23, 1091–1093 (2011).
[CrossRef]

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
[CrossRef]

2010 (1)

2007 (1)

2005 (2)

1998 (2)

Bao, X.

T. Zhu, Q. He, X. Xiao, and X. Bao, “Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution,” Opt. Express 21, 2953–2963 (2013).
[CrossRef]

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors 12, 8601–8639 (2012).
[CrossRef]

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photon. Technol. Lett. 24, 542–544 (2012).
[CrossRef]

Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photon. Technol. Lett. 23, 1091–1093 (2011).
[CrossRef]

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
[CrossRef]

Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28, 3243–3249 (2010).

J. Snoddy, Y. Li, F. Ravet, and X. Bao, “Stabilization of electro-optic modulator bias voltage drift using a lock-in amplifier and a proportional-integral-derivative controller in a distributed Brillouin sensor system,” Appl. Opt. 46, 1482–1485 (2007).
[CrossRef]

Chen, L.

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photon. Technol. Lett. 24, 542–544 (2012).
[CrossRef]

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors 12, 8601–8639 (2012).
[CrossRef]

Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photon. Technol. Lett. 23, 1091–1093 (2011).
[CrossRef]

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
[CrossRef]

Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28, 3243–3249 (2010).

Choi, K. N.

Froggatt, M.

He, Q.

Juarez, J. C.

Lee, C. E.

H. F. Taylor and C. E. Lee, “Apparatus and method for fiber optic intrusion sensing,” U.S. patent5,194,847 (16March, 1993).

Li, Y.

Lu, Y.

Maier, E. W.

Moore, J.

Qin, Z.

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photon. Technol. Lett. 24, 542–544 (2012).
[CrossRef]

Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photon. Technol. Lett. 23, 1091–1093 (2011).
[CrossRef]

Ravet, F.

Rogers, A. J.

Shatalin, S. V.

Snoddy, J.

Taylor, H. F.

Treschikov, V. N.

Xiao, X.

Zhu, T.

Appl. Opt. (3)

IEEE Photon. Technol. Lett. (2)

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photon. Technol. Lett. 24, 542–544 (2012).
[CrossRef]

Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photon. Technol. Lett. 23, 1091–1093 (2011).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (1)

Opt. Lett. (1)

Sensors (2)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors 12, 8601–8639 (2012).
[CrossRef]

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
[CrossRef]

Other (1)

H. F. Taylor and C. E. Lee, “Apparatus and method for fiber optic intrusion sensing,” U.S. patent5,194,847 (16March, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Obtained OTDR curve with different Pl.

Fig. 2.
Fig. 2.

Experimental setup for a ϕ-OTDR.

Fig. 3.
Fig. 3.

Modulation curve of an EOM.

Fig. 4.
Fig. 4.

Flow chart of the control process.

Fig. 5.
Fig. 5.

Accumulation values of the OTDR curves with (A) and without (B) the EOM controlled, and the variation of normalized extinction ratio (C).

Fig. 6.
Fig. 6.

Control curves of different adjustment speed and different drift voltages.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Prh=R(z)Ph100.2αz,
Prl=0LR(z)Pl100.2αzdz.
SNR=ErR(z0)100.2αz00LR(z)100.2αzdz.
C=i=0n[R(iΔz)Ph100.2αiΔz+j=0nR(jΔz)Pl100.2αjΔz],

Metrics