T. Hirasawa, M. Fujita, S. Okawa, T. Kushibiki, and M. Ishihara, “Improvement in quantifying optical absorption coefficients based on continuous wavelet-transform by correcting distortions in temporal photoacoustic waveforms,” Proc. SPIE 8581, 85814J (2013).

[CrossRef]

Z. Li, H. Li, Z. Zeng, W. Xie, and W. R. Chen, “Determination of optical absorption coefficient with focusing photoacoustic imaging,” J. Biomed. Opt 17, 061216 (2012).

[CrossRef]

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).

[CrossRef]

Z. Guo, C. Favazza, A. Garcia-Uribe, and L. V. Wang, “Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime,” J. Biomed. Opt. 17, 066011 (2012).

[CrossRef]

T. Hirasawa, M. Ishihara, K. Tsujita, K. Hirota, K. Irisawa, M. Kitagaki, M. Fujita, and M. Kikuchi, “Continuous wavelet-transform analysis of photoacoustic signal waveform to determine optical absorption coefficient,” Proc. SPIE 8223, 822333 (2012).

[CrossRef]

K. Irisawa, T. Hirasawa, K. Hirota, K. Tsujita, and M. Ishihara, “Influence of laser pulse width to the photoacoustic temporal waveform and the image resolution with a solid state excitation laser,” Proc. SPIE 8223, 82232W (2012).

[CrossRef]

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Optoacoustic methods for frequency calibration of ultrasonic sensors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 316–326 (2011).

[CrossRef]

Z. Li, H. Li, H. Chen, and W. Xie, “In vivo determination of acute myocardial ischemia based on photoacoustic imaging with a focused transducer,” J. Biomed. Opt 16, 076011 (2011).

[CrossRef]

Z. Guo, S. Hu, and L. V. Wang, “Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue,” Opt. Lett. 35, 2067–2069 (2010).

[CrossRef]

J. Laufer, B. Cox, E. Zhang, and P. Beard, “Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme,” Appl. Opt. 49, 1219–1233 (2010).

[CrossRef]

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54, R59–R97 (2009).

[CrossRef]

Y. Wang and R. Wang, “Photoacoustic recovery of an absolute optical absorption coefficient with an exact solution of a wave equation,” Phys. Med. Biol. 53, 6167–6177 (2008).

[CrossRef]

S. H. Holan and J. A. Viator, “Automated wavelet denoising of photoacoustic signals for circulating melanoma cell detection and burn image reconstruction,” Phys. Med. Biol. 53, N227–N236 (2008).

[CrossRef]

S. A. Ermilov, R. Gharieb, A. Conjusteau, T. Miller, K. Mehta, and A. A. Oraevsky, “Data processing and quasi-3D optoacoustic imaging of tumors in the breast using a linear arc-shaped array of ultrasonic transducers,” Proc. SPIE 6856, 685603 (2008).

[CrossRef]

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).

[CrossRef]

T. Lu, J. Jiang, Y. Su, Z. Song, J. Yao, and R. K. Wang, “Signal processing using wavelet transform in photoacoustic tomography,” Proc. SPIE 6439, 64390L (2007).

[CrossRef]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).

[CrossRef]

M. Ishihara, M. Sato, N. Kaneshiro, G. Mitani, S. Sato, J. Mochida, and M. Kikuchi, “Development of a diagnostic system for osteoarthritis using a photoacoustic measurement method,” Lasers Surg. Med. 38, 249–255 (2006).

[CrossRef]

M. Jaeger, M. Hejazi, and M. Frenz, “Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode,” J. Biomed. Opt 10, 024035 (2005).

[CrossRef]

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol. 50, 4409–4428 (2005).

[CrossRef]

V. Wilkens and C. Koch, “Amplitude and phase calibration of hydrophones up to 70 MHz using broadband pulse excitation and an optical reference hydrophone,” J. Acoust. Soc. Am. 115, 2892–2903 (2004).

[CrossRef]

T. Kijewski and A. Kareem, “Wavelet transforms for system identification in civil engineering,” Comput.-Aided Civil Infrastruct. Eng. 18, 339–355 (2003).

[CrossRef]

J. A. Viator, B. Choi, M. Ambrose, J. Spanier, and J. S. Nelson, “In vivo port-wine stain depth determination with a photoacoustic probe,” Appl. Opt. 42, 3215–3224 (2003).

[CrossRef]

R. O. Esenaliev, I. V. Larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, “Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study,” Appl. Opt. 41, 4722–4731 (2002).

[CrossRef]

P. Addison, J. Watson, and T. Feng, “Low-oscillation complex wavelets,” J. Sound Vib. 254, 733–762 (2002).

[CrossRef]

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).

[CrossRef]

J. A. Viator, S. L. Jacques, and S. A. Prahl, “Depth profiling of absorbing soft materials using photoacoustic methods,” IEEE J. Sel. Top. Quantum Electron. 5, 989–996 (1999).

[CrossRef]

C. Torrence and G. P. Compo, “A practical guide to wavelet analysis,” Bull. Am. Meteorol. Soc. 79, 61–78 (1998).

[CrossRef]

P. Addison, J. Watson, and T. Feng, “Low-oscillation complex wavelets,” J. Sound Vib. 254, 733–762 (2002).

[CrossRef]

P. S. Addison, The Illustrated Wavelet Transform Handbook, Introductory Theory and Applications in Science, Engineering, Medicine and Finance (IOP, 2005).

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).

[CrossRef]

J. Laufer, B. Cox, E. Zhang, and P. Beard, “Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme,” Appl. Opt. 49, 1219–1233 (2010).

[CrossRef]

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol. 50, 4409–4428 (2005).

[CrossRef]

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).

[CrossRef]

Z. Li, H. Li, H. Chen, and W. Xie, “In vivo determination of acute myocardial ischemia based on photoacoustic imaging with a focused transducer,” J. Biomed. Opt 16, 076011 (2011).

[CrossRef]

Z. Li, H. Li, Z. Zeng, W. Xie, and W. R. Chen, “Determination of optical absorption coefficient with focusing photoacoustic imaging,” J. Biomed. Opt 17, 061216 (2012).

[CrossRef]

C. Torrence and G. P. Compo, “A practical guide to wavelet analysis,” Bull. Am. Meteorol. Soc. 79, 61–78 (1998).

[CrossRef]

S. A. Ermilov, R. Gharieb, A. Conjusteau, T. Miller, K. Mehta, and A. A. Oraevsky, “Data processing and quasi-3D optoacoustic imaging of tumors in the breast using a linear arc-shaped array of ultrasonic transducers,” Proc. SPIE 6856, 685603 (2008).

[CrossRef]

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).

[CrossRef]

J. Laufer, B. Cox, E. Zhang, and P. Beard, “Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme,” Appl. Opt. 49, 1219–1233 (2010).

[CrossRef]

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol. 50, 4409–4428 (2005).

[CrossRef]

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).

[CrossRef]

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol. 50, 4409–4428 (2005).

[CrossRef]

S. A. Ermilov, R. Gharieb, A. Conjusteau, T. Miller, K. Mehta, and A. A. Oraevsky, “Data processing and quasi-3D optoacoustic imaging of tumors in the breast using a linear arc-shaped array of ultrasonic transducers,” Proc. SPIE 6856, 685603 (2008).

[CrossRef]

Z. Guo, C. Favazza, A. Garcia-Uribe, and L. V. Wang, “Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime,” J. Biomed. Opt. 17, 066011 (2012).

[CrossRef]

P. Addison, J. Watson, and T. Feng, “Low-oscillation complex wavelets,” J. Sound Vib. 254, 733–762 (2002).

[CrossRef]

M. Jaeger, M. Hejazi, and M. Frenz, “Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode,” J. Biomed. Opt 10, 024035 (2005).

[CrossRef]

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).

[CrossRef]

T. Hirasawa, M. Fujita, S. Okawa, T. Kushibiki, and M. Ishihara, “Improvement in quantifying optical absorption coefficients based on continuous wavelet-transform by correcting distortions in temporal photoacoustic waveforms,” Proc. SPIE 8581, 85814J (2013).

[CrossRef]

T. Hirasawa, M. Ishihara, K. Tsujita, K. Hirota, K. Irisawa, M. Kitagaki, M. Fujita, and M. Kikuchi, “Continuous wavelet-transform analysis of photoacoustic signal waveform to determine optical absorption coefficient,” Proc. SPIE 8223, 822333 (2012).

[CrossRef]

Z. Guo, C. Favazza, A. Garcia-Uribe, and L. V. Wang, “Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime,” J. Biomed. Opt. 17, 066011 (2012).

[CrossRef]

S. A. Ermilov, R. Gharieb, A. Conjusteau, T. Miller, K. Mehta, and A. A. Oraevsky, “Data processing and quasi-3D optoacoustic imaging of tumors in the breast using a linear arc-shaped array of ultrasonic transducers,” Proc. SPIE 6856, 685603 (2008).

[CrossRef]

Z. Guo, C. Favazza, A. Garcia-Uribe, and L. V. Wang, “Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime,” J. Biomed. Opt. 17, 066011 (2012).

[CrossRef]

Z. Guo, S. Hu, and L. V. Wang, “Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue,” Opt. Lett. 35, 2067–2069 (2010).

[CrossRef]

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).

[CrossRef]

M. Jaeger, M. Hejazi, and M. Frenz, “Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode,” J. Biomed. Opt 10, 024035 (2005).

[CrossRef]

T. Hirasawa, M. Fujita, S. Okawa, T. Kushibiki, and M. Ishihara, “Improvement in quantifying optical absorption coefficients based on continuous wavelet-transform by correcting distortions in temporal photoacoustic waveforms,” Proc. SPIE 8581, 85814J (2013).

[CrossRef]

T. Hirasawa, M. Ishihara, K. Tsujita, K. Hirota, K. Irisawa, M. Kitagaki, M. Fujita, and M. Kikuchi, “Continuous wavelet-transform analysis of photoacoustic signal waveform to determine optical absorption coefficient,” Proc. SPIE 8223, 822333 (2012).

[CrossRef]

K. Irisawa, T. Hirasawa, K. Hirota, K. Tsujita, and M. Ishihara, “Influence of laser pulse width to the photoacoustic temporal waveform and the image resolution with a solid state excitation laser,” Proc. SPIE 8223, 82232W (2012).

[CrossRef]

K. Irisawa, T. Hirasawa, K. Hirota, K. Tsujita, and M. Ishihara, “Influence of laser pulse width to the photoacoustic temporal waveform and the image resolution with a solid state excitation laser,” Proc. SPIE 8223, 82232W (2012).

[CrossRef]

T. Hirasawa, M. Ishihara, K. Tsujita, K. Hirota, K. Irisawa, M. Kitagaki, M. Fujita, and M. Kikuchi, “Continuous wavelet-transform analysis of photoacoustic signal waveform to determine optical absorption coefficient,” Proc. SPIE 8223, 822333 (2012).

[CrossRef]

S. H. Holan and J. A. Viator, “Automated wavelet denoising of photoacoustic signals for circulating melanoma cell detection and burn image reconstruction,” Phys. Med. Biol. 53, N227–N236 (2008).

[CrossRef]

T. Hirasawa, M. Ishihara, K. Tsujita, K. Hirota, K. Irisawa, M. Kitagaki, M. Fujita, and M. Kikuchi, “Continuous wavelet-transform analysis of photoacoustic signal waveform to determine optical absorption coefficient,” Proc. SPIE 8223, 822333 (2012).

[CrossRef]

K. Irisawa, T. Hirasawa, K. Hirota, K. Tsujita, and M. Ishihara, “Influence of laser pulse width to the photoacoustic temporal waveform and the image resolution with a solid state excitation laser,” Proc. SPIE 8223, 82232W (2012).

[CrossRef]

T. Hirasawa, M. Fujita, S. Okawa, T. Kushibiki, and M. Ishihara, “Improvement in quantifying optical absorption coefficients based on continuous wavelet-transform by correcting distortions in temporal photoacoustic waveforms,” Proc. SPIE 8581, 85814J (2013).

[CrossRef]

T. Hirasawa, M. Ishihara, K. Tsujita, K. Hirota, K. Irisawa, M. Kitagaki, M. Fujita, and M. Kikuchi, “Continuous wavelet-transform analysis of photoacoustic signal waveform to determine optical absorption coefficient,” Proc. SPIE 8223, 822333 (2012).

[CrossRef]

K. Irisawa, T. Hirasawa, K. Hirota, K. Tsujita, and M. Ishihara, “Influence of laser pulse width to the photoacoustic temporal waveform and the image resolution with a solid state excitation laser,” Proc. SPIE 8223, 82232W (2012).

[CrossRef]

M. Ishihara, M. Sato, N. Kaneshiro, G. Mitani, S. Sato, J. Mochida, and M. Kikuchi, “Development of a diagnostic system for osteoarthritis using a photoacoustic measurement method,” Lasers Surg. Med. 38, 249–255 (2006).

[CrossRef]

J. A. Viator, S. L. Jacques, and S. A. Prahl, “Depth profiling of absorbing soft materials using photoacoustic methods,” IEEE J. Sel. Top. Quantum Electron. 5, 989–996 (1999).

[CrossRef]

M. Jaeger, M. Hejazi, and M. Frenz, “Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode,” J. Biomed. Opt 10, 024035 (2005).

[CrossRef]

T. Lu, J. Jiang, Y. Su, Z. Song, J. Yao, and R. K. Wang, “Signal processing using wavelet transform in photoacoustic tomography,” Proc. SPIE 6439, 64390L (2007).

[CrossRef]

M. Ishihara, M. Sato, N. Kaneshiro, G. Mitani, S. Sato, J. Mochida, and M. Kikuchi, “Development of a diagnostic system for osteoarthritis using a photoacoustic measurement method,” Lasers Surg. Med. 38, 249–255 (2006).

[CrossRef]

T. Kijewski and A. Kareem, “Wavelet transforms for system identification in civil engineering,” Comput.-Aided Civil Infrastruct. Eng. 18, 339–355 (2003).

[CrossRef]

T. Kijewski and A. Kareem, “Wavelet transforms for system identification in civil engineering,” Comput.-Aided Civil Infrastruct. Eng. 18, 339–355 (2003).

[CrossRef]

T. Hirasawa, M. Ishihara, K. Tsujita, K. Hirota, K. Irisawa, M. Kitagaki, M. Fujita, and M. Kikuchi, “Continuous wavelet-transform analysis of photoacoustic signal waveform to determine optical absorption coefficient,” Proc. SPIE 8223, 822333 (2012).

[CrossRef]

M. Ishihara, M. Sato, N. Kaneshiro, G. Mitani, S. Sato, J. Mochida, and M. Kikuchi, “Development of a diagnostic system for osteoarthritis using a photoacoustic measurement method,” Lasers Surg. Med. 38, 249–255 (2006).

[CrossRef]

T. Hirasawa, M. Ishihara, K. Tsujita, K. Hirota, K. Irisawa, M. Kitagaki, M. Fujita, and M. Kikuchi, “Continuous wavelet-transform analysis of photoacoustic signal waveform to determine optical absorption coefficient,” Proc. SPIE 8223, 822333 (2012).

[CrossRef]

V. Wilkens and C. Koch, “Amplitude and phase calibration of hydrophones up to 70 MHz using broadband pulse excitation and an optical reference hydrophone,” J. Acoust. Soc. Am. 115, 2892–2903 (2004).

[CrossRef]

T. Hirasawa, M. Fujita, S. Okawa, T. Kushibiki, and M. Ishihara, “Improvement in quantifying optical absorption coefficients based on continuous wavelet-transform by correcting distortions in temporal photoacoustic waveforms,” Proc. SPIE 8581, 85814J (2013).

[CrossRef]

J. Laufer, B. Cox, E. Zhang, and P. Beard, “Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme,” Appl. Opt. 49, 1219–1233 (2010).

[CrossRef]

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol. 50, 4409–4428 (2005).

[CrossRef]

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).

[CrossRef]

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54, R59–R97 (2009).

[CrossRef]

Z. Li, H. Li, Z. Zeng, W. Xie, and W. R. Chen, “Determination of optical absorption coefficient with focusing photoacoustic imaging,” J. Biomed. Opt 17, 061216 (2012).

[CrossRef]

Z. Li, H. Li, H. Chen, and W. Xie, “In vivo determination of acute myocardial ischemia based on photoacoustic imaging with a focused transducer,” J. Biomed. Opt 16, 076011 (2011).

[CrossRef]

Z. Li, H. Li, Z. Zeng, W. Xie, and W. R. Chen, “Determination of optical absorption coefficient with focusing photoacoustic imaging,” J. Biomed. Opt 17, 061216 (2012).

[CrossRef]

Z. Li, H. Li, H. Chen, and W. Xie, “In vivo determination of acute myocardial ischemia based on photoacoustic imaging with a focused transducer,” J. Biomed. Opt 16, 076011 (2011).

[CrossRef]

T. Lu, J. Jiang, Y. Su, Z. Song, J. Yao, and R. K. Wang, “Signal processing using wavelet transform in photoacoustic tomography,” Proc. SPIE 6439, 64390L (2007).

[CrossRef]

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).

[CrossRef]

S. A. Ermilov, R. Gharieb, A. Conjusteau, T. Miller, K. Mehta, and A. A. Oraevsky, “Data processing and quasi-3D optoacoustic imaging of tumors in the breast using a linear arc-shaped array of ultrasonic transducers,” Proc. SPIE 6856, 685603 (2008).

[CrossRef]

S. A. Ermilov, R. Gharieb, A. Conjusteau, T. Miller, K. Mehta, and A. A. Oraevsky, “Data processing and quasi-3D optoacoustic imaging of tumors in the breast using a linear arc-shaped array of ultrasonic transducers,” Proc. SPIE 6856, 685603 (2008).

[CrossRef]

M. Ishihara, M. Sato, N. Kaneshiro, G. Mitani, S. Sato, J. Mochida, and M. Kikuchi, “Development of a diagnostic system for osteoarthritis using a photoacoustic measurement method,” Lasers Surg. Med. 38, 249–255 (2006).

[CrossRef]

M. Ishihara, M. Sato, N. Kaneshiro, G. Mitani, S. Sato, J. Mochida, and M. Kikuchi, “Development of a diagnostic system for osteoarthritis using a photoacoustic measurement method,” Lasers Surg. Med. 38, 249–255 (2006).

[CrossRef]

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).

[CrossRef]

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Optoacoustic methods for frequency calibration of ultrasonic sensors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 316–326 (2011).

[CrossRef]

T. Hirasawa, M. Fujita, S. Okawa, T. Kushibiki, and M. Ishihara, “Improvement in quantifying optical absorption coefficients based on continuous wavelet-transform by correcting distortions in temporal photoacoustic waveforms,” Proc. SPIE 8581, 85814J (2013).

[CrossRef]

S. A. Ermilov, R. Gharieb, A. Conjusteau, T. Miller, K. Mehta, and A. A. Oraevsky, “Data processing and quasi-3D optoacoustic imaging of tumors in the breast using a linear arc-shaped array of ultrasonic transducers,” Proc. SPIE 6856, 685603 (2008).

[CrossRef]

J. A. Viator, S. L. Jacques, and S. A. Prahl, “Depth profiling of absorbing soft materials using photoacoustic methods,” IEEE J. Sel. Top. Quantum Electron. 5, 989–996 (1999).

[CrossRef]

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Optoacoustic methods for frequency calibration of ultrasonic sensors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 316–326 (2011).

[CrossRef]

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).

[CrossRef]

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Optoacoustic methods for frequency calibration of ultrasonic sensors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 316–326 (2011).

[CrossRef]

M. Ishihara, M. Sato, N. Kaneshiro, G. Mitani, S. Sato, J. Mochida, and M. Kikuchi, “Development of a diagnostic system for osteoarthritis using a photoacoustic measurement method,” Lasers Surg. Med. 38, 249–255 (2006).

[CrossRef]

M. Ishihara, M. Sato, N. Kaneshiro, G. Mitani, S. Sato, J. Mochida, and M. Kikuchi, “Development of a diagnostic system for osteoarthritis using a photoacoustic measurement method,” Lasers Surg. Med. 38, 249–255 (2006).

[CrossRef]

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).

[CrossRef]

T. Lu, J. Jiang, Y. Su, Z. Song, J. Yao, and R. K. Wang, “Signal processing using wavelet transform in photoacoustic tomography,” Proc. SPIE 6439, 64390L (2007).

[CrossRef]

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).

[CrossRef]

T. Lu, J. Jiang, Y. Su, Z. Song, J. Yao, and R. K. Wang, “Signal processing using wavelet transform in photoacoustic tomography,” Proc. SPIE 6439, 64390L (2007).

[CrossRef]

C. Torrence and G. P. Compo, “A practical guide to wavelet analysis,” Bull. Am. Meteorol. Soc. 79, 61–78 (1998).

[CrossRef]

T. Hirasawa, M. Ishihara, K. Tsujita, K. Hirota, K. Irisawa, M. Kitagaki, M. Fujita, and M. Kikuchi, “Continuous wavelet-transform analysis of photoacoustic signal waveform to determine optical absorption coefficient,” Proc. SPIE 8223, 822333 (2012).

[CrossRef]

K. Irisawa, T. Hirasawa, K. Hirota, K. Tsujita, and M. Ishihara, “Influence of laser pulse width to the photoacoustic temporal waveform and the image resolution with a solid state excitation laser,” Proc. SPIE 8223, 82232W (2012).

[CrossRef]

S. H. Holan and J. A. Viator, “Automated wavelet denoising of photoacoustic signals for circulating melanoma cell detection and burn image reconstruction,” Phys. Med. Biol. 53, N227–N236 (2008).

[CrossRef]

J. A. Viator, B. Choi, M. Ambrose, J. Spanier, and J. S. Nelson, “In vivo port-wine stain depth determination with a photoacoustic probe,” Appl. Opt. 42, 3215–3224 (2003).

[CrossRef]

J. A. Viator, S. L. Jacques, and S. A. Prahl, “Depth profiling of absorbing soft materials using photoacoustic methods,” IEEE J. Sel. Top. Quantum Electron. 5, 989–996 (1999).

[CrossRef]

Z. Guo, C. Favazza, A. Garcia-Uribe, and L. V. Wang, “Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime,” J. Biomed. Opt. 17, 066011 (2012).

[CrossRef]

Z. Guo, S. Hu, and L. V. Wang, “Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue,” Opt. Lett. 35, 2067–2069 (2010).

[CrossRef]

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54, R59–R97 (2009).

[CrossRef]

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).

[CrossRef]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).

[CrossRef]

Y. Wang and R. Wang, “Photoacoustic recovery of an absolute optical absorption coefficient with an exact solution of a wave equation,” Phys. Med. Biol. 53, 6167–6177 (2008).

[CrossRef]

T. Lu, J. Jiang, Y. Su, Z. Song, J. Yao, and R. K. Wang, “Signal processing using wavelet transform in photoacoustic tomography,” Proc. SPIE 6439, 64390L (2007).

[CrossRef]

Y. Wang and R. Wang, “Photoacoustic recovery of an absolute optical absorption coefficient with an exact solution of a wave equation,” Phys. Med. Biol. 53, 6167–6177 (2008).

[CrossRef]

P. Addison, J. Watson, and T. Feng, “Low-oscillation complex wavelets,” J. Sound Vib. 254, 733–762 (2002).

[CrossRef]

V. Wilkens and C. Koch, “Amplitude and phase calibration of hydrophones up to 70 MHz using broadband pulse excitation and an optical reference hydrophone,” J. Acoust. Soc. Am. 115, 2892–2903 (2004).

[CrossRef]

Z. Li, H. Li, Z. Zeng, W. Xie, and W. R. Chen, “Determination of optical absorption coefficient with focusing photoacoustic imaging,” J. Biomed. Opt 17, 061216 (2012).

[CrossRef]

Z. Li, H. Li, H. Chen, and W. Xie, “In vivo determination of acute myocardial ischemia based on photoacoustic imaging with a focused transducer,” J. Biomed. Opt 16, 076011 (2011).

[CrossRef]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).

[CrossRef]

T. Lu, J. Jiang, Y. Su, Z. Song, J. Yao, and R. K. Wang, “Signal processing using wavelet transform in photoacoustic tomography,” Proc. SPIE 6439, 64390L (2007).

[CrossRef]

Z. Li, H. Li, Z. Zeng, W. Xie, and W. R. Chen, “Determination of optical absorption coefficient with focusing photoacoustic imaging,” J. Biomed. Opt 17, 061216 (2012).

[CrossRef]

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).

[CrossRef]

R. O. Esenaliev, I. V. Larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, “Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study,” Appl. Opt. 41, 4722–4731 (2002).

[CrossRef]

J. Laufer, B. Cox, E. Zhang, and P. Beard, “Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme,” Appl. Opt. 49, 1219–1233 (2010).

[CrossRef]

J. A. Viator, B. Choi, M. Ambrose, J. Spanier, and J. S. Nelson, “In vivo port-wine stain depth determination with a photoacoustic probe,” Appl. Opt. 42, 3215–3224 (2003).

[CrossRef]

C. Torrence and G. P. Compo, “A practical guide to wavelet analysis,” Bull. Am. Meteorol. Soc. 79, 61–78 (1998).

[CrossRef]

T. Kijewski and A. Kareem, “Wavelet transforms for system identification in civil engineering,” Comput.-Aided Civil Infrastruct. Eng. 18, 339–355 (2003).

[CrossRef]

J. A. Viator, S. L. Jacques, and S. A. Prahl, “Depth profiling of absorbing soft materials using photoacoustic methods,” IEEE J. Sel. Top. Quantum Electron. 5, 989–996 (1999).

[CrossRef]

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Optoacoustic methods for frequency calibration of ultrasonic sensors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 316–326 (2011).

[CrossRef]

V. Wilkens and C. Koch, “Amplitude and phase calibration of hydrophones up to 70 MHz using broadband pulse excitation and an optical reference hydrophone,” J. Acoust. Soc. Am. 115, 2892–2903 (2004).

[CrossRef]

M. Jaeger, M. Hejazi, and M. Frenz, “Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode,” J. Biomed. Opt 10, 024035 (2005).

[CrossRef]

Z. Li, H. Li, Z. Zeng, W. Xie, and W. R. Chen, “Determination of optical absorption coefficient with focusing photoacoustic imaging,” J. Biomed. Opt 17, 061216 (2012).

[CrossRef]

Z. Li, H. Li, H. Chen, and W. Xie, “In vivo determination of acute myocardial ischemia based on photoacoustic imaging with a focused transducer,” J. Biomed. Opt 16, 076011 (2011).

[CrossRef]

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).

[CrossRef]

Z. Guo, C. Favazza, A. Garcia-Uribe, and L. V. Wang, “Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime,” J. Biomed. Opt. 17, 066011 (2012).

[CrossRef]

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).

[CrossRef]

P. Addison, J. Watson, and T. Feng, “Low-oscillation complex wavelets,” J. Sound Vib. 254, 733–762 (2002).

[CrossRef]

M. Ishihara, M. Sato, N. Kaneshiro, G. Mitani, S. Sato, J. Mochida, and M. Kikuchi, “Development of a diagnostic system for osteoarthritis using a photoacoustic measurement method,” Lasers Surg. Med. 38, 249–255 (2006).

[CrossRef]

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).

[CrossRef]

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol. 50, 4409–4428 (2005).

[CrossRef]

Y. Wang and R. Wang, “Photoacoustic recovery of an absolute optical absorption coefficient with an exact solution of a wave equation,” Phys. Med. Biol. 53, 6167–6177 (2008).

[CrossRef]

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54, R59–R97 (2009).

[CrossRef]

S. H. Holan and J. A. Viator, “Automated wavelet denoising of photoacoustic signals for circulating melanoma cell detection and burn image reconstruction,” Phys. Med. Biol. 53, N227–N236 (2008).

[CrossRef]

K. Irisawa, T. Hirasawa, K. Hirota, K. Tsujita, and M. Ishihara, “Influence of laser pulse width to the photoacoustic temporal waveform and the image resolution with a solid state excitation laser,” Proc. SPIE 8223, 82232W (2012).

[CrossRef]

T. Hirasawa, M. Ishihara, K. Tsujita, K. Hirota, K. Irisawa, M. Kitagaki, M. Fujita, and M. Kikuchi, “Continuous wavelet-transform analysis of photoacoustic signal waveform to determine optical absorption coefficient,” Proc. SPIE 8223, 822333 (2012).

[CrossRef]

T. Hirasawa, M. Fujita, S. Okawa, T. Kushibiki, and M. Ishihara, “Improvement in quantifying optical absorption coefficients based on continuous wavelet-transform by correcting distortions in temporal photoacoustic waveforms,” Proc. SPIE 8581, 85814J (2013).

[CrossRef]

S. A. Ermilov, R. Gharieb, A. Conjusteau, T. Miller, K. Mehta, and A. A. Oraevsky, “Data processing and quasi-3D optoacoustic imaging of tumors in the breast using a linear arc-shaped array of ultrasonic transducers,” Proc. SPIE 6856, 685603 (2008).

[CrossRef]

T. Lu, J. Jiang, Y. Su, Z. Song, J. Yao, and R. K. Wang, “Signal processing using wavelet transform in photoacoustic tomography,” Proc. SPIE 6439, 64390L (2007).

[CrossRef]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).

[CrossRef]

S. L. Jacques and S. A. Prahl, “Absorption spectra for biological tissues (Oregon Medical Laser Center, OR)” (2004), retrieved March 12, 2013, http://omlc.ogi.edu/spectra/ .

P. S. Addison, The Illustrated Wavelet Transform Handbook, Introductory Theory and Applications in Science, Engineering, Medicine and Finance (IOP, 2005).