Abstract

A method for quantifying the effective attenuation coefficients of optical absorbers by using the continuous wavelet transform (CWT) to calculate the time-resolved frequency spectra of photoacoustic signals is proposed. Because the coefficients can be quantified according to the relative intensity of the frequency content of the signals, it is unnecessary to determine the fluences. A computational simulation reveals that the time-resolved frequency spectra exhibit better correlation with the coefficients than do power spectra calculated using a Fourier transformation. The CWT-based method was experimentally verified, and the coefficients were quantified with mean square error of 2.0cm1.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
    [CrossRef]
  2. S. L. Jacques and S. A. Prahl, “Absorption spectra for biological tissues (Oregon Medical Laser Center, OR)” (2004), retrieved March 12, 2013, http://omlc.ogi.edu/spectra/ .
  3. J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol. 50, 4409–4428 (2005).
    [CrossRef]
  4. A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
    [CrossRef]
  5. M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).
    [CrossRef]
  6. R. O. Esenaliev, I. V. Larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, “Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study,” Appl. Opt. 41, 4722–4731 (2002).
    [CrossRef]
  7. B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).
    [CrossRef]
  8. Y. Wang and R. Wang, “Photoacoustic recovery of an absolute optical absorption coefficient with an exact solution of a wave equation,” Phys. Med. Biol. 53, 6167–6177 (2008).
    [CrossRef]
  9. Z. Guo, C. Favazza, A. Garcia-Uribe, and L. V. Wang, “Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime,” J. Biomed. Opt. 17, 066011 (2012).
    [CrossRef]
  10. J. Laufer, B. Cox, E. Zhang, and P. Beard, “Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme,” Appl. Opt. 49, 1219–1233 (2010).
    [CrossRef]
  11. J. A. Viator, S. L. Jacques, and S. A. Prahl, “Depth profiling of absorbing soft materials using photoacoustic methods,” IEEE J. Sel. Top. Quantum Electron. 5, 989–996 (1999).
    [CrossRef]
  12. M. Jaeger, M. Hejazi, and M. Frenz, “Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode,” J. Biomed. Opt 10, 024035 (2005).
    [CrossRef]
  13. Z. Guo, S. Hu, and L. V. Wang, “Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue,” Opt. Lett. 35, 2067–2069 (2010).
    [CrossRef]
  14. T. Hirasawa, M. Ishihara, K. Tsujita, K. Hirota, K. Irisawa, M. Kitagaki, M. Fujita, and M. Kikuchi, “Continuous wavelet-transform analysis of photoacoustic signal waveform to determine optical absorption coefficient,” Proc. SPIE 8223, 822333 (2012).
    [CrossRef]
  15. T. Hirasawa, M. Fujita, S. Okawa, T. Kushibiki, and M. Ishihara, “Improvement in quantifying optical absorption coefficients based on continuous wavelet-transform by correcting distortions in temporal photoacoustic waveforms,” Proc. SPIE 8581, 85814J (2013).
    [CrossRef]
  16. S. H. Holan and J. A. Viator, “Automated wavelet denoising of photoacoustic signals for circulating melanoma cell detection and burn image reconstruction,” Phys. Med. Biol. 53, N227–N236 (2008).
    [CrossRef]
  17. J. A. Viator, B. Choi, M. Ambrose, J. Spanier, and J. S. Nelson, “In vivo port-wine stain depth determination with a photoacoustic probe,” Appl. Opt. 42, 3215–3224 (2003).
    [CrossRef]
  18. T. Lu, J. Jiang, Y. Su, Z. Song, J. Yao, and R. K. Wang, “Signal processing using wavelet transform in photoacoustic tomography,” Proc. SPIE 6439, 64390L (2007).
    [CrossRef]
  19. Z. Li, H. Li, Z. Zeng, W. Xie, and W. R. Chen, “Determination of optical absorption coefficient with focusing photoacoustic imaging,” J. Biomed. Opt 17, 061216 (2012).
    [CrossRef]
  20. Z. Li, H. Li, H. Chen, and W. Xie, “In vivo determination of acute myocardial ischemia based on photoacoustic imaging with a focused transducer,” J. Biomed. Opt 16, 076011 (2011).
    [CrossRef]
  21. S. A. Ermilov, R. Gharieb, A. Conjusteau, T. Miller, K. Mehta, and A. A. Oraevsky, “Data processing and quasi-3D optoacoustic imaging of tumors in the breast using a linear arc-shaped array of ultrasonic transducers,” Proc. SPIE 6856, 685603 (2008).
    [CrossRef]
  22. M. Ishihara, M. Sato, N. Kaneshiro, G. Mitani, S. Sato, J. Mochida, and M. Kikuchi, “Development of a diagnostic system for osteoarthritis using a photoacoustic measurement method,” Lasers Surg. Med. 38, 249–255 (2006).
    [CrossRef]
  23. C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54, R59–R97 (2009).
    [CrossRef]
  24. K. Irisawa, T. Hirasawa, K. Hirota, K. Tsujita, and M. Ishihara, “Influence of laser pulse width to the photoacoustic temporal waveform and the image resolution with a solid state excitation laser,” Proc. SPIE 8223, 82232W (2012).
    [CrossRef]
  25. V. Wilkens and C. Koch, “Amplitude and phase calibration of hydrophones up to 70 MHz using broadband pulse excitation and an optical reference hydrophone,” J. Acoust. Soc. Am. 115, 2892–2903 (2004).
    [CrossRef]
  26. A. Rosenthal, V. Ntziachristos, and D. Razansky, “Optoacoustic methods for frequency calibration of ultrasonic sensors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 316–326 (2011).
    [CrossRef]
  27. C. Torrence and G. P. Compo, “A practical guide to wavelet analysis,” Bull. Am. Meteorol. Soc. 79, 61–78 (1998).
    [CrossRef]
  28. P. Addison, J. Watson, and T. Feng, “Low-oscillation complex wavelets,” J. Sound Vib. 254, 733–762 (2002).
    [CrossRef]
  29. T. Kijewski and A. Kareem, “Wavelet transforms for system identification in civil engineering,” Comput.-Aided Civil Infrastruct. Eng. 18, 339–355 (2003).
    [CrossRef]
  30. P. S. Addison, The Illustrated Wavelet Transform Handbook, Introductory Theory and Applications in Science, Engineering, Medicine and Finance (IOP, 2005).

2013 (1)

T. Hirasawa, M. Fujita, S. Okawa, T. Kushibiki, and M. Ishihara, “Improvement in quantifying optical absorption coefficients based on continuous wavelet-transform by correcting distortions in temporal photoacoustic waveforms,” Proc. SPIE 8581, 85814J (2013).
[CrossRef]

2012 (5)

T. Hirasawa, M. Ishihara, K. Tsujita, K. Hirota, K. Irisawa, M. Kitagaki, M. Fujita, and M. Kikuchi, “Continuous wavelet-transform analysis of photoacoustic signal waveform to determine optical absorption coefficient,” Proc. SPIE 8223, 822333 (2012).
[CrossRef]

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).
[CrossRef]

Z. Li, H. Li, Z. Zeng, W. Xie, and W. R. Chen, “Determination of optical absorption coefficient with focusing photoacoustic imaging,” J. Biomed. Opt 17, 061216 (2012).
[CrossRef]

Z. Guo, C. Favazza, A. Garcia-Uribe, and L. V. Wang, “Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime,” J. Biomed. Opt. 17, 066011 (2012).
[CrossRef]

K. Irisawa, T. Hirasawa, K. Hirota, K. Tsujita, and M. Ishihara, “Influence of laser pulse width to the photoacoustic temporal waveform and the image resolution with a solid state excitation laser,” Proc. SPIE 8223, 82232W (2012).
[CrossRef]

2011 (2)

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Optoacoustic methods for frequency calibration of ultrasonic sensors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 316–326 (2011).
[CrossRef]

Z. Li, H. Li, H. Chen, and W. Xie, “In vivo determination of acute myocardial ischemia based on photoacoustic imaging with a focused transducer,” J. Biomed. Opt 16, 076011 (2011).
[CrossRef]

2010 (2)

2009 (1)

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54, R59–R97 (2009).
[CrossRef]

2008 (3)

S. A. Ermilov, R. Gharieb, A. Conjusteau, T. Miller, K. Mehta, and A. A. Oraevsky, “Data processing and quasi-3D optoacoustic imaging of tumors in the breast using a linear arc-shaped array of ultrasonic transducers,” Proc. SPIE 6856, 685603 (2008).
[CrossRef]

Y. Wang and R. Wang, “Photoacoustic recovery of an absolute optical absorption coefficient with an exact solution of a wave equation,” Phys. Med. Biol. 53, 6167–6177 (2008).
[CrossRef]

S. H. Holan and J. A. Viator, “Automated wavelet denoising of photoacoustic signals for circulating melanoma cell detection and burn image reconstruction,” Phys. Med. Biol. 53, N227–N236 (2008).
[CrossRef]

2007 (2)

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).
[CrossRef]

T. Lu, J. Jiang, Y. Su, Z. Song, J. Yao, and R. K. Wang, “Signal processing using wavelet transform in photoacoustic tomography,” Proc. SPIE 6439, 64390L (2007).
[CrossRef]

2006 (2)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

M. Ishihara, M. Sato, N. Kaneshiro, G. Mitani, S. Sato, J. Mochida, and M. Kikuchi, “Development of a diagnostic system for osteoarthritis using a photoacoustic measurement method,” Lasers Surg. Med. 38, 249–255 (2006).
[CrossRef]

2005 (2)

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol. 50, 4409–4428 (2005).
[CrossRef]

M. Jaeger, M. Hejazi, and M. Frenz, “Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode,” J. Biomed. Opt 10, 024035 (2005).
[CrossRef]

2004 (1)

V. Wilkens and C. Koch, “Amplitude and phase calibration of hydrophones up to 70 MHz using broadband pulse excitation and an optical reference hydrophone,” J. Acoust. Soc. Am. 115, 2892–2903 (2004).
[CrossRef]

2003 (2)

J. A. Viator, B. Choi, M. Ambrose, J. Spanier, and J. S. Nelson, “In vivo port-wine stain depth determination with a photoacoustic probe,” Appl. Opt. 42, 3215–3224 (2003).
[CrossRef]

T. Kijewski and A. Kareem, “Wavelet transforms for system identification in civil engineering,” Comput.-Aided Civil Infrastruct. Eng. 18, 339–355 (2003).
[CrossRef]

2002 (2)

1999 (2)

J. A. Viator, S. L. Jacques, and S. A. Prahl, “Depth profiling of absorbing soft materials using photoacoustic methods,” IEEE J. Sel. Top. Quantum Electron. 5, 989–996 (1999).
[CrossRef]

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef]

1998 (1)

C. Torrence and G. P. Compo, “A practical guide to wavelet analysis,” Bull. Am. Meteorol. Soc. 79, 61–78 (1998).
[CrossRef]

Addison, P.

P. Addison, J. Watson, and T. Feng, “Low-oscillation complex wavelets,” J. Sound Vib. 254, 733–762 (2002).
[CrossRef]

Addison, P. S.

P. S. Addison, The Illustrated Wavelet Transform Handbook, Introductory Theory and Applications in Science, Engineering, Medicine and Finance (IOP, 2005).

Ambrose, M.

Arridge, S. R.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).
[CrossRef]

Beard, P.

J. Laufer, B. Cox, E. Zhang, and P. Beard, “Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme,” Appl. Opt. 49, 1219–1233 (2010).
[CrossRef]

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol. 50, 4409–4428 (2005).
[CrossRef]

Beard, P. C.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).
[CrossRef]

Chen, H.

Z. Li, H. Li, H. Chen, and W. Xie, “In vivo determination of acute myocardial ischemia based on photoacoustic imaging with a focused transducer,” J. Biomed. Opt 16, 076011 (2011).
[CrossRef]

Chen, W. R.

Z. Li, H. Li, Z. Zeng, W. Xie, and W. R. Chen, “Determination of optical absorption coefficient with focusing photoacoustic imaging,” J. Biomed. Opt 17, 061216 (2012).
[CrossRef]

Choi, B.

Compo, G. P.

C. Torrence and G. P. Compo, “A practical guide to wavelet analysis,” Bull. Am. Meteorol. Soc. 79, 61–78 (1998).
[CrossRef]

Conjusteau, A.

S. A. Ermilov, R. Gharieb, A. Conjusteau, T. Miller, K. Mehta, and A. A. Oraevsky, “Data processing and quasi-3D optoacoustic imaging of tumors in the breast using a linear arc-shaped array of ultrasonic transducers,” Proc. SPIE 6856, 685603 (2008).
[CrossRef]

Cox, B.

Delpy, D.

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol. 50, 4409–4428 (2005).
[CrossRef]

Deyo, D. J.

Dorschel, K.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef]

Elwell, C.

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol. 50, 4409–4428 (2005).
[CrossRef]

Ermilov, S. A.

S. A. Ermilov, R. Gharieb, A. Conjusteau, T. Miller, K. Mehta, and A. A. Oraevsky, “Data processing and quasi-3D optoacoustic imaging of tumors in the breast using a linear arc-shaped array of ultrasonic transducers,” Proc. SPIE 6856, 685603 (2008).
[CrossRef]

Esenaliev, R. O.

Favazza, C.

Z. Guo, C. Favazza, A. Garcia-Uribe, and L. V. Wang, “Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime,” J. Biomed. Opt. 17, 066011 (2012).
[CrossRef]

Feng, T.

P. Addison, J. Watson, and T. Feng, “Low-oscillation complex wavelets,” J. Sound Vib. 254, 733–762 (2002).
[CrossRef]

Frenz, M.

M. Jaeger, M. Hejazi, and M. Frenz, “Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode,” J. Biomed. Opt 10, 024035 (2005).
[CrossRef]

Friebel, M.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef]

Fujita, M.

T. Hirasawa, M. Fujita, S. Okawa, T. Kushibiki, and M. Ishihara, “Improvement in quantifying optical absorption coefficients based on continuous wavelet-transform by correcting distortions in temporal photoacoustic waveforms,” Proc. SPIE 8581, 85814J (2013).
[CrossRef]

T. Hirasawa, M. Ishihara, K. Tsujita, K. Hirota, K. Irisawa, M. Kitagaki, M. Fujita, and M. Kikuchi, “Continuous wavelet-transform analysis of photoacoustic signal waveform to determine optical absorption coefficient,” Proc. SPIE 8223, 822333 (2012).
[CrossRef]

Garcia-Uribe, A.

Z. Guo, C. Favazza, A. Garcia-Uribe, and L. V. Wang, “Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime,” J. Biomed. Opt. 17, 066011 (2012).
[CrossRef]

Gharieb, R.

S. A. Ermilov, R. Gharieb, A. Conjusteau, T. Miller, K. Mehta, and A. A. Oraevsky, “Data processing and quasi-3D optoacoustic imaging of tumors in the breast using a linear arc-shaped array of ultrasonic transducers,” Proc. SPIE 6856, 685603 (2008).
[CrossRef]

Guo, Z.

Z. Guo, C. Favazza, A. Garcia-Uribe, and L. V. Wang, “Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime,” J. Biomed. Opt. 17, 066011 (2012).
[CrossRef]

Z. Guo, S. Hu, and L. V. Wang, “Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue,” Opt. Lett. 35, 2067–2069 (2010).
[CrossRef]

Hahn, A.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef]

Hejazi, M.

M. Jaeger, M. Hejazi, and M. Frenz, “Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode,” J. Biomed. Opt 10, 024035 (2005).
[CrossRef]

Hirasawa, T.

T. Hirasawa, M. Fujita, S. Okawa, T. Kushibiki, and M. Ishihara, “Improvement in quantifying optical absorption coefficients based on continuous wavelet-transform by correcting distortions in temporal photoacoustic waveforms,” Proc. SPIE 8581, 85814J (2013).
[CrossRef]

T. Hirasawa, M. Ishihara, K. Tsujita, K. Hirota, K. Irisawa, M. Kitagaki, M. Fujita, and M. Kikuchi, “Continuous wavelet-transform analysis of photoacoustic signal waveform to determine optical absorption coefficient,” Proc. SPIE 8223, 822333 (2012).
[CrossRef]

K. Irisawa, T. Hirasawa, K. Hirota, K. Tsujita, and M. Ishihara, “Influence of laser pulse width to the photoacoustic temporal waveform and the image resolution with a solid state excitation laser,” Proc. SPIE 8223, 82232W (2012).
[CrossRef]

Hirota, K.

K. Irisawa, T. Hirasawa, K. Hirota, K. Tsujita, and M. Ishihara, “Influence of laser pulse width to the photoacoustic temporal waveform and the image resolution with a solid state excitation laser,” Proc. SPIE 8223, 82232W (2012).
[CrossRef]

T. Hirasawa, M. Ishihara, K. Tsujita, K. Hirota, K. Irisawa, M. Kitagaki, M. Fujita, and M. Kikuchi, “Continuous wavelet-transform analysis of photoacoustic signal waveform to determine optical absorption coefficient,” Proc. SPIE 8223, 822333 (2012).
[CrossRef]

Holan, S. H.

S. H. Holan and J. A. Viator, “Automated wavelet denoising of photoacoustic signals for circulating melanoma cell detection and burn image reconstruction,” Phys. Med. Biol. 53, N227–N236 (2008).
[CrossRef]

Hu, S.

Irisawa, K.

K. Irisawa, T. Hirasawa, K. Hirota, K. Tsujita, and M. Ishihara, “Influence of laser pulse width to the photoacoustic temporal waveform and the image resolution with a solid state excitation laser,” Proc. SPIE 8223, 82232W (2012).
[CrossRef]

T. Hirasawa, M. Ishihara, K. Tsujita, K. Hirota, K. Irisawa, M. Kitagaki, M. Fujita, and M. Kikuchi, “Continuous wavelet-transform analysis of photoacoustic signal waveform to determine optical absorption coefficient,” Proc. SPIE 8223, 822333 (2012).
[CrossRef]

Ishihara, M.

T. Hirasawa, M. Fujita, S. Okawa, T. Kushibiki, and M. Ishihara, “Improvement in quantifying optical absorption coefficients based on continuous wavelet-transform by correcting distortions in temporal photoacoustic waveforms,” Proc. SPIE 8581, 85814J (2013).
[CrossRef]

T. Hirasawa, M. Ishihara, K. Tsujita, K. Hirota, K. Irisawa, M. Kitagaki, M. Fujita, and M. Kikuchi, “Continuous wavelet-transform analysis of photoacoustic signal waveform to determine optical absorption coefficient,” Proc. SPIE 8223, 822333 (2012).
[CrossRef]

K. Irisawa, T. Hirasawa, K. Hirota, K. Tsujita, and M. Ishihara, “Influence of laser pulse width to the photoacoustic temporal waveform and the image resolution with a solid state excitation laser,” Proc. SPIE 8223, 82232W (2012).
[CrossRef]

M. Ishihara, M. Sato, N. Kaneshiro, G. Mitani, S. Sato, J. Mochida, and M. Kikuchi, “Development of a diagnostic system for osteoarthritis using a photoacoustic measurement method,” Lasers Surg. Med. 38, 249–255 (2006).
[CrossRef]

Jacques, S. L.

J. A. Viator, S. L. Jacques, and S. A. Prahl, “Depth profiling of absorbing soft materials using photoacoustic methods,” IEEE J. Sel. Top. Quantum Electron. 5, 989–996 (1999).
[CrossRef]

Jaeger, M.

M. Jaeger, M. Hejazi, and M. Frenz, “Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode,” J. Biomed. Opt 10, 024035 (2005).
[CrossRef]

Jiang, J.

T. Lu, J. Jiang, Y. Su, Z. Song, J. Yao, and R. K. Wang, “Signal processing using wavelet transform in photoacoustic tomography,” Proc. SPIE 6439, 64390L (2007).
[CrossRef]

Kaneshiro, N.

M. Ishihara, M. Sato, N. Kaneshiro, G. Mitani, S. Sato, J. Mochida, and M. Kikuchi, “Development of a diagnostic system for osteoarthritis using a photoacoustic measurement method,” Lasers Surg. Med. 38, 249–255 (2006).
[CrossRef]

Kareem, A.

T. Kijewski and A. Kareem, “Wavelet transforms for system identification in civil engineering,” Comput.-Aided Civil Infrastruct. Eng. 18, 339–355 (2003).
[CrossRef]

Kijewski, T.

T. Kijewski and A. Kareem, “Wavelet transforms for system identification in civil engineering,” Comput.-Aided Civil Infrastruct. Eng. 18, 339–355 (2003).
[CrossRef]

Kikuchi, M.

T. Hirasawa, M. Ishihara, K. Tsujita, K. Hirota, K. Irisawa, M. Kitagaki, M. Fujita, and M. Kikuchi, “Continuous wavelet-transform analysis of photoacoustic signal waveform to determine optical absorption coefficient,” Proc. SPIE 8223, 822333 (2012).
[CrossRef]

M. Ishihara, M. Sato, N. Kaneshiro, G. Mitani, S. Sato, J. Mochida, and M. Kikuchi, “Development of a diagnostic system for osteoarthritis using a photoacoustic measurement method,” Lasers Surg. Med. 38, 249–255 (2006).
[CrossRef]

Kitagaki, M.

T. Hirasawa, M. Ishihara, K. Tsujita, K. Hirota, K. Irisawa, M. Kitagaki, M. Fujita, and M. Kikuchi, “Continuous wavelet-transform analysis of photoacoustic signal waveform to determine optical absorption coefficient,” Proc. SPIE 8223, 822333 (2012).
[CrossRef]

Koch, C.

V. Wilkens and C. Koch, “Amplitude and phase calibration of hydrophones up to 70 MHz using broadband pulse excitation and an optical reference hydrophone,” J. Acoust. Soc. Am. 115, 2892–2903 (2004).
[CrossRef]

Kushibiki, T.

T. Hirasawa, M. Fujita, S. Okawa, T. Kushibiki, and M. Ishihara, “Improvement in quantifying optical absorption coefficients based on continuous wavelet-transform by correcting distortions in temporal photoacoustic waveforms,” Proc. SPIE 8581, 85814J (2013).
[CrossRef]

Larin, K. V.

Larina, I. V.

Laufer, J.

J. Laufer, B. Cox, E. Zhang, and P. Beard, “Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme,” Appl. Opt. 49, 1219–1233 (2010).
[CrossRef]

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol. 50, 4409–4428 (2005).
[CrossRef]

Laufer, J. G.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).
[CrossRef]

Li, C.

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54, R59–R97 (2009).
[CrossRef]

Li, H.

Z. Li, H. Li, Z. Zeng, W. Xie, and W. R. Chen, “Determination of optical absorption coefficient with focusing photoacoustic imaging,” J. Biomed. Opt 17, 061216 (2012).
[CrossRef]

Z. Li, H. Li, H. Chen, and W. Xie, “In vivo determination of acute myocardial ischemia based on photoacoustic imaging with a focused transducer,” J. Biomed. Opt 16, 076011 (2011).
[CrossRef]

Li, Z.

Z. Li, H. Li, Z. Zeng, W. Xie, and W. R. Chen, “Determination of optical absorption coefficient with focusing photoacoustic imaging,” J. Biomed. Opt 17, 061216 (2012).
[CrossRef]

Z. Li, H. Li, H. Chen, and W. Xie, “In vivo determination of acute myocardial ischemia based on photoacoustic imaging with a focused transducer,” J. Biomed. Opt 16, 076011 (2011).
[CrossRef]

Lu, T.

T. Lu, J. Jiang, Y. Su, Z. Song, J. Yao, and R. K. Wang, “Signal processing using wavelet transform in photoacoustic tomography,” Proc. SPIE 6439, 64390L (2007).
[CrossRef]

Maslov, K.

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).
[CrossRef]

Mehta, K.

S. A. Ermilov, R. Gharieb, A. Conjusteau, T. Miller, K. Mehta, and A. A. Oraevsky, “Data processing and quasi-3D optoacoustic imaging of tumors in the breast using a linear arc-shaped array of ultrasonic transducers,” Proc. SPIE 6856, 685603 (2008).
[CrossRef]

Miller, T.

S. A. Ermilov, R. Gharieb, A. Conjusteau, T. Miller, K. Mehta, and A. A. Oraevsky, “Data processing and quasi-3D optoacoustic imaging of tumors in the breast using a linear arc-shaped array of ultrasonic transducers,” Proc. SPIE 6856, 685603 (2008).
[CrossRef]

Mitani, G.

M. Ishihara, M. Sato, N. Kaneshiro, G. Mitani, S. Sato, J. Mochida, and M. Kikuchi, “Development of a diagnostic system for osteoarthritis using a photoacoustic measurement method,” Lasers Surg. Med. 38, 249–255 (2006).
[CrossRef]

Mochida, J.

M. Ishihara, M. Sato, N. Kaneshiro, G. Mitani, S. Sato, J. Mochida, and M. Kikuchi, “Development of a diagnostic system for osteoarthritis using a photoacoustic measurement method,” Lasers Surg. Med. 38, 249–255 (2006).
[CrossRef]

Motamedi, M.

Muller, G.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef]

Nelson, J. S.

Ntziachristos, V.

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Optoacoustic methods for frequency calibration of ultrasonic sensors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 316–326 (2011).
[CrossRef]

Okawa, S.

T. Hirasawa, M. Fujita, S. Okawa, T. Kushibiki, and M. Ishihara, “Improvement in quantifying optical absorption coefficients based on continuous wavelet-transform by correcting distortions in temporal photoacoustic waveforms,” Proc. SPIE 8581, 85814J (2013).
[CrossRef]

Oraevsky, A. A.

S. A. Ermilov, R. Gharieb, A. Conjusteau, T. Miller, K. Mehta, and A. A. Oraevsky, “Data processing and quasi-3D optoacoustic imaging of tumors in the breast using a linear arc-shaped array of ultrasonic transducers,” Proc. SPIE 6856, 685603 (2008).
[CrossRef]

Prahl, S. A.

J. A. Viator, S. L. Jacques, and S. A. Prahl, “Depth profiling of absorbing soft materials using photoacoustic methods,” IEEE J. Sel. Top. Quantum Electron. 5, 989–996 (1999).
[CrossRef]

Prough, D. S.

Razansky, D.

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Optoacoustic methods for frequency calibration of ultrasonic sensors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 316–326 (2011).
[CrossRef]

Roggan, A.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef]

Rosenthal, A.

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Optoacoustic methods for frequency calibration of ultrasonic sensors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 316–326 (2011).
[CrossRef]

Sato, M.

M. Ishihara, M. Sato, N. Kaneshiro, G. Mitani, S. Sato, J. Mochida, and M. Kikuchi, “Development of a diagnostic system for osteoarthritis using a photoacoustic measurement method,” Lasers Surg. Med. 38, 249–255 (2006).
[CrossRef]

Sato, S.

M. Ishihara, M. Sato, N. Kaneshiro, G. Mitani, S. Sato, J. Mochida, and M. Kikuchi, “Development of a diagnostic system for osteoarthritis using a photoacoustic measurement method,” Lasers Surg. Med. 38, 249–255 (2006).
[CrossRef]

Sivaramakrishnan, M.

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).
[CrossRef]

Song, Z.

T. Lu, J. Jiang, Y. Su, Z. Song, J. Yao, and R. K. Wang, “Signal processing using wavelet transform in photoacoustic tomography,” Proc. SPIE 6439, 64390L (2007).
[CrossRef]

Spanier, J.

Stoica, G.

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).
[CrossRef]

Su, Y.

T. Lu, J. Jiang, Y. Su, Z. Song, J. Yao, and R. K. Wang, “Signal processing using wavelet transform in photoacoustic tomography,” Proc. SPIE 6439, 64390L (2007).
[CrossRef]

Torrence, C.

C. Torrence and G. P. Compo, “A practical guide to wavelet analysis,” Bull. Am. Meteorol. Soc. 79, 61–78 (1998).
[CrossRef]

Tsujita, K.

K. Irisawa, T. Hirasawa, K. Hirota, K. Tsujita, and M. Ishihara, “Influence of laser pulse width to the photoacoustic temporal waveform and the image resolution with a solid state excitation laser,” Proc. SPIE 8223, 82232W (2012).
[CrossRef]

T. Hirasawa, M. Ishihara, K. Tsujita, K. Hirota, K. Irisawa, M. Kitagaki, M. Fujita, and M. Kikuchi, “Continuous wavelet-transform analysis of photoacoustic signal waveform to determine optical absorption coefficient,” Proc. SPIE 8223, 822333 (2012).
[CrossRef]

Viator, J. A.

S. H. Holan and J. A. Viator, “Automated wavelet denoising of photoacoustic signals for circulating melanoma cell detection and burn image reconstruction,” Phys. Med. Biol. 53, N227–N236 (2008).
[CrossRef]

J. A. Viator, B. Choi, M. Ambrose, J. Spanier, and J. S. Nelson, “In vivo port-wine stain depth determination with a photoacoustic probe,” Appl. Opt. 42, 3215–3224 (2003).
[CrossRef]

J. A. Viator, S. L. Jacques, and S. A. Prahl, “Depth profiling of absorbing soft materials using photoacoustic methods,” IEEE J. Sel. Top. Quantum Electron. 5, 989–996 (1999).
[CrossRef]

Wang, L. V.

Z. Guo, C. Favazza, A. Garcia-Uribe, and L. V. Wang, “Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime,” J. Biomed. Opt. 17, 066011 (2012).
[CrossRef]

Z. Guo, S. Hu, and L. V. Wang, “Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue,” Opt. Lett. 35, 2067–2069 (2010).
[CrossRef]

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54, R59–R97 (2009).
[CrossRef]

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).
[CrossRef]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

Wang, R.

Y. Wang and R. Wang, “Photoacoustic recovery of an absolute optical absorption coefficient with an exact solution of a wave equation,” Phys. Med. Biol. 53, 6167–6177 (2008).
[CrossRef]

Wang, R. K.

T. Lu, J. Jiang, Y. Su, Z. Song, J. Yao, and R. K. Wang, “Signal processing using wavelet transform in photoacoustic tomography,” Proc. SPIE 6439, 64390L (2007).
[CrossRef]

Wang, Y.

Y. Wang and R. Wang, “Photoacoustic recovery of an absolute optical absorption coefficient with an exact solution of a wave equation,” Phys. Med. Biol. 53, 6167–6177 (2008).
[CrossRef]

Watson, J.

P. Addison, J. Watson, and T. Feng, “Low-oscillation complex wavelets,” J. Sound Vib. 254, 733–762 (2002).
[CrossRef]

Wilkens, V.

V. Wilkens and C. Koch, “Amplitude and phase calibration of hydrophones up to 70 MHz using broadband pulse excitation and an optical reference hydrophone,” J. Acoust. Soc. Am. 115, 2892–2903 (2004).
[CrossRef]

Xie, W.

Z. Li, H. Li, Z. Zeng, W. Xie, and W. R. Chen, “Determination of optical absorption coefficient with focusing photoacoustic imaging,” J. Biomed. Opt 17, 061216 (2012).
[CrossRef]

Z. Li, H. Li, H. Chen, and W. Xie, “In vivo determination of acute myocardial ischemia based on photoacoustic imaging with a focused transducer,” J. Biomed. Opt 16, 076011 (2011).
[CrossRef]

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

Yao, J.

T. Lu, J. Jiang, Y. Su, Z. Song, J. Yao, and R. K. Wang, “Signal processing using wavelet transform in photoacoustic tomography,” Proc. SPIE 6439, 64390L (2007).
[CrossRef]

Zeng, Z.

Z. Li, H. Li, Z. Zeng, W. Xie, and W. R. Chen, “Determination of optical absorption coefficient with focusing photoacoustic imaging,” J. Biomed. Opt 17, 061216 (2012).
[CrossRef]

Zhang, E.

Zhang, H. F.

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).
[CrossRef]

Appl. Opt. (3)

Bull. Am. Meteorol. Soc. (1)

C. Torrence and G. P. Compo, “A practical guide to wavelet analysis,” Bull. Am. Meteorol. Soc. 79, 61–78 (1998).
[CrossRef]

Comput.-Aided Civil Infrastruct. Eng. (1)

T. Kijewski and A. Kareem, “Wavelet transforms for system identification in civil engineering,” Comput.-Aided Civil Infrastruct. Eng. 18, 339–355 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. A. Viator, S. L. Jacques, and S. A. Prahl, “Depth profiling of absorbing soft materials using photoacoustic methods,” IEEE J. Sel. Top. Quantum Electron. 5, 989–996 (1999).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Optoacoustic methods for frequency calibration of ultrasonic sensors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 316–326 (2011).
[CrossRef]

J. Acoust. Soc. Am. (1)

V. Wilkens and C. Koch, “Amplitude and phase calibration of hydrophones up to 70 MHz using broadband pulse excitation and an optical reference hydrophone,” J. Acoust. Soc. Am. 115, 2892–2903 (2004).
[CrossRef]

J. Biomed. Opt (3)

M. Jaeger, M. Hejazi, and M. Frenz, “Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode,” J. Biomed. Opt 10, 024035 (2005).
[CrossRef]

Z. Li, H. Li, Z. Zeng, W. Xie, and W. R. Chen, “Determination of optical absorption coefficient with focusing photoacoustic imaging,” J. Biomed. Opt 17, 061216 (2012).
[CrossRef]

Z. Li, H. Li, H. Chen, and W. Xie, “In vivo determination of acute myocardial ischemia based on photoacoustic imaging with a focused transducer,” J. Biomed. Opt 16, 076011 (2011).
[CrossRef]

J. Biomed. Opt. (3)

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).
[CrossRef]

Z. Guo, C. Favazza, A. Garcia-Uribe, and L. V. Wang, “Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime,” J. Biomed. Opt. 17, 066011 (2012).
[CrossRef]

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef]

J. Sound Vib. (1)

P. Addison, J. Watson, and T. Feng, “Low-oscillation complex wavelets,” J. Sound Vib. 254, 733–762 (2002).
[CrossRef]

Lasers Surg. Med. (1)

M. Ishihara, M. Sato, N. Kaneshiro, G. Mitani, S. Sato, J. Mochida, and M. Kikuchi, “Development of a diagnostic system for osteoarthritis using a photoacoustic measurement method,” Lasers Surg. Med. 38, 249–255 (2006).
[CrossRef]

Opt. Lett. (1)

Phys. Med. Biol. (5)

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).
[CrossRef]

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol. 50, 4409–4428 (2005).
[CrossRef]

Y. Wang and R. Wang, “Photoacoustic recovery of an absolute optical absorption coefficient with an exact solution of a wave equation,” Phys. Med. Biol. 53, 6167–6177 (2008).
[CrossRef]

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54, R59–R97 (2009).
[CrossRef]

S. H. Holan and J. A. Viator, “Automated wavelet denoising of photoacoustic signals for circulating melanoma cell detection and burn image reconstruction,” Phys. Med. Biol. 53, N227–N236 (2008).
[CrossRef]

Proc. SPIE (5)

K. Irisawa, T. Hirasawa, K. Hirota, K. Tsujita, and M. Ishihara, “Influence of laser pulse width to the photoacoustic temporal waveform and the image resolution with a solid state excitation laser,” Proc. SPIE 8223, 82232W (2012).
[CrossRef]

T. Hirasawa, M. Ishihara, K. Tsujita, K. Hirota, K. Irisawa, M. Kitagaki, M. Fujita, and M. Kikuchi, “Continuous wavelet-transform analysis of photoacoustic signal waveform to determine optical absorption coefficient,” Proc. SPIE 8223, 822333 (2012).
[CrossRef]

T. Hirasawa, M. Fujita, S. Okawa, T. Kushibiki, and M. Ishihara, “Improvement in quantifying optical absorption coefficients based on continuous wavelet-transform by correcting distortions in temporal photoacoustic waveforms,” Proc. SPIE 8581, 85814J (2013).
[CrossRef]

S. A. Ermilov, R. Gharieb, A. Conjusteau, T. Miller, K. Mehta, and A. A. Oraevsky, “Data processing and quasi-3D optoacoustic imaging of tumors in the breast using a linear arc-shaped array of ultrasonic transducers,” Proc. SPIE 6856, 685603 (2008).
[CrossRef]

T. Lu, J. Jiang, Y. Su, Z. Song, J. Yao, and R. K. Wang, “Signal processing using wavelet transform in photoacoustic tomography,” Proc. SPIE 6439, 64390L (2007).
[CrossRef]

Rev. Sci. Instrum. (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

Other (2)

S. L. Jacques and S. A. Prahl, “Absorption spectra for biological tissues (Oregon Medical Laser Center, OR)” (2004), retrieved March 12, 2013, http://omlc.ogi.edu/spectra/ .

P. S. Addison, The Illustrated Wavelet Transform Handbook, Introductory Theory and Applications in Science, Engineering, Medicine and Finance (IOP, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Experimental setup for reflection mode measurement of PA signals.

Fig. 2.
Fig. 2.

Temporal waveforms calculated for PA signals produced by optical absorbers with effective attenuation coefficients of 17cm1 (blue) and 30cm1 (red), respectively. The amplitudes of the PA signals are normalized.

Fig. 3.
Fig. 3.

Analysis of calculated PA signals produced by an optical absorber with an effective attenuation coefficient of 17cm1. (a) Time-resolved frequency spectra of PA signal calculated using CWT. The maxima originating from the positive and negative parts of the PA signal were observed at times t1 and t2, respectively. (b) Profiles of time-resolved frequency spectra with respect to times t1 and t2

Fig. 4.
Fig. 4.

Dominant frequency of the PA signal produced from optical absorbers with various effective attenuation coefficient as a function of time.

Fig. 5.
Fig. 5.

Relationship between the maximum values of dominant frequencies of calculated PA signals and the effective attenuation coefficients of optical absorbers (blue, diamond). The peak frequencies of power spectra calculated by using FT (red, square) and PPR calculated from temporal waveform (green, triangle) are also plotted.

Fig. 6.
Fig. 6.

Analysis of experimentally measured PA signals produced by an optical absorber with an effective attenuation coefficient of 17cm1. (a) Time-resolved frequency spectra of PA signal calculated using CWT. The maxima originating from the positive and negative parts of the PA signal were observed at times t1 and t2, respectively. (b) Profiles of time-resolved frequency spectra with respect to times t1 and t2.

Fig. 7.
Fig. 7.

Dominant frequency of the PA signal produced from optical absorbers with various optical absorption coefficients as a function of time.

Fig. 8.
Fig. 8.

Relationship between the maximum values of the dominant frequencies of the experimentally measured PA signals and the effective attenuation coefficients of optical absorbers (blue, triangle). The peak frequencies of power spectra calculated using FT (red, square) and PPR calculated from temporal waveform (green, triangle) are also plotted (error bar: standard deviation, n=4).

Fig. 9.
Fig. 9.

Effective attenuation coefficients of the optical absorbers calculated from experimentally measured PA signals using CWT (blue, diamond) and temporal waveform (green, triangle) as a function of measured by spectrophotometer. The ideal fit line is also plotted (black, dotted) (error bar: standard deviation, n=4).

Fig. 10.
Fig. 10.

(a) Maximum values of the dominant frequencies and (b) amplitude of PA signals produced from optical absorbers with effective attenuation coefficients of 22 and 30cm1. The pulse energy of the excitation pulse was 300, 600, and 1200 μJ.

Fig. 11.
Fig. 11.

Maximum value of the dominant frequency of simulated PA signals using ideal acoustic sensor as a function of the beam diameter on the surface of the optical absorber.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

μeff={3μa(μa+μs)}12,
c22p(r,t)2p(r,t)t2=βc2CpH(r,t)t,
p(r,t)=β4πCpd3r|rr|tH(r,t)|t=t|rr|/c,
p(r,t)=β4πCp(1t|rr|=ctA(rr)dS)*η(t),
s(r,t)=β4πCp(1t|rr|=ctA(rr)dS)*η(t)*m(t).
A(r,θ,ϕ)=rsinθr0sinθ0F(r0cosθcosϕ,r0cosθsinϕ)×exp(0rμa(r,θ,ϕ)dr),
μa(r,θ,ϕ)=μawherercosθ<z0,
sδ(r,t)=β4πCp1|rr|η(t|rr|c)*m(t).
m(t)*η(t)=4πCpβ|rr|sδ(r,t+|rr|c).
T(a,b)=a12p(t)Ψ*(tba)dt,
Ψ(t)=π14(eiω0teω02t)et22,

Metrics