Abstract

The vertical profile of atmospheric temperature is a principal state variable to study atmospheric stability. A lidar system, constructed using a 355 nm Nd:YAG laser transmitter, measures the temperature profile using the rotational Raman technique. In comparison with traditional Raman lidar, the major innovations are the use of a low peak power and high repetition rate laser to achieve eye-safe operation in a compact reliable instrument and the use of an angle tuning filter to select operating wavelengths. We demonstrate the capability of both nighttime and daytime measurements as a step toward a future stand-alone capability for routine measurements of important meteorological properties in the lower atmosphere.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. I. Green, “Wing tip vortices,” in Fluid Vortices: Fluid Mechanics and Its Applications, S. I. Green, ed. (Springer, 1995), pp. 427–470.
  2. J. N. Hallock, G. C. Greene, and D. C. Burnham, “Wake vortex research: a retrospective look,” Air Traffic Control Q. 6, 161–178 (1998).
  3. J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
    [CrossRef]
  4. H. Inaba, “Detection of atoms and molecules by Raman scattering and resonance fluorescence” in Laser Monitoring of the Atmosphere, Volume 14 of Topics in Applied Physics, E. D. Hinkley, ed. (Springer, 1976), pp. 153–236.
  5. J. A. Cooney, “Uses of Raman scattering for remote sensing of atmospheric properties of meteorological significance,” Opt. Eng. 22, 292–301 (1983).
    [CrossRef]
  6. Y. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, and V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983).
    [CrossRef]
  7. M. L. Chanin, A. Hauchecorne, and D. Nedeljkovic, “Temperature measurement by rotational Raman lidar,” Proc. SPIE 1714, 242–250 (1992).
    [CrossRef]
  8. D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30  km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
    [CrossRef]
  9. G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, and V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
    [CrossRef]
  10. C. R. Philbrick, “Raman lidar measurements of atmospheric properties. Atmospheric propagation and remote sensing III,” Proc. SPIE 2222, 922–931 (1994).
    [CrossRef]
  11. P. A. T. Haris and C. R. Philbrick, “Rotational Raman lidar for temperature measurements in the troposphere,” in Proceedings of the IEEE Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing, ID TW.7 (IEEE, 1995), pp. 141–144.
  12. F. Balsiger, P. A. T. Haris, and C. R. Philbrick, “Lower tropospheric temperature measurements using a rotational Raman lidar,” Proc. SPIE 2832, 53–60 (1996).
    [CrossRef]
  13. I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. Van Den Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational pure-rotational Raman lidar,” Appl. Phys. B 79, 775–782 (2004).
    [CrossRef]
  14. A. Behrendt, “Temperature measurements with lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 273–305.
  15. C. R. Philbrick, “Raman lidar characterization of the meteorological, electromagnetic and electro-optical environment,” Proc. SPIE 5887, 58870 (2005).
    [CrossRef]
  16. M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8, 159–169 (2008).
    [CrossRef]
  17. J. Reichardt, U. Wandinger, V. Klein, I. Mattis, B. Hilber, and R. Begbie, “RAMSES: German meteorological service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements,” Appl. Opt. 51, 8111–8131 (2012).
    [CrossRef]
  18. R. K. Newsom, D. D. Turner, and J. E. M. Goldsmith, “Long-term evaluation of temperature profiles measured by an operational Raman lidar,” J. Atmos. Ocean. Technol. 30, 1616–1634 (2013).
    [CrossRef]
  19. H. S. Lee, I. H. Hwang, and C. R. Prasad, “Portable digital lidar system,” U.S. patent6,593,582 B2 (15July2003).
  20. G. Li and C. R. Philbrick, “Lidar measurements of airborne particulate matter,” Proc. SPIE 4893, 94–104 (2003).
    [CrossRef]
  21. A. T. Young, “Rayleigh scattering,” Appl. Opt. 20, 533–535 (1981).
    [CrossRef]
  22. A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. L. Marsha, J. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, T. W. Cooley, and J. A. Gardner, “MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options,” Proc. SPIE 5655, 88–95 (2005).
    [CrossRef]

2013 (1)

R. K. Newsom, D. D. Turner, and J. E. M. Goldsmith, “Long-term evaluation of temperature profiles measured by an operational Raman lidar,” J. Atmos. Ocean. Technol. 30, 1616–1634 (2013).
[CrossRef]

2012 (1)

2008 (1)

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8, 159–169 (2008).
[CrossRef]

2005 (2)

C. R. Philbrick, “Raman lidar characterization of the meteorological, electromagnetic and electro-optical environment,” Proc. SPIE 5887, 58870 (2005).
[CrossRef]

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. L. Marsha, J. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, T. W. Cooley, and J. A. Gardner, “MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options,” Proc. SPIE 5655, 88–95 (2005).
[CrossRef]

2004 (1)

I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. Van Den Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational pure-rotational Raman lidar,” Appl. Phys. B 79, 775–782 (2004).
[CrossRef]

2003 (1)

G. Li and C. R. Philbrick, “Lidar measurements of airborne particulate matter,” Proc. SPIE 4893, 94–104 (2003).
[CrossRef]

1998 (1)

J. N. Hallock, G. C. Greene, and D. C. Burnham, “Wake vortex research: a retrospective look,” Air Traffic Control Q. 6, 161–178 (1998).

1996 (1)

F. Balsiger, P. A. T. Haris, and C. R. Philbrick, “Lower tropospheric temperature measurements using a rotational Raman lidar,” Proc. SPIE 2832, 53–60 (1996).
[CrossRef]

1994 (1)

C. R. Philbrick, “Raman lidar measurements of atmospheric properties. Atmospheric propagation and remote sensing III,” Proc. SPIE 2222, 922–931 (1994).
[CrossRef]

1993 (2)

D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30  km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, and V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
[CrossRef]

1992 (1)

M. L. Chanin, A. Hauchecorne, and D. Nedeljkovic, “Temperature measurement by rotational Raman lidar,” Proc. SPIE 1714, 242–250 (1992).
[CrossRef]

1983 (2)

J. A. Cooney, “Uses of Raman scattering for remote sensing of atmospheric properties of meteorological significance,” Opt. Eng. 22, 292–301 (1983).
[CrossRef]

Y. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, and V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983).
[CrossRef]

1981 (1)

1972 (1)

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
[CrossRef]

Acharya, P. K.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. L. Marsha, J. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, T. W. Cooley, and J. A. Gardner, “MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options,” Proc. SPIE 5655, 88–95 (2005).
[CrossRef]

Adler-Golden, S. M.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. L. Marsha, J. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, T. W. Cooley, and J. A. Gardner, “MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options,” Proc. SPIE 5655, 88–95 (2005).
[CrossRef]

Anderson, G. P.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. L. Marsha, J. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, T. W. Cooley, and J. A. Gardner, “MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options,” Proc. SPIE 5655, 88–95 (2005).
[CrossRef]

Arshinov, Y.

I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. Van Den Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational pure-rotational Raman lidar,” Appl. Phys. B 79, 775–782 (2004).
[CrossRef]

Arshinov, Y. F.

Balin, I.

I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. Van Den Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational pure-rotational Raman lidar,” Appl. Phys. B 79, 775–782 (2004).
[CrossRef]

Balsiger, F.

F. Balsiger, P. A. T. Haris, and C. R. Philbrick, “Lower tropospheric temperature measurements using a rotational Raman lidar,” Proc. SPIE 2832, 53–60 (1996).
[CrossRef]

Begbie, R.

Behrendt, A.

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8, 159–169 (2008).
[CrossRef]

A. Behrendt, “Temperature measurements with lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 273–305.

Berk, A.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. L. Marsha, J. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, T. W. Cooley, and J. A. Gardner, “MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options,” Proc. SPIE 5655, 88–95 (2005).
[CrossRef]

Bernstein, L. S.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. L. Marsha, J. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, T. W. Cooley, and J. A. Gardner, “MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options,” Proc. SPIE 5655, 88–95 (2005).
[CrossRef]

Bobrovnikov, S.

I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. Van Den Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational pure-rotational Raman lidar,” Appl. Phys. B 79, 775–782 (2004).
[CrossRef]

Bobrovnikov, S. M.

Burnham, D. C.

J. N. Hallock, G. C. Greene, and D. C. Burnham, “Wake vortex research: a retrospective look,” Air Traffic Control Q. 6, 161–178 (1998).

Calpini, B.

I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. Van Den Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational pure-rotational Raman lidar,” Appl. Phys. B 79, 775–782 (2004).
[CrossRef]

Chanin, M. L.

D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30  km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

M. L. Chanin, A. Hauchecorne, and D. Nedeljkovic, “Temperature measurement by rotational Raman lidar,” Proc. SPIE 1714, 242–250 (1992).
[CrossRef]

Chetwynd, J. H.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. L. Marsha, J. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, T. W. Cooley, and J. A. Gardner, “MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options,” Proc. SPIE 5655, 88–95 (2005).
[CrossRef]

Cooley, T. W.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. L. Marsha, J. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, T. W. Cooley, and J. A. Gardner, “MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options,” Proc. SPIE 5655, 88–95 (2005).
[CrossRef]

Cooney, J.

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
[CrossRef]

Cooney, J. A.

J. A. Cooney, “Uses of Raman scattering for remote sensing of atmospheric properties of meteorological significance,” Opt. Eng. 22, 292–301 (1983).
[CrossRef]

Fox, J.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. L. Marsha, J. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, T. W. Cooley, and J. A. Gardner, “MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options,” Proc. SPIE 5655, 88–95 (2005).
[CrossRef]

Gardner, J. A.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. L. Marsha, J. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, T. W. Cooley, and J. A. Gardner, “MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options,” Proc. SPIE 5655, 88–95 (2005).
[CrossRef]

Goldsmith, J. E. M.

R. K. Newsom, D. D. Turner, and J. E. M. Goldsmith, “Long-term evaluation of temperature profiles measured by an operational Raman lidar,” J. Atmos. Ocean. Technol. 30, 1616–1634 (2013).
[CrossRef]

Green, S. I.

S. I. Green, “Wing tip vortices,” in Fluid Vortices: Fluid Mechanics and Its Applications, S. I. Green, ed. (Springer, 1995), pp. 427–470.

Greene, G. C.

J. N. Hallock, G. C. Greene, and D. C. Burnham, “Wake vortex research: a retrospective look,” Air Traffic Control Q. 6, 161–178 (1998).

Hallock, J. N.

J. N. Hallock, G. C. Greene, and D. C. Burnham, “Wake vortex research: a retrospective look,” Air Traffic Control Q. 6, 161–178 (1998).

Haris, P. A. T.

F. Balsiger, P. A. T. Haris, and C. R. Philbrick, “Lower tropospheric temperature measurements using a rotational Raman lidar,” Proc. SPIE 2832, 53–60 (1996).
[CrossRef]

P. A. T. Haris and C. R. Philbrick, “Rotational Raman lidar for temperature measurements in the troposphere,” in Proceedings of the IEEE Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing, ID TW.7 (IEEE, 1995), pp. 141–144.

Hauchecorne, A.

D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30  km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

M. L. Chanin, A. Hauchecorne, and D. Nedeljkovic, “Temperature measurement by rotational Raman lidar,” Proc. SPIE 1714, 242–250 (1992).
[CrossRef]

Hilber, B.

Hoke, M. L.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. L. Marsha, J. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, T. W. Cooley, and J. A. Gardner, “MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options,” Proc. SPIE 5655, 88–95 (2005).
[CrossRef]

Hwang, I. H.

H. S. Lee, I. H. Hwang, and C. R. Prasad, “Portable digital lidar system,” U.S. patent6,593,582 B2 (15July2003).

Inaba, H.

H. Inaba, “Detection of atoms and molecules by Raman scattering and resonance fluorescence” in Laser Monitoring of the Atmosphere, Volume 14 of Topics in Applied Physics, E. D. Hinkley, ed. (Springer, 1976), pp. 153–236.

Klein, V.

Lee, H. S.

H. S. Lee, I. H. Hwang, and C. R. Prasad, “Portable digital lidar system,” U.S. patent6,593,582 B2 (15July2003).

Li, G.

G. Li and C. R. Philbrick, “Lidar measurements of airborne particulate matter,” Proc. SPIE 4893, 94–104 (2003).
[CrossRef]

Lockwood, R. B.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. L. Marsha, J. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, T. W. Cooley, and J. A. Gardner, “MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options,” Proc. SPIE 5655, 88–95 (2005).
[CrossRef]

Marsha, J. L.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. L. Marsha, J. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, T. W. Cooley, and J. A. Gardner, “MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options,” Proc. SPIE 5655, 88–95 (2005).
[CrossRef]

Mattis, I.

Mitev, V.

Mitev, V. M.

Muratov, L.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. L. Marsha, J. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, T. W. Cooley, and J. A. Gardner, “MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options,” Proc. SPIE 5655, 88–95 (2005).
[CrossRef]

Nedeljkovic, D.

D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30  km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

M. L. Chanin, A. Hauchecorne, and D. Nedeljkovic, “Temperature measurement by rotational Raman lidar,” Proc. SPIE 1714, 242–250 (1992).
[CrossRef]

Newsom, R. K.

R. K. Newsom, D. D. Turner, and J. E. M. Goldsmith, “Long-term evaluation of temperature profiles measured by an operational Raman lidar,” J. Atmos. Ocean. Technol. 30, 1616–1634 (2013).
[CrossRef]

Pepler, S. J.

Philbrick, C. R.

C. R. Philbrick, “Raman lidar characterization of the meteorological, electromagnetic and electro-optical environment,” Proc. SPIE 5887, 58870 (2005).
[CrossRef]

G. Li and C. R. Philbrick, “Lidar measurements of airborne particulate matter,” Proc. SPIE 4893, 94–104 (2003).
[CrossRef]

F. Balsiger, P. A. T. Haris, and C. R. Philbrick, “Lower tropospheric temperature measurements using a rotational Raman lidar,” Proc. SPIE 2832, 53–60 (1996).
[CrossRef]

C. R. Philbrick, “Raman lidar measurements of atmospheric properties. Atmospheric propagation and remote sensing III,” Proc. SPIE 2222, 922–931 (1994).
[CrossRef]

P. A. T. Haris and C. R. Philbrick, “Rotational Raman lidar for temperature measurements in the troposphere,” in Proceedings of the IEEE Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing, ID TW.7 (IEEE, 1995), pp. 141–144.

Prasad, C. R.

H. S. Lee, I. H. Hwang, and C. R. Prasad, “Portable digital lidar system,” U.S. patent6,593,582 B2 (15July2003).

Radlach, M.

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8, 159–169 (2008).
[CrossRef]

Reichardt, J.

Serikov, I.

I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. Van Den Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational pure-rotational Raman lidar,” Appl. Phys. B 79, 775–782 (2004).
[CrossRef]

Simeonov, V.

I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. Van Den Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational pure-rotational Raman lidar,” Appl. Phys. B 79, 775–782 (2004).
[CrossRef]

Thomas, L.

Turner, D. D.

R. K. Newsom, D. D. Turner, and J. E. M. Goldsmith, “Long-term evaluation of temperature profiles measured by an operational Raman lidar,” J. Atmos. Ocean. Technol. 30, 1616–1634 (2013).
[CrossRef]

Van Den Bergh, H.

I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. Van Den Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational pure-rotational Raman lidar,” Appl. Phys. B 79, 775–782 (2004).
[CrossRef]

Vaughan, G.

Wandinger, U.

Wareing, D. P.

Wulfmeyer, V.

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8, 159–169 (2008).
[CrossRef]

Young, A. T.

Zuev, V. E.

Air Traffic Control Q. (1)

J. N. Hallock, G. C. Greene, and D. C. Burnham, “Wake vortex research: a retrospective look,” Air Traffic Control Q. 6, 161–178 (1998).

Appl. Opt. (4)

Appl. Phys. B (1)

I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. Van Den Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational pure-rotational Raman lidar,” Appl. Phys. B 79, 775–782 (2004).
[CrossRef]

Atmos. Chem. Phys. (1)

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8, 159–169 (2008).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30  km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

J. Appl. Meteorol. (1)

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
[CrossRef]

J. Atmos. Ocean. Technol. (1)

R. K. Newsom, D. D. Turner, and J. E. M. Goldsmith, “Long-term evaluation of temperature profiles measured by an operational Raman lidar,” J. Atmos. Ocean. Technol. 30, 1616–1634 (2013).
[CrossRef]

Opt. Eng. (1)

J. A. Cooney, “Uses of Raman scattering for remote sensing of atmospheric properties of meteorological significance,” Opt. Eng. 22, 292–301 (1983).
[CrossRef]

Proc. SPIE (6)

C. R. Philbrick, “Raman lidar measurements of atmospheric properties. Atmospheric propagation and remote sensing III,” Proc. SPIE 2222, 922–931 (1994).
[CrossRef]

M. L. Chanin, A. Hauchecorne, and D. Nedeljkovic, “Temperature measurement by rotational Raman lidar,” Proc. SPIE 1714, 242–250 (1992).
[CrossRef]

C. R. Philbrick, “Raman lidar characterization of the meteorological, electromagnetic and electro-optical environment,” Proc. SPIE 5887, 58870 (2005).
[CrossRef]

F. Balsiger, P. A. T. Haris, and C. R. Philbrick, “Lower tropospheric temperature measurements using a rotational Raman lidar,” Proc. SPIE 2832, 53–60 (1996).
[CrossRef]

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. L. Marsha, J. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, T. W. Cooley, and J. A. Gardner, “MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options,” Proc. SPIE 5655, 88–95 (2005).
[CrossRef]

G. Li and C. R. Philbrick, “Lidar measurements of airborne particulate matter,” Proc. SPIE 4893, 94–104 (2003).
[CrossRef]

Other (5)

A. Behrendt, “Temperature measurements with lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 273–305.

H. S. Lee, I. H. Hwang, and C. R. Prasad, “Portable digital lidar system,” U.S. patent6,593,582 B2 (15July2003).

P. A. T. Haris and C. R. Philbrick, “Rotational Raman lidar for temperature measurements in the troposphere,” in Proceedings of the IEEE Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing, ID TW.7 (IEEE, 1995), pp. 141–144.

S. I. Green, “Wing tip vortices,” in Fluid Vortices: Fluid Mechanics and Its Applications, S. I. Green, ed. (Springer, 1995), pp. 427–470.

H. Inaba, “Detection of atoms and molecules by Raman scattering and resonance fluorescence” in Laser Monitoring of the Atmosphere, Volume 14 of Topics in Applied Physics, E. D. Hinkley, ed. (Springer, 1976), pp. 153–236.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Spectrum shows the rotational Raman lines for N2 and O2 at two different temperatures for excitation at 354.7 nm.

Fig. 2.
Fig. 2.

Schematic of the Raman lidar system: EM, energy monitor; PM and SM, primary and secondary telescope mirrors with pinhole near the focus; NBF, narrowband filters; DM, dichroic mirror; PMT, photomultiplier tubes; and CPM, channel photomultiplier.

Fig. 3.
Fig. 3.

Calculation shows the ratio of the lower J-level over the higher J-level rotational Raman channels as a function of temperature.

Fig. 4.
Fig. 4.

Estimate of the nighttime (1σ) sensitivity curve of the Raman lidar.

Fig. 5.
Fig. 5.

Estimate of the 1σ daytime sensitivity curve of the Raman lidar.

Fig. 6.
Fig. 6.

Lidar returns on 12 April 2012 (near 10 p.m.) are plotted when the beam intentionally hit a cloud layer near 2.5 km. (a) Average for 10 min profiles of the three raw data returns, and (b) ratio of the high-J divided by low-J values shows a significant temperature drop across the cloud (filter wavelengths in this test are not those in Table 1 that are used in the LUT calculation shown in Fig. 3).

Fig. 7.
Fig. 7.

Integrated raw data from 500 to 900 m at various wavelengths compared with rotational Raman scattering for N2 and O2 in air, 9–10 p.m. on 30 April 2012. Note the separation of the signal from the coefficients when the filter central wavelength (354.2 nm) moves too close to the laser line (354.66 nm).

Fig. 8.
Fig. 8.

Lidar and IAD rawinsonde measurements on 3 May 2012. (a) Comparison between sonde (taken at 8 p.m.) and 1 h average (between 8:31 and 9:30 p.m.) Raman lidar temperature profiles when retrieved using a LUT, and (b) temperature difference between lidar and sonde.

Fig. 9.
Fig. 9.

Lidar and IAD rawinsonde measurements on 3 May 2012. (a) Comparison between sonde and Raman lidar temperature profile using a quadratic polynomial fit of the rawinsonde data, and (b) temperature difference of lidar minus sonde temperature. Note that the temperature scale in Fig. 8 is different from that in Fig. 9.

Fig. 10.
Fig. 10.

Raman lidar temperature profile compared with the IAD rawinsonde measurement on 12 August 2012 7:45–8:45 p.m.

Fig. 11.
Fig. 11.

Time series temperature profiles show data taken on 12 August 2012 11 a.m. to 10:30 p.m. (vertical line indicates the sunset time). Notice the smoothing of the boundary layer structure after sunset.

Tables (2)

Tables Icon

Table 1. Specifications of the Low-J and High-J Band Filters

Tables Icon

Table 2. Raman Lidar Breadboard Characteristics

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R(T)=P2P1=SJ(NS*AS(J,T)*ϕ2,S(J)*σ(J)SJ(NS*AS(J,T)*ϕ1,S(J)*σ(J),whereAS(J,T)=g(J)Q(T)(2J+1)*exp[EJKT]
λc=λ01sin2θ/n2,
T=C0+C1R+C2R2.
ΔT=TRΔR(T1T2)(R1R2)R1(P1+PB1)/P12+(P2+PB2)/P22,

Metrics