Abstract

An ultrabroadband polarization splitter based on a modified three-core photonic crystal fiber is proposed. Two fluorine-doped cores and a central microstructured modulation core are introduced to achieve an excellent performance and an ultrawide bandwidth. Numerical simulation demonstrates that the splitter has a bandwidth as wide as 300 nm, with an extinction ratio (ER) as low as 20dB. At the wavelength of 1.55 μm, the ER reaches 30dB. All the air holes in our design are circular holes and are arranged in a triangular lattice that is easy to fabricate with the method of stack and draw. A suitable mode field area and a Gaussian-like mode field distribution lead to a low splicing loss that is as low as 0.04 dB when splicing with standard single-mode fibers as the lead-in and lead-out ports.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Peng, T. Tjugiarto, and P. Chu, “Polarisation beam splitting using twin-elliptic-core optical fibres,” Electron. Lett. 26, 682–683 (1990).
    [CrossRef]
  2. L. Zhang and C. Yang, “Polarization splitter based on photonic crystal fibers,” Opt. Express 11, 1015–1020 (2003).
    [CrossRef]
  3. K. Saitoh, Y. Sato, and M. Koshiba, “Polarization splitter in three-core photonic crystal fibers,” Opt. Express 12, 3940–3946 (2004).
    [CrossRef]
  4. L. Rosa, F. Poli, M. Foroni, A. Cucinotta, and S. Selleri, “Polarization splitter based on a square-lattice photonic-crystal fiber,” Opt. Lett. 31, 441–443 (2006).
    [CrossRef]
  5. J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43, 795–800 (2011).
    [CrossRef]
  6. W. Lu, S. Lou, X. Wang, L. Wang, and R. Feng, “Ultrabroadband polarization splitter based on three-core photonic crystal fibers,” Appl. Opt. 52, 449–455 (2013).
    [CrossRef]
  7. N. Florous, K. Saitoh, and M. Koshiba, “A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics,” Opt. Express 13, 7365–7373 (2005).
    [CrossRef]
  8. M. Eisenmann and E. Weidel, “Single-mode fused biconical coupler optimized for polarization beamsplitting,” J. Lightwave Technol. 9, 853–858 (1991).
    [CrossRef]
  9. M. Koshibata, “Full-vector analysis of photonic crystal fibers using the finite element method,” IEICE Trans. Electron. E85-C, 881–888 (2002).
  10. K. R. Khan and T. X. Wu, “Finite element modeling of dual-core photonic crystal fiber,” Appl. Comput. Electromagn. Soc. J. 23, 215–219 (2008).
  11. S. Guenneu, A. Nicolet, F. Zolla, and S. Lasquellec, “Numerical and theoretical study of photonic crystal fibers,” Prog. Electromagn. Res. 41, 271–305 (2003).
    [CrossRef]
  12. K. Saitoh, Y. Sato, and M. Koshiba, “Coupling characteristics of dual-core photonic crystal fiber couplers,” Opt. Express 11, 3188–3195 (2003).
    [CrossRef]
  13. L. Zhang and C. Yang, “Polarization-dependent coupling in twin-core photonic crystal fibers,” J. Lightwave Technol. 22, 1367–1373 (2004).
    [CrossRef]
  14. M.-Y. Chen, B. Sun, Y.-K. Zhang, and X.-X. Fu, “Design of broadband polarization splitter based on partial coupling in square-lattice photonic-crystal fiber,” Appl. Opt. 49, 3042–3048 (2010).
    [CrossRef]
  15. S. Lou, Z. Tang, and L. Wang, “Design and optimization of broadband and polarization-insensitive dual-core photonic crystal fiber coupler,” Appl. Opt. 50, 2016–2023 (2011).
    [CrossRef]

2013 (1)

2011 (2)

S. Lou, Z. Tang, and L. Wang, “Design and optimization of broadband and polarization-insensitive dual-core photonic crystal fiber coupler,” Appl. Opt. 50, 2016–2023 (2011).
[CrossRef]

J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43, 795–800 (2011).
[CrossRef]

2010 (1)

2008 (1)

K. R. Khan and T. X. Wu, “Finite element modeling of dual-core photonic crystal fiber,” Appl. Comput. Electromagn. Soc. J. 23, 215–219 (2008).

2006 (1)

2005 (1)

2004 (2)

2003 (3)

2002 (1)

M. Koshibata, “Full-vector analysis of photonic crystal fibers using the finite element method,” IEICE Trans. Electron. E85-C, 881–888 (2002).

1991 (1)

M. Eisenmann and E. Weidel, “Single-mode fused biconical coupler optimized for polarization beamsplitting,” J. Lightwave Technol. 9, 853–858 (1991).
[CrossRef]

1990 (1)

G. Peng, T. Tjugiarto, and P. Chu, “Polarisation beam splitting using twin-elliptic-core optical fibres,” Electron. Lett. 26, 682–683 (1990).
[CrossRef]

Chen, M.-Y.

Chu, P.

G. Peng, T. Tjugiarto, and P. Chu, “Polarisation beam splitting using twin-elliptic-core optical fibres,” Electron. Lett. 26, 682–683 (1990).
[CrossRef]

Cucinotta, A.

Eisenmann, M.

M. Eisenmann and E. Weidel, “Single-mode fused biconical coupler optimized for polarization beamsplitting,” J. Lightwave Technol. 9, 853–858 (1991).
[CrossRef]

Feng, R.

Florous, N.

Foroni, M.

Fu, X.-X.

Guenneu, S.

S. Guenneu, A. Nicolet, F. Zolla, and S. Lasquellec, “Numerical and theoretical study of photonic crystal fibers,” Prog. Electromagn. Res. 41, 271–305 (2003).
[CrossRef]

Khan, K. R.

K. R. Khan and T. X. Wu, “Finite element modeling of dual-core photonic crystal fiber,” Appl. Comput. Electromagn. Soc. J. 23, 215–219 (2008).

Koshiba, M.

Koshibata, M.

M. Koshibata, “Full-vector analysis of photonic crystal fibers using the finite element method,” IEICE Trans. Electron. E85-C, 881–888 (2002).

Lasquellec, S.

S. Guenneu, A. Nicolet, F. Zolla, and S. Lasquellec, “Numerical and theoretical study of photonic crystal fibers,” Prog. Electromagn. Res. 41, 271–305 (2003).
[CrossRef]

Li, J. H.

J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43, 795–800 (2011).
[CrossRef]

Liu, Y.

J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43, 795–800 (2011).
[CrossRef]

Lou, S.

Lu, W.

Nicolet, A.

S. Guenneu, A. Nicolet, F. Zolla, and S. Lasquellec, “Numerical and theoretical study of photonic crystal fibers,” Prog. Electromagn. Res. 41, 271–305 (2003).
[CrossRef]

Peng, G.

G. Peng, T. Tjugiarto, and P. Chu, “Polarisation beam splitting using twin-elliptic-core optical fibres,” Electron. Lett. 26, 682–683 (1990).
[CrossRef]

Poli, F.

Rosa, L.

Saitoh, K.

Sato, Y.

Selleri, S.

Sun, B.

Tang, Z.

Tjugiarto, T.

G. Peng, T. Tjugiarto, and P. Chu, “Polarisation beam splitting using twin-elliptic-core optical fibres,” Electron. Lett. 26, 682–683 (1990).
[CrossRef]

Wang, J. Y.

J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43, 795–800 (2011).
[CrossRef]

Wang, L.

Wang, R.

J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43, 795–800 (2011).
[CrossRef]

Wang, X.

Weidel, E.

M. Eisenmann and E. Weidel, “Single-mode fused biconical coupler optimized for polarization beamsplitting,” J. Lightwave Technol. 9, 853–858 (1991).
[CrossRef]

Wu, T. X.

K. R. Khan and T. X. Wu, “Finite element modeling of dual-core photonic crystal fiber,” Appl. Comput. Electromagn. Soc. J. 23, 215–219 (2008).

Yang, C.

Zhang, L.

Zhang, Y.-K.

Zolla, F.

S. Guenneu, A. Nicolet, F. Zolla, and S. Lasquellec, “Numerical and theoretical study of photonic crystal fibers,” Prog. Electromagn. Res. 41, 271–305 (2003).
[CrossRef]

Appl. Comput. Electromagn. Soc. J. (1)

K. R. Khan and T. X. Wu, “Finite element modeling of dual-core photonic crystal fiber,” Appl. Comput. Electromagn. Soc. J. 23, 215–219 (2008).

Appl. Opt. (3)

Electron. Lett. (1)

G. Peng, T. Tjugiarto, and P. Chu, “Polarisation beam splitting using twin-elliptic-core optical fibres,” Electron. Lett. 26, 682–683 (1990).
[CrossRef]

IEICE Trans. Electron. (1)

M. Koshibata, “Full-vector analysis of photonic crystal fibers using the finite element method,” IEICE Trans. Electron. E85-C, 881–888 (2002).

J. Lightwave Technol. (2)

M. Eisenmann and E. Weidel, “Single-mode fused biconical coupler optimized for polarization beamsplitting,” J. Lightwave Technol. 9, 853–858 (1991).
[CrossRef]

L. Zhang and C. Yang, “Polarization-dependent coupling in twin-core photonic crystal fibers,” J. Lightwave Technol. 22, 1367–1373 (2004).
[CrossRef]

Opt. Express (4)

Opt. Laser Technol. (1)

J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43, 795–800 (2011).
[CrossRef]

Opt. Lett. (1)

Prog. Electromagn. Res. (1)

S. Guenneu, A. Nicolet, F. Zolla, and S. Lasquellec, “Numerical and theoretical study of photonic crystal fibers,” Prog. Electromagn. Res. 41, 271–305 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Cross sections of (a) modified three-core PCF and (b) previously proposed three-core PCF.

Fig. 2.
Fig. 2.

Mode field distributions of (a) odd mode and (b) even mode in x polarization and (c) odd mode and (d) even mode in y polarization. The arrows represent the directions of the corresponding electric field vectors.

Fig. 3.
Fig. 3.

Coupling length as a function of wavelength.

Fig. 4.
Fig. 4.

Normalized power of x and y polarization lights in (a) core A and (b) core B. The dashed vertical line indicates the splitter length.

Fig. 5.
Fig. 5.

ER as a function of wavelength.

Fig. 6.
Fig. 6.

ER as a function of wavelength with different Δd.

Fig. 7.
Fig. 7.

ER as a function of wavelength with different ΔΛ.

Fig. 8.
Fig. 8.

ER as a function of wavelength with different Δds.

Fig. 9.
Fig. 9.

ER as a function of wavelength with different ΔΛs.

Tables (2)

Tables Icon

Table 1. Impacts of Variations in Structure Parameters on the Performance

Tables Icon

Table 2. Comparison of the Previous and Modified Structures

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Lcx,y=λ2(nex,ynox,y),
PoutA=PoutAx+PoutAy=Pinxcos2CxL+Pinycos2CyL,
PoutB=PoutBx+PoutBy=Pinxsin2CxL+Pinysin2CyL,
Cx=k0(nexnox)/2=π/2Lcx,Cy=k0(neynoy)/2=π/2Lcy.
ER=10lgPoutAyPoutAx.

Metrics