Abstract

This paper presents a thermal analysis and experimental validation of natural convective heat transfer of a high-brightness light-emitting diode (LED) package assembly. The substrate materials used in the LED package assembly were filled and doped using boron nitride (BN) filler. The thermal conductivity of the BN-filled substrate was measured. The temperature distribution and heat flow of the LED package were assessed by thermal profile measurement using an infrared (IR) camera and thermocouples. In addition, the heat transfer process of the LED package assembly in natural convection was also simulated using the computational fluid dynamics method. The optical performance of the LED package was monitored and investigated with various filler contents. The heat conduction mechanism in the substrate was analyzed. IR thermogram showed that the BN-doped substrate could effectively lower the surface temperature of the LED package by 21.5°C compared with the traditional FR4 substrate. According to the IESNA LM 80 lifetime testing method, reduction in LED temperature can prolong the LED’s lifetime by 19,000 h. The optical performance of the LED package assembly was also found to be improved significantly in lighting power by 10%. As a result, the overall heat dissipation capability of the LED package to the surrounding is enhanced, which improves the LED’s efficacy.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Narendran and Y. M. Gu, “Life of LED-based white light sources,” J. Disp. Technol. 1, 167–171 (2005).
  2. J. Zhou and W. Yan, “Experimental investigation on the performance characteristics of white LEDs used in illumination application,” in Proceedings of the 38th IEEE Power Electronics Specialists Conference (PESC’07), Orlando, Florida, 2007, pp. 1436–1440.
  3. K. W. Garrett and H. M. Rosenberg, “The thermal conductivity of epoxy-resin/powder composite materials,” J. Phys. D 7, 1247–1258 (1974).
  4. H. J. Ott, “Thermal conductivity of composite materials,” J. Plast. Rubber Process. Appl. 1, 9–24 (1981).
  5. P. Procter and J. Solc, “Improved thermal conductivity in microelectronic encapsulants,” IEEE Trans. Compon., Hybrids, Manuf. Technol. 14, 708–713 (1991).
    [CrossRef]
  6. H. He, R. Fu, Y. Han, Y. Shen, and X. Song, “Thermal conductivity of ceramic particle filled polymer composites and theoretical predictions,” J. Mater. Sci. 42, 6749–6754 (2007).
    [CrossRef]
  7. D. M. Bigg, “Thermally conductive polymer compositions,” Polym. Compos. 7, 125–140 (1986).
  8. D. P. H. Hasselman and L. D. Johnson, “Effective thermal conductivity of composites with interfacial thermal barrier resistance,” J. Compos. Mater. 21, 508–515 (1987).
    [CrossRef]
  9. Z. Li, K. Okamoto, Y. Ohki, and T. Tanaka, “Effects of nano-filler addition on partial discharge resistance and dielectric breakdown strength of Micro-Al2O3 Epoxy composite,” IEEE Trans. Dielectr. Electr. Insul. 17, 653–661 (2010).
    [CrossRef]
  10. MCPCB Applications. Available: http://www.cofan-pcb.com/products/mcpcb.php .
  11. H. M. Cho and H. J. Kim, “Metal-core printed circuit board with alumina layer by aerosol deposition process,” IEEE Electron Device Lett. 29, 991–993 (2008).
    [CrossRef]
  12. R. R. Tummala, E. J. Rymaszewski, and A. G. Klopfenstein, Microelectronics Packaging Handbook: Subsystem Packaging, 3rd ed. (Kluwer Academic, 2001), Part 3, pp. 85–86.
  13. C. I. Nicholls and H. M. Rosenberg, “The excitation spectrum of epoxy resins; neutron diffraction, specific heat and thermal conductivity at low temperatures,” J. Phys. C 17, 1165–1178 (1984).
    [CrossRef]
  14. A. A. Solomo, J. Fourcade, S. G. Lee, S. K. Kuchibhotla, S. Revankar, P. L. Holman, and J. K. McCoy, “The polymer impregnation and pyrolysis method for producing enhanced conductivity LWR fuels,” in Proceedings of the 2004 International Meeting on LWR Fuel Performance, Orlando, Florida, 2004, pp. 146–155.
  15. J. K. Kim, J. W. Kim, M. I. Kim, and M. S. Song, “Thermal conductivity and adhesion properties of thermally conductive pressure-sensitive adhesives,” Macromol. Res. 14, 517–523 (2006).
    [CrossRef]
  16. M. Hussain, Y. Oku, A. Nakahira, and K. Niihara, “Effects of wet ball-milling on particle dispersion and mechanical properties of particulate epoxy composites,” Mater. Lett. 26, 177–184 (1996).
    [CrossRef]
  17. P. Bujard, G. Kühlein, S. Ino, and T. Shiobara, “Thermal conductivity of molding compounds for plastic packaging,” IEEE Trans. Compon., Packag., Manuf. Technol., Part A 17, 527–532 (1994).
    [CrossRef]
  18. Y. S. Xu, D. D. L. Chung, and C. Mroz, “Thermally conducting aluminum nitride polymer-matrix composites,” Composites, Part A 32, 1749–1757 (2001).
    [CrossRef]
  19. W. Kim, J. W. Bae, I. D. Choi, and Y. S. Kim, “Thermally conductive EMD (Epoxy Molding Compound) for microelectronic encapsulation,” Polym. Eng. Sci. 39, 756–766 (1999).
    [CrossRef]
  20. W. Bae, W. Kim, S. W. Park, C. S. Ha, and J. K. Lee, “Advanced underfill for high thermal reliability,” J. Appl. Polym. Sci. 83, 2617–2624 (2002).
    [CrossRef]
  21. M. T. Huang and H. Ishida, “Investigation of the boron nitride/polybenzoxazine interphase,” J. Polym. Sci. B 37, 2360–2372 (1999).
  22. R. S. Pease, “An x-ray study of boron nitride,” Acta Crystallogr. 5, 356–361 (1952).
    [CrossRef]
  23. C. J. Weng, “Advanced thermal enhancement and management of LED packages,” Int. Commun. Heat Mass Transfer 36, 245–248 (2009).
    [CrossRef]
  24. B. M. Song, B. Han, A. Bar-Cohen, R. Sharma, and M. Arik, “Hierarchical life prediction model for actively cooled LED based luminaire,” IEEE Trans. Compon., Packag. Technol., Part A 33, 728–737 (2010).
  25. M. H. Chang, D. Das, P. Varde, and M. Pecht, “Light emitting diodes reliability review,” Microelectron. Reliab. 52, 762–782 (2012).
  26. C. T. Yang, W. C. Liu, and C. Y. Liu, “Measurement of thermal resistance of first-level Cu substrate used in high-power multi-chips LED package,” Microelectron. Reliab. 52, 855–860 (2012).
  27. B. Witzen, “LED thermal design challenges: tips and techniques,” ECN Magazine, August2010.
  28. MuAnalysis Inc., “Lumileds Luxeon K2 LED lamp teardown and technology analysis,” 2008. Available: http://www.muanalysis.com/_documents/publications/Teardown%20reports/Lumileds-Luxeon-K2-LED-Lamp-Teardown-Report-short-version.pdf .
  29. D. J. Acheson, Elementary Fluid Dynamics, Oxford Applied Mathematics and Computing Science Series (Oxford University, 1990), pp. 30–32.
  30. T. E. Faber, Fluid Dynamics for Physicists (Cambridge University, 1995), pp. 204–244.
  31. Solidworks Flow Simulation Technical Reference, 2009.
  32. T. N. Morgan, “Broadening of impurity bands in heavily doped semiconductors,” Phys. Rev. 139, A343–A348 (1965).
    [CrossRef]
  33. M. Ford, “In-situ LED junction temperature and thermal resistance,” Vektrex Application Note, 2008. Available: http://www.vektrex.com .
  34. J. Hulett and C. Kelly, “Measuring LED junction temperature,” Photon. Spect. 2008. Available: http://www.photonics.com/Article.aspx?AID=34316 .
  35. W. J. Hwang, T. H. Lee, L. Kim, and M. W. Shin, “Determination of junction temperature and thermal resistance in the GaN-based LEDs using direct temperature measurement,” Phys. Status Solidi C 1, 2429–2432 (2004).
    [CrossRef]

2012

M. H. Chang, D. Das, P. Varde, and M. Pecht, “Light emitting diodes reliability review,” Microelectron. Reliab. 52, 762–782 (2012).

C. T. Yang, W. C. Liu, and C. Y. Liu, “Measurement of thermal resistance of first-level Cu substrate used in high-power multi-chips LED package,” Microelectron. Reliab. 52, 855–860 (2012).

2010

B. M. Song, B. Han, A. Bar-Cohen, R. Sharma, and M. Arik, “Hierarchical life prediction model for actively cooled LED based luminaire,” IEEE Trans. Compon., Packag. Technol., Part A 33, 728–737 (2010).

Z. Li, K. Okamoto, Y. Ohki, and T. Tanaka, “Effects of nano-filler addition on partial discharge resistance and dielectric breakdown strength of Micro-Al2O3 Epoxy composite,” IEEE Trans. Dielectr. Electr. Insul. 17, 653–661 (2010).
[CrossRef]

2009

C. J. Weng, “Advanced thermal enhancement and management of LED packages,” Int. Commun. Heat Mass Transfer 36, 245–248 (2009).
[CrossRef]

2008

H. M. Cho and H. J. Kim, “Metal-core printed circuit board with alumina layer by aerosol deposition process,” IEEE Electron Device Lett. 29, 991–993 (2008).
[CrossRef]

2007

H. He, R. Fu, Y. Han, Y. Shen, and X. Song, “Thermal conductivity of ceramic particle filled polymer composites and theoretical predictions,” J. Mater. Sci. 42, 6749–6754 (2007).
[CrossRef]

2006

J. K. Kim, J. W. Kim, M. I. Kim, and M. S. Song, “Thermal conductivity and adhesion properties of thermally conductive pressure-sensitive adhesives,” Macromol. Res. 14, 517–523 (2006).
[CrossRef]

2005

N. Narendran and Y. M. Gu, “Life of LED-based white light sources,” J. Disp. Technol. 1, 167–171 (2005).

2004

W. J. Hwang, T. H. Lee, L. Kim, and M. W. Shin, “Determination of junction temperature and thermal resistance in the GaN-based LEDs using direct temperature measurement,” Phys. Status Solidi C 1, 2429–2432 (2004).
[CrossRef]

2002

W. Bae, W. Kim, S. W. Park, C. S. Ha, and J. K. Lee, “Advanced underfill for high thermal reliability,” J. Appl. Polym. Sci. 83, 2617–2624 (2002).
[CrossRef]

2001

Y. S. Xu, D. D. L. Chung, and C. Mroz, “Thermally conducting aluminum nitride polymer-matrix composites,” Composites, Part A 32, 1749–1757 (2001).
[CrossRef]

1999

W. Kim, J. W. Bae, I. D. Choi, and Y. S. Kim, “Thermally conductive EMD (Epoxy Molding Compound) for microelectronic encapsulation,” Polym. Eng. Sci. 39, 756–766 (1999).
[CrossRef]

M. T. Huang and H. Ishida, “Investigation of the boron nitride/polybenzoxazine interphase,” J. Polym. Sci. B 37, 2360–2372 (1999).

1996

M. Hussain, Y. Oku, A. Nakahira, and K. Niihara, “Effects of wet ball-milling on particle dispersion and mechanical properties of particulate epoxy composites,” Mater. Lett. 26, 177–184 (1996).
[CrossRef]

1994

P. Bujard, G. Kühlein, S. Ino, and T. Shiobara, “Thermal conductivity of molding compounds for plastic packaging,” IEEE Trans. Compon., Packag., Manuf. Technol., Part A 17, 527–532 (1994).
[CrossRef]

1991

P. Procter and J. Solc, “Improved thermal conductivity in microelectronic encapsulants,” IEEE Trans. Compon., Hybrids, Manuf. Technol. 14, 708–713 (1991).
[CrossRef]

1987

D. P. H. Hasselman and L. D. Johnson, “Effective thermal conductivity of composites with interfacial thermal barrier resistance,” J. Compos. Mater. 21, 508–515 (1987).
[CrossRef]

1986

D. M. Bigg, “Thermally conductive polymer compositions,” Polym. Compos. 7, 125–140 (1986).

1984

C. I. Nicholls and H. M. Rosenberg, “The excitation spectrum of epoxy resins; neutron diffraction, specific heat and thermal conductivity at low temperatures,” J. Phys. C 17, 1165–1178 (1984).
[CrossRef]

1981

H. J. Ott, “Thermal conductivity of composite materials,” J. Plast. Rubber Process. Appl. 1, 9–24 (1981).

1974

K. W. Garrett and H. M. Rosenberg, “The thermal conductivity of epoxy-resin/powder composite materials,” J. Phys. D 7, 1247–1258 (1974).

1965

T. N. Morgan, “Broadening of impurity bands in heavily doped semiconductors,” Phys. Rev. 139, A343–A348 (1965).
[CrossRef]

1952

R. S. Pease, “An x-ray study of boron nitride,” Acta Crystallogr. 5, 356–361 (1952).
[CrossRef]

Acheson, D. J.

D. J. Acheson, Elementary Fluid Dynamics, Oxford Applied Mathematics and Computing Science Series (Oxford University, 1990), pp. 30–32.

Arik, M.

B. M. Song, B. Han, A. Bar-Cohen, R. Sharma, and M. Arik, “Hierarchical life prediction model for actively cooled LED based luminaire,” IEEE Trans. Compon., Packag. Technol., Part A 33, 728–737 (2010).

Bae, J. W.

W. Kim, J. W. Bae, I. D. Choi, and Y. S. Kim, “Thermally conductive EMD (Epoxy Molding Compound) for microelectronic encapsulation,” Polym. Eng. Sci. 39, 756–766 (1999).
[CrossRef]

Bae, W.

W. Bae, W. Kim, S. W. Park, C. S. Ha, and J. K. Lee, “Advanced underfill for high thermal reliability,” J. Appl. Polym. Sci. 83, 2617–2624 (2002).
[CrossRef]

Bar-Cohen, A.

B. M. Song, B. Han, A. Bar-Cohen, R. Sharma, and M. Arik, “Hierarchical life prediction model for actively cooled LED based luminaire,” IEEE Trans. Compon., Packag. Technol., Part A 33, 728–737 (2010).

Bigg, D. M.

D. M. Bigg, “Thermally conductive polymer compositions,” Polym. Compos. 7, 125–140 (1986).

Bujard, P.

P. Bujard, G. Kühlein, S. Ino, and T. Shiobara, “Thermal conductivity of molding compounds for plastic packaging,” IEEE Trans. Compon., Packag., Manuf. Technol., Part A 17, 527–532 (1994).
[CrossRef]

Chang, M. H.

M. H. Chang, D. Das, P. Varde, and M. Pecht, “Light emitting diodes reliability review,” Microelectron. Reliab. 52, 762–782 (2012).

Cho, H. M.

H. M. Cho and H. J. Kim, “Metal-core printed circuit board with alumina layer by aerosol deposition process,” IEEE Electron Device Lett. 29, 991–993 (2008).
[CrossRef]

Choi, I. D.

W. Kim, J. W. Bae, I. D. Choi, and Y. S. Kim, “Thermally conductive EMD (Epoxy Molding Compound) for microelectronic encapsulation,” Polym. Eng. Sci. 39, 756–766 (1999).
[CrossRef]

Chung, D. D. L.

Y. S. Xu, D. D. L. Chung, and C. Mroz, “Thermally conducting aluminum nitride polymer-matrix composites,” Composites, Part A 32, 1749–1757 (2001).
[CrossRef]

Das, D.

M. H. Chang, D. Das, P. Varde, and M. Pecht, “Light emitting diodes reliability review,” Microelectron. Reliab. 52, 762–782 (2012).

Faber, T. E.

T. E. Faber, Fluid Dynamics for Physicists (Cambridge University, 1995), pp. 204–244.

Fourcade, J.

A. A. Solomo, J. Fourcade, S. G. Lee, S. K. Kuchibhotla, S. Revankar, P. L. Holman, and J. K. McCoy, “The polymer impregnation and pyrolysis method for producing enhanced conductivity LWR fuels,” in Proceedings of the 2004 International Meeting on LWR Fuel Performance, Orlando, Florida, 2004, pp. 146–155.

Fu, R.

H. He, R. Fu, Y. Han, Y. Shen, and X. Song, “Thermal conductivity of ceramic particle filled polymer composites and theoretical predictions,” J. Mater. Sci. 42, 6749–6754 (2007).
[CrossRef]

Garrett, K. W.

K. W. Garrett and H. M. Rosenberg, “The thermal conductivity of epoxy-resin/powder composite materials,” J. Phys. D 7, 1247–1258 (1974).

Gu, Y. M.

N. Narendran and Y. M. Gu, “Life of LED-based white light sources,” J. Disp. Technol. 1, 167–171 (2005).

Ha, C. S.

W. Bae, W. Kim, S. W. Park, C. S. Ha, and J. K. Lee, “Advanced underfill for high thermal reliability,” J. Appl. Polym. Sci. 83, 2617–2624 (2002).
[CrossRef]

Han, B.

B. M. Song, B. Han, A. Bar-Cohen, R. Sharma, and M. Arik, “Hierarchical life prediction model for actively cooled LED based luminaire,” IEEE Trans. Compon., Packag. Technol., Part A 33, 728–737 (2010).

Han, Y.

H. He, R. Fu, Y. Han, Y. Shen, and X. Song, “Thermal conductivity of ceramic particle filled polymer composites and theoretical predictions,” J. Mater. Sci. 42, 6749–6754 (2007).
[CrossRef]

Hasselman, D. P. H.

D. P. H. Hasselman and L. D. Johnson, “Effective thermal conductivity of composites with interfacial thermal barrier resistance,” J. Compos. Mater. 21, 508–515 (1987).
[CrossRef]

He, H.

H. He, R. Fu, Y. Han, Y. Shen, and X. Song, “Thermal conductivity of ceramic particle filled polymer composites and theoretical predictions,” J. Mater. Sci. 42, 6749–6754 (2007).
[CrossRef]

Holman, P. L.

A. A. Solomo, J. Fourcade, S. G. Lee, S. K. Kuchibhotla, S. Revankar, P. L. Holman, and J. K. McCoy, “The polymer impregnation and pyrolysis method for producing enhanced conductivity LWR fuels,” in Proceedings of the 2004 International Meeting on LWR Fuel Performance, Orlando, Florida, 2004, pp. 146–155.

Huang, M. T.

M. T. Huang and H. Ishida, “Investigation of the boron nitride/polybenzoxazine interphase,” J. Polym. Sci. B 37, 2360–2372 (1999).

Hussain, M.

M. Hussain, Y. Oku, A. Nakahira, and K. Niihara, “Effects of wet ball-milling on particle dispersion and mechanical properties of particulate epoxy composites,” Mater. Lett. 26, 177–184 (1996).
[CrossRef]

Hwang, W. J.

W. J. Hwang, T. H. Lee, L. Kim, and M. W. Shin, “Determination of junction temperature and thermal resistance in the GaN-based LEDs using direct temperature measurement,” Phys. Status Solidi C 1, 2429–2432 (2004).
[CrossRef]

Ino, S.

P. Bujard, G. Kühlein, S. Ino, and T. Shiobara, “Thermal conductivity of molding compounds for plastic packaging,” IEEE Trans. Compon., Packag., Manuf. Technol., Part A 17, 527–532 (1994).
[CrossRef]

Ishida, H.

M. T. Huang and H. Ishida, “Investigation of the boron nitride/polybenzoxazine interphase,” J. Polym. Sci. B 37, 2360–2372 (1999).

Johnson, L. D.

D. P. H. Hasselman and L. D. Johnson, “Effective thermal conductivity of composites with interfacial thermal barrier resistance,” J. Compos. Mater. 21, 508–515 (1987).
[CrossRef]

Kim, H. J.

H. M. Cho and H. J. Kim, “Metal-core printed circuit board with alumina layer by aerosol deposition process,” IEEE Electron Device Lett. 29, 991–993 (2008).
[CrossRef]

Kim, J. K.

J. K. Kim, J. W. Kim, M. I. Kim, and M. S. Song, “Thermal conductivity and adhesion properties of thermally conductive pressure-sensitive adhesives,” Macromol. Res. 14, 517–523 (2006).
[CrossRef]

Kim, J. W.

J. K. Kim, J. W. Kim, M. I. Kim, and M. S. Song, “Thermal conductivity and adhesion properties of thermally conductive pressure-sensitive adhesives,” Macromol. Res. 14, 517–523 (2006).
[CrossRef]

Kim, L.

W. J. Hwang, T. H. Lee, L. Kim, and M. W. Shin, “Determination of junction temperature and thermal resistance in the GaN-based LEDs using direct temperature measurement,” Phys. Status Solidi C 1, 2429–2432 (2004).
[CrossRef]

Kim, M. I.

J. K. Kim, J. W. Kim, M. I. Kim, and M. S. Song, “Thermal conductivity and adhesion properties of thermally conductive pressure-sensitive adhesives,” Macromol. Res. 14, 517–523 (2006).
[CrossRef]

Kim, W.

W. Bae, W. Kim, S. W. Park, C. S. Ha, and J. K. Lee, “Advanced underfill for high thermal reliability,” J. Appl. Polym. Sci. 83, 2617–2624 (2002).
[CrossRef]

W. Kim, J. W. Bae, I. D. Choi, and Y. S. Kim, “Thermally conductive EMD (Epoxy Molding Compound) for microelectronic encapsulation,” Polym. Eng. Sci. 39, 756–766 (1999).
[CrossRef]

Kim, Y. S.

W. Kim, J. W. Bae, I. D. Choi, and Y. S. Kim, “Thermally conductive EMD (Epoxy Molding Compound) for microelectronic encapsulation,” Polym. Eng. Sci. 39, 756–766 (1999).
[CrossRef]

Klopfenstein, A. G.

R. R. Tummala, E. J. Rymaszewski, and A. G. Klopfenstein, Microelectronics Packaging Handbook: Subsystem Packaging, 3rd ed. (Kluwer Academic, 2001), Part 3, pp. 85–86.

Kuchibhotla, S. K.

A. A. Solomo, J. Fourcade, S. G. Lee, S. K. Kuchibhotla, S. Revankar, P. L. Holman, and J. K. McCoy, “The polymer impregnation and pyrolysis method for producing enhanced conductivity LWR fuels,” in Proceedings of the 2004 International Meeting on LWR Fuel Performance, Orlando, Florida, 2004, pp. 146–155.

Kühlein, G.

P. Bujard, G. Kühlein, S. Ino, and T. Shiobara, “Thermal conductivity of molding compounds for plastic packaging,” IEEE Trans. Compon., Packag., Manuf. Technol., Part A 17, 527–532 (1994).
[CrossRef]

Lee, J. K.

W. Bae, W. Kim, S. W. Park, C. S. Ha, and J. K. Lee, “Advanced underfill for high thermal reliability,” J. Appl. Polym. Sci. 83, 2617–2624 (2002).
[CrossRef]

Lee, S. G.

A. A. Solomo, J. Fourcade, S. G. Lee, S. K. Kuchibhotla, S. Revankar, P. L. Holman, and J. K. McCoy, “The polymer impregnation and pyrolysis method for producing enhanced conductivity LWR fuels,” in Proceedings of the 2004 International Meeting on LWR Fuel Performance, Orlando, Florida, 2004, pp. 146–155.

Lee, T. H.

W. J. Hwang, T. H. Lee, L. Kim, and M. W. Shin, “Determination of junction temperature and thermal resistance in the GaN-based LEDs using direct temperature measurement,” Phys. Status Solidi C 1, 2429–2432 (2004).
[CrossRef]

Li, Z.

Z. Li, K. Okamoto, Y. Ohki, and T. Tanaka, “Effects of nano-filler addition on partial discharge resistance and dielectric breakdown strength of Micro-Al2O3 Epoxy composite,” IEEE Trans. Dielectr. Electr. Insul. 17, 653–661 (2010).
[CrossRef]

Liu, C. Y.

C. T. Yang, W. C. Liu, and C. Y. Liu, “Measurement of thermal resistance of first-level Cu substrate used in high-power multi-chips LED package,” Microelectron. Reliab. 52, 855–860 (2012).

Liu, W. C.

C. T. Yang, W. C. Liu, and C. Y. Liu, “Measurement of thermal resistance of first-level Cu substrate used in high-power multi-chips LED package,” Microelectron. Reliab. 52, 855–860 (2012).

McCoy, J. K.

A. A. Solomo, J. Fourcade, S. G. Lee, S. K. Kuchibhotla, S. Revankar, P. L. Holman, and J. K. McCoy, “The polymer impregnation and pyrolysis method for producing enhanced conductivity LWR fuels,” in Proceedings of the 2004 International Meeting on LWR Fuel Performance, Orlando, Florida, 2004, pp. 146–155.

Morgan, T. N.

T. N. Morgan, “Broadening of impurity bands in heavily doped semiconductors,” Phys. Rev. 139, A343–A348 (1965).
[CrossRef]

Mroz, C.

Y. S. Xu, D. D. L. Chung, and C. Mroz, “Thermally conducting aluminum nitride polymer-matrix composites,” Composites, Part A 32, 1749–1757 (2001).
[CrossRef]

Nakahira, A.

M. Hussain, Y. Oku, A. Nakahira, and K. Niihara, “Effects of wet ball-milling on particle dispersion and mechanical properties of particulate epoxy composites,” Mater. Lett. 26, 177–184 (1996).
[CrossRef]

Narendran, N.

N. Narendran and Y. M. Gu, “Life of LED-based white light sources,” J. Disp. Technol. 1, 167–171 (2005).

Nicholls, C. I.

C. I. Nicholls and H. M. Rosenberg, “The excitation spectrum of epoxy resins; neutron diffraction, specific heat and thermal conductivity at low temperatures,” J. Phys. C 17, 1165–1178 (1984).
[CrossRef]

Niihara, K.

M. Hussain, Y. Oku, A. Nakahira, and K. Niihara, “Effects of wet ball-milling on particle dispersion and mechanical properties of particulate epoxy composites,” Mater. Lett. 26, 177–184 (1996).
[CrossRef]

Ohki, Y.

Z. Li, K. Okamoto, Y. Ohki, and T. Tanaka, “Effects of nano-filler addition on partial discharge resistance and dielectric breakdown strength of Micro-Al2O3 Epoxy composite,” IEEE Trans. Dielectr. Electr. Insul. 17, 653–661 (2010).
[CrossRef]

Okamoto, K.

Z. Li, K. Okamoto, Y. Ohki, and T. Tanaka, “Effects of nano-filler addition on partial discharge resistance and dielectric breakdown strength of Micro-Al2O3 Epoxy composite,” IEEE Trans. Dielectr. Electr. Insul. 17, 653–661 (2010).
[CrossRef]

Oku, Y.

M. Hussain, Y. Oku, A. Nakahira, and K. Niihara, “Effects of wet ball-milling on particle dispersion and mechanical properties of particulate epoxy composites,” Mater. Lett. 26, 177–184 (1996).
[CrossRef]

Ott, H. J.

H. J. Ott, “Thermal conductivity of composite materials,” J. Plast. Rubber Process. Appl. 1, 9–24 (1981).

Park, S. W.

W. Bae, W. Kim, S. W. Park, C. S. Ha, and J. K. Lee, “Advanced underfill for high thermal reliability,” J. Appl. Polym. Sci. 83, 2617–2624 (2002).
[CrossRef]

Pease, R. S.

R. S. Pease, “An x-ray study of boron nitride,” Acta Crystallogr. 5, 356–361 (1952).
[CrossRef]

Pecht, M.

M. H. Chang, D. Das, P. Varde, and M. Pecht, “Light emitting diodes reliability review,” Microelectron. Reliab. 52, 762–782 (2012).

Procter, P.

P. Procter and J. Solc, “Improved thermal conductivity in microelectronic encapsulants,” IEEE Trans. Compon., Hybrids, Manuf. Technol. 14, 708–713 (1991).
[CrossRef]

Revankar, S.

A. A. Solomo, J. Fourcade, S. G. Lee, S. K. Kuchibhotla, S. Revankar, P. L. Holman, and J. K. McCoy, “The polymer impregnation and pyrolysis method for producing enhanced conductivity LWR fuels,” in Proceedings of the 2004 International Meeting on LWR Fuel Performance, Orlando, Florida, 2004, pp. 146–155.

Rosenberg, H. M.

C. I. Nicholls and H. M. Rosenberg, “The excitation spectrum of epoxy resins; neutron diffraction, specific heat and thermal conductivity at low temperatures,” J. Phys. C 17, 1165–1178 (1984).
[CrossRef]

K. W. Garrett and H. M. Rosenberg, “The thermal conductivity of epoxy-resin/powder composite materials,” J. Phys. D 7, 1247–1258 (1974).

Rymaszewski, E. J.

R. R. Tummala, E. J. Rymaszewski, and A. G. Klopfenstein, Microelectronics Packaging Handbook: Subsystem Packaging, 3rd ed. (Kluwer Academic, 2001), Part 3, pp. 85–86.

Sharma, R.

B. M. Song, B. Han, A. Bar-Cohen, R. Sharma, and M. Arik, “Hierarchical life prediction model for actively cooled LED based luminaire,” IEEE Trans. Compon., Packag. Technol., Part A 33, 728–737 (2010).

Shen, Y.

H. He, R. Fu, Y. Han, Y. Shen, and X. Song, “Thermal conductivity of ceramic particle filled polymer composites and theoretical predictions,” J. Mater. Sci. 42, 6749–6754 (2007).
[CrossRef]

Shin, M. W.

W. J. Hwang, T. H. Lee, L. Kim, and M. W. Shin, “Determination of junction temperature and thermal resistance in the GaN-based LEDs using direct temperature measurement,” Phys. Status Solidi C 1, 2429–2432 (2004).
[CrossRef]

Shiobara, T.

P. Bujard, G. Kühlein, S. Ino, and T. Shiobara, “Thermal conductivity of molding compounds for plastic packaging,” IEEE Trans. Compon., Packag., Manuf. Technol., Part A 17, 527–532 (1994).
[CrossRef]

Solc, J.

P. Procter and J. Solc, “Improved thermal conductivity in microelectronic encapsulants,” IEEE Trans. Compon., Hybrids, Manuf. Technol. 14, 708–713 (1991).
[CrossRef]

Solomo, A. A.

A. A. Solomo, J. Fourcade, S. G. Lee, S. K. Kuchibhotla, S. Revankar, P. L. Holman, and J. K. McCoy, “The polymer impregnation and pyrolysis method for producing enhanced conductivity LWR fuels,” in Proceedings of the 2004 International Meeting on LWR Fuel Performance, Orlando, Florida, 2004, pp. 146–155.

Song, B. M.

B. M. Song, B. Han, A. Bar-Cohen, R. Sharma, and M. Arik, “Hierarchical life prediction model for actively cooled LED based luminaire,” IEEE Trans. Compon., Packag. Technol., Part A 33, 728–737 (2010).

Song, M. S.

J. K. Kim, J. W. Kim, M. I. Kim, and M. S. Song, “Thermal conductivity and adhesion properties of thermally conductive pressure-sensitive adhesives,” Macromol. Res. 14, 517–523 (2006).
[CrossRef]

Song, X.

H. He, R. Fu, Y. Han, Y. Shen, and X. Song, “Thermal conductivity of ceramic particle filled polymer composites and theoretical predictions,” J. Mater. Sci. 42, 6749–6754 (2007).
[CrossRef]

Tanaka, T.

Z. Li, K. Okamoto, Y. Ohki, and T. Tanaka, “Effects of nano-filler addition on partial discharge resistance and dielectric breakdown strength of Micro-Al2O3 Epoxy composite,” IEEE Trans. Dielectr. Electr. Insul. 17, 653–661 (2010).
[CrossRef]

Tummala, R. R.

R. R. Tummala, E. J. Rymaszewski, and A. G. Klopfenstein, Microelectronics Packaging Handbook: Subsystem Packaging, 3rd ed. (Kluwer Academic, 2001), Part 3, pp. 85–86.

Varde, P.

M. H. Chang, D. Das, P. Varde, and M. Pecht, “Light emitting diodes reliability review,” Microelectron. Reliab. 52, 762–782 (2012).

Weng, C. J.

C. J. Weng, “Advanced thermal enhancement and management of LED packages,” Int. Commun. Heat Mass Transfer 36, 245–248 (2009).
[CrossRef]

Witzen, B.

B. Witzen, “LED thermal design challenges: tips and techniques,” ECN Magazine, August2010.

Xu, Y. S.

Y. S. Xu, D. D. L. Chung, and C. Mroz, “Thermally conducting aluminum nitride polymer-matrix composites,” Composites, Part A 32, 1749–1757 (2001).
[CrossRef]

Yan, W.

J. Zhou and W. Yan, “Experimental investigation on the performance characteristics of white LEDs used in illumination application,” in Proceedings of the 38th IEEE Power Electronics Specialists Conference (PESC’07), Orlando, Florida, 2007, pp. 1436–1440.

Yang, C. T.

C. T. Yang, W. C. Liu, and C. Y. Liu, “Measurement of thermal resistance of first-level Cu substrate used in high-power multi-chips LED package,” Microelectron. Reliab. 52, 855–860 (2012).

Zhou, J.

J. Zhou and W. Yan, “Experimental investigation on the performance characteristics of white LEDs used in illumination application,” in Proceedings of the 38th IEEE Power Electronics Specialists Conference (PESC’07), Orlando, Florida, 2007, pp. 1436–1440.

Acta Crystallogr.

R. S. Pease, “An x-ray study of boron nitride,” Acta Crystallogr. 5, 356–361 (1952).
[CrossRef]

Composites, Part A

Y. S. Xu, D. D. L. Chung, and C. Mroz, “Thermally conducting aluminum nitride polymer-matrix composites,” Composites, Part A 32, 1749–1757 (2001).
[CrossRef]

IEEE Electron Device Lett.

H. M. Cho and H. J. Kim, “Metal-core printed circuit board with alumina layer by aerosol deposition process,” IEEE Electron Device Lett. 29, 991–993 (2008).
[CrossRef]

IEEE Trans. Compon., Hybrids, Manuf. Technol.

P. Procter and J. Solc, “Improved thermal conductivity in microelectronic encapsulants,” IEEE Trans. Compon., Hybrids, Manuf. Technol. 14, 708–713 (1991).
[CrossRef]

IEEE Trans. Compon., Packag. Technol., Part A

B. M. Song, B. Han, A. Bar-Cohen, R. Sharma, and M. Arik, “Hierarchical life prediction model for actively cooled LED based luminaire,” IEEE Trans. Compon., Packag. Technol., Part A 33, 728–737 (2010).

IEEE Trans. Compon., Packag., Manuf. Technol., Part A

P. Bujard, G. Kühlein, S. Ino, and T. Shiobara, “Thermal conductivity of molding compounds for plastic packaging,” IEEE Trans. Compon., Packag., Manuf. Technol., Part A 17, 527–532 (1994).
[CrossRef]

IEEE Trans. Dielectr. Electr. Insul.

Z. Li, K. Okamoto, Y. Ohki, and T. Tanaka, “Effects of nano-filler addition on partial discharge resistance and dielectric breakdown strength of Micro-Al2O3 Epoxy composite,” IEEE Trans. Dielectr. Electr. Insul. 17, 653–661 (2010).
[CrossRef]

Int. Commun. Heat Mass Transfer

C. J. Weng, “Advanced thermal enhancement and management of LED packages,” Int. Commun. Heat Mass Transfer 36, 245–248 (2009).
[CrossRef]

J. Appl. Polym. Sci.

W. Bae, W. Kim, S. W. Park, C. S. Ha, and J. K. Lee, “Advanced underfill for high thermal reliability,” J. Appl. Polym. Sci. 83, 2617–2624 (2002).
[CrossRef]

J. Compos. Mater.

D. P. H. Hasselman and L. D. Johnson, “Effective thermal conductivity of composites with interfacial thermal barrier resistance,” J. Compos. Mater. 21, 508–515 (1987).
[CrossRef]

J. Disp. Technol.

N. Narendran and Y. M. Gu, “Life of LED-based white light sources,” J. Disp. Technol. 1, 167–171 (2005).

J. Mater. Sci.

H. He, R. Fu, Y. Han, Y. Shen, and X. Song, “Thermal conductivity of ceramic particle filled polymer composites and theoretical predictions,” J. Mater. Sci. 42, 6749–6754 (2007).
[CrossRef]

J. Phys. C

C. I. Nicholls and H. M. Rosenberg, “The excitation spectrum of epoxy resins; neutron diffraction, specific heat and thermal conductivity at low temperatures,” J. Phys. C 17, 1165–1178 (1984).
[CrossRef]

J. Phys. D

K. W. Garrett and H. M. Rosenberg, “The thermal conductivity of epoxy-resin/powder composite materials,” J. Phys. D 7, 1247–1258 (1974).

J. Plast. Rubber Process. Appl.

H. J. Ott, “Thermal conductivity of composite materials,” J. Plast. Rubber Process. Appl. 1, 9–24 (1981).

J. Polym. Sci. B

M. T. Huang and H. Ishida, “Investigation of the boron nitride/polybenzoxazine interphase,” J. Polym. Sci. B 37, 2360–2372 (1999).

Macromol. Res.

J. K. Kim, J. W. Kim, M. I. Kim, and M. S. Song, “Thermal conductivity and adhesion properties of thermally conductive pressure-sensitive adhesives,” Macromol. Res. 14, 517–523 (2006).
[CrossRef]

Mater. Lett.

M. Hussain, Y. Oku, A. Nakahira, and K. Niihara, “Effects of wet ball-milling on particle dispersion and mechanical properties of particulate epoxy composites,” Mater. Lett. 26, 177–184 (1996).
[CrossRef]

Microelectron. Reliab.

M. H. Chang, D. Das, P. Varde, and M. Pecht, “Light emitting diodes reliability review,” Microelectron. Reliab. 52, 762–782 (2012).

C. T. Yang, W. C. Liu, and C. Y. Liu, “Measurement of thermal resistance of first-level Cu substrate used in high-power multi-chips LED package,” Microelectron. Reliab. 52, 855–860 (2012).

Phys. Rev.

T. N. Morgan, “Broadening of impurity bands in heavily doped semiconductors,” Phys. Rev. 139, A343–A348 (1965).
[CrossRef]

Phys. Status Solidi C

W. J. Hwang, T. H. Lee, L. Kim, and M. W. Shin, “Determination of junction temperature and thermal resistance in the GaN-based LEDs using direct temperature measurement,” Phys. Status Solidi C 1, 2429–2432 (2004).
[CrossRef]

Polym. Compos.

D. M. Bigg, “Thermally conductive polymer compositions,” Polym. Compos. 7, 125–140 (1986).

Polym. Eng. Sci.

W. Kim, J. W. Bae, I. D. Choi, and Y. S. Kim, “Thermally conductive EMD (Epoxy Molding Compound) for microelectronic encapsulation,” Polym. Eng. Sci. 39, 756–766 (1999).
[CrossRef]

Other

M. Ford, “In-situ LED junction temperature and thermal resistance,” Vektrex Application Note, 2008. Available: http://www.vektrex.com .

J. Hulett and C. Kelly, “Measuring LED junction temperature,” Photon. Spect. 2008. Available: http://www.photonics.com/Article.aspx?AID=34316 .

B. Witzen, “LED thermal design challenges: tips and techniques,” ECN Magazine, August2010.

MuAnalysis Inc., “Lumileds Luxeon K2 LED lamp teardown and technology analysis,” 2008. Available: http://www.muanalysis.com/_documents/publications/Teardown%20reports/Lumileds-Luxeon-K2-LED-Lamp-Teardown-Report-short-version.pdf .

D. J. Acheson, Elementary Fluid Dynamics, Oxford Applied Mathematics and Computing Science Series (Oxford University, 1990), pp. 30–32.

T. E. Faber, Fluid Dynamics for Physicists (Cambridge University, 1995), pp. 204–244.

Solidworks Flow Simulation Technical Reference, 2009.

MCPCB Applications. Available: http://www.cofan-pcb.com/products/mcpcb.php .

J. Zhou and W. Yan, “Experimental investigation on the performance characteristics of white LEDs used in illumination application,” in Proceedings of the 38th IEEE Power Electronics Specialists Conference (PESC’07), Orlando, Florida, 2007, pp. 1436–1440.

A. A. Solomo, J. Fourcade, S. G. Lee, S. K. Kuchibhotla, S. Revankar, P. L. Holman, and J. K. McCoy, “The polymer impregnation and pyrolysis method for producing enhanced conductivity LWR fuels,” in Proceedings of the 2004 International Meeting on LWR Fuel Performance, Orlando, Florida, 2004, pp. 146–155.

R. R. Tummala, E. J. Rymaszewski, and A. G. Klopfenstein, Microelectronics Packaging Handbook: Subsystem Packaging, 3rd ed. (Kluwer Academic, 2001), Part 3, pp. 85–86.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the LED package assembly. (b) LED thermal model diagram.

Fig. 2.
Fig. 2.

Normalized electroluminescence (EL) spectra and case temperatures from a high-power white GaN/InGaN LED for the different currents indicated. The inset shows the amplitudes of the three emission peaks at various currents. (a) 200–2000 mA, (b) 2000–2800 mA, and (c) LED case temperature at different currents.

Fig. 3.
Fig. 3.

Experimental and simulated thermal results for doped epoxy substrate. (a) Effect of substrate’s thermal conductivity on LED junction temperature. (b) Size distribution and SEM micrograph of the BN filler for 15 μm.

Fig. 4.
Fig. 4.

SEM micrographs of BN-filled epoxy composite surfaces: (a) pure BN, (b) 10%, (c) 20%, and (d) 30%.

Fig. 5.
Fig. 5.

(a) Experimental and simulated results of LED package for thermal and optical performance of different BN percentages in the BN–epoxy nanocomposite. (b) Reliability evaluation of the LED package on substrates in terms of lifetime analysis. The dotted arrow line is for the traditional FR4 substrate, whereas the solid arrow line is for the proposed BN–epoxy nanocomposite.

Fig. 6.
Fig. 6.

Experimental setup and thermal and optical performance results for the LED MCPCB module. (a) Schematic diagram of a typical MCPCB and (b) experimental and simulated results of the LED package for dielectric layers with different thermal conductivities.

Fig. 7.
Fig. 7.

(a) Lamination workflow for the BN-doped PCB. (b) Thermal and optical performance results of the LED package mounted on the conventional FR4 PCB and the BN-doped PCB.

Fig. 8.
Fig. 8.

Experimental and simulated results for the doped PC enclosure of an LED light bulb in terms of thermal and optical performance. (a) IR thermograms for LED package mounted on different BN-filled PC substrates. (b) LED light bulb without enclosure. (c) LED light bulb with enclosure [(i), enclosure without filler; (ii), enclosure with filler].

Tables (1)

Tables Icon

Table 1. Material Data and Standard Boundary Conditions

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Tj=TC+Pθjc,
qA=κdTdx,

Metrics