Abstract

A novel high-impedance nanoantenna with an embedded matching network is implemented to realize a highly sensitive infrared detector. A bowtie antenna is operated at its antiparallel resonance and loaded with a small low-bandgap (Eg=0.52eV) indium gallium arsenide antimonide (InGaAsSb) p-n junction. The structure is optimized for maximum power transfer and significant field enhancement at its terminals for a desired frequency band where the maximum quantum efficiency of InGaAsSb is observed. The sensitivity improvement of the proposed detector is evaluated against the traditional bulk detector and it is shown that the detectivity is improved by the field enhancement factor, which is approximately 20 for the case considered here.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, and S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE 8583, 83533B (2012).
    [CrossRef]
  2. N. Abedin, T. F. Refaat, R. P. Joshi, O. V. Sulima, M. G. Mauk, and U. N. Singh, “Characterization and analysis of InGaAsSb detectors,” Proc. SPIE 5074, 332–342 (2003).
    [CrossRef]
  3. L. Novotny and N. Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
    [CrossRef]
  4. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
    [CrossRef]
  5. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
    [CrossRef]
  6. J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27, 11–14 (2009).
    [CrossRef]
  7. J. A. Bean, A. Weeks, and G. D. Boreman, “Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors,” IEEE J. Quantum Electron. 47, 126–135 (2011).
    [CrossRef]
  8. J. Alda, J. M. Rico-García, J. M. López, and G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16, S230–S234 (2005).
    [CrossRef]
  9. C. A. Wang, “Antimony-based III-V thermophotovoltaic materials and devices,” AIP Conf. Proc. 738, 255 (2004).
    [CrossRef]
  10. W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Sol. Energy Mater. Sol. Cells 94, 509–514 (2010).
    [CrossRef]
  11. C. J. Vineis, “Characterization of OMVPE grown GaSb based epilayers using in situ reflectance and ex situ TEM,” Ph. D. dissertation (Massachusetts Institute of Technology, 2001).
  12. M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductive of thin gold films at the metal-insulator percolation transition,” Phys. Rev. 76, 125408 (2007).
    [CrossRef]
  13. A. Alu and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307–310 (2008).
    [CrossRef]
  14. D. Long, “Photovoltaic and photoconductive infrared detectors,” in Optical and Infrared Detectors, R. J. Keyes, ed. (Springer, 1977), Chap. 4, p. 103.

2012

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, and S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE 8583, 83533B (2012).
[CrossRef]

2011

L. Novotny and N. Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

J. A. Bean, A. Weeks, and G. D. Boreman, “Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors,” IEEE J. Quantum Electron. 47, 126–135 (2011).
[CrossRef]

2010

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Sol. Energy Mater. Sol. Cells 94, 509–514 (2010).
[CrossRef]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

2009

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27, 11–14 (2009).
[CrossRef]

2008

A. Alu and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307–310 (2008).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

2007

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductive of thin gold films at the metal-insulator percolation transition,” Phys. Rev. 76, 125408 (2007).
[CrossRef]

2005

J. Alda, J. M. Rico-García, J. M. López, and G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16, S230–S234 (2005).
[CrossRef]

2004

C. A. Wang, “Antimony-based III-V thermophotovoltaic materials and devices,” AIP Conf. Proc. 738, 255 (2004).
[CrossRef]

2003

N. Abedin, T. F. Refaat, R. P. Joshi, O. V. Sulima, M. G. Mauk, and U. N. Singh, “Characterization and analysis of InGaAsSb detectors,” Proc. SPIE 5074, 332–342 (2003).
[CrossRef]

Abedin, N.

N. Abedin, T. F. Refaat, R. P. Joshi, O. V. Sulima, M. G. Mauk, and U. N. Singh, “Characterization and analysis of InGaAsSb detectors,” Proc. SPIE 5074, 332–342 (2003).
[CrossRef]

Alda, J.

J. Alda, J. M. Rico-García, J. M. López, and G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16, S230–S234 (2005).
[CrossRef]

Alu, A.

A. Alu and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307–310 (2008).
[CrossRef]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Bean, J. A.

J. A. Bean, A. Weeks, and G. D. Boreman, “Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors,” IEEE J. Quantum Electron. 47, 126–135 (2011).
[CrossRef]

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27, 11–14 (2009).
[CrossRef]

Bernstein, G. H.

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27, 11–14 (2009).
[CrossRef]

Boreman, G.

J. Alda, J. M. Rico-García, J. M. López, and G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16, S230–S234 (2005).
[CrossRef]

Boreman, G. D.

J. A. Bean, A. Weeks, and G. D. Boreman, “Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors,” IEEE J. Quantum Electron. 47, 126–135 (2011).
[CrossRef]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Celanovic, I.

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Sol. Energy Mater. Sol. Cells 94, 509–514 (2010).
[CrossRef]

Chan, W.

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Sol. Energy Mater. Sol. Cells 94, 509–514 (2010).
[CrossRef]

Cooke, D. G.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductive of thin gold films at the metal-insulator percolation transition,” Phys. Rev. 76, 125408 (2007).
[CrossRef]

Davids, P. S.

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, and S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE 8583, 83533B (2012).
[CrossRef]

Engheta, N.

A. Alu and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307–310 (2008).
[CrossRef]

Fay, P.

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27, 11–14 (2009).
[CrossRef]

Freeman, M. R.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductive of thin gold films at the metal-insulator percolation transition,” Phys. Rev. 76, 125408 (2007).
[CrossRef]

Hajar, M.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductive of thin gold films at the metal-insulator percolation transition,” Phys. Rev. 76, 125408 (2007).
[CrossRef]

Hegmann, F. A.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductive of thin gold films at the metal-insulator percolation transition,” Phys. Rev. 76, 125408 (2007).
[CrossRef]

Huang, R.

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Sol. Energy Mater. Sol. Cells 94, 509–514 (2010).
[CrossRef]

Hulst, N.

L. Novotny and N. Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

Joannopoulos, J.

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Sol. Energy Mater. Sol. Cells 94, 509–514 (2010).
[CrossRef]

Joshi, R. P.

N. Abedin, T. F. Refaat, R. P. Joshi, O. V. Sulima, M. G. Mauk, and U. N. Singh, “Characterization and analysis of InGaAsSb detectors,” Proc. SPIE 5074, 332–342 (2003).
[CrossRef]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Kassakian, J.

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Sol. Energy Mater. Sol. Cells 94, 509–514 (2010).
[CrossRef]

Kim, J. K.

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, and S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE 8583, 83533B (2012).
[CrossRef]

Klem, J. F.

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, and S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE 8583, 83533B (2012).
[CrossRef]

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Leonhardt, D.

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, and S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE 8583, 83533B (2012).
[CrossRef]

Long, D.

D. Long, “Photovoltaic and photoconductive infrared detectors,” in Optical and Infrared Detectors, R. J. Keyes, ed. (Springer, 1977), Chap. 4, p. 103.

López, J. M.

J. Alda, J. M. Rico-García, J. M. López, and G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16, S230–S234 (2005).
[CrossRef]

Ly-Gagnon, D.-S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Mauk, M. G.

N. Abedin, T. F. Refaat, R. P. Joshi, O. V. Sulima, M. G. Mauk, and U. N. Singh, “Characterization and analysis of InGaAsSb detectors,” Proc. SPIE 5074, 332–342 (2003).
[CrossRef]

Miller, D. A. B.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Novotny, L.

L. Novotny and N. Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Peters, D. W.

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, and S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE 8583, 83533B (2012).
[CrossRef]

Porod, W.

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27, 11–14 (2009).
[CrossRef]

Refaat, T. F.

N. Abedin, T. F. Refaat, R. P. Joshi, O. V. Sulima, M. G. Mauk, and U. N. Singh, “Characterization and analysis of InGaAsSb detectors,” Proc. SPIE 5074, 332–342 (2003).
[CrossRef]

Reinke, C. M.

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, and S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE 8583, 83533B (2012).
[CrossRef]

Rico-García, J. M.

J. Alda, J. M. Rico-García, J. M. López, and G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16, S230–S234 (2005).
[CrossRef]

Samora, S.

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, and S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE 8583, 83533B (2012).
[CrossRef]

Saraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Sherstan, C.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductive of thin gold films at the metal-insulator percolation transition,” Phys. Rev. 76, 125408 (2007).
[CrossRef]

Singh, U. N.

N. Abedin, T. F. Refaat, R. P. Joshi, O. V. Sulima, M. G. Mauk, and U. N. Singh, “Characterization and analysis of InGaAsSb detectors,” Proc. SPIE 5074, 332–342 (2003).
[CrossRef]

Sulima, O. V.

N. Abedin, T. F. Refaat, R. P. Joshi, O. V. Sulima, M. G. Mauk, and U. N. Singh, “Characterization and analysis of InGaAsSb detectors,” Proc. SPIE 5074, 332–342 (2003).
[CrossRef]

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Tiwari, B.

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27, 11–14 (2009).
[CrossRef]

Vineis, C. J.

C. J. Vineis, “Characterization of OMVPE grown GaSb based epilayers using in situ reflectance and ex situ TEM,” Ph. D. dissertation (Massachusetts Institute of Technology, 2001).

Walther, M.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductive of thin gold films at the metal-insulator percolation transition,” Phys. Rev. 76, 125408 (2007).
[CrossRef]

Wang, C.

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Sol. Energy Mater. Sol. Cells 94, 509–514 (2010).
[CrossRef]

Wang, C. A.

C. A. Wang, “Antimony-based III-V thermophotovoltaic materials and devices,” AIP Conf. Proc. 738, 255 (2004).
[CrossRef]

Weeks, A.

J. A. Bean, A. Weeks, and G. D. Boreman, “Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors,” IEEE J. Quantum Electron. 47, 126–135 (2011).
[CrossRef]

Wendt, J. R.

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, and S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE 8583, 83533B (2012).
[CrossRef]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

AIP Conf. Proc.

C. A. Wang, “Antimony-based III-V thermophotovoltaic materials and devices,” AIP Conf. Proc. 738, 255 (2004).
[CrossRef]

IEEE J. Quantum Electron.

J. A. Bean, A. Weeks, and G. D. Boreman, “Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors,” IEEE J. Quantum Electron. 47, 126–135 (2011).
[CrossRef]

J. Vac. Sci. Technol. B

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27, 11–14 (2009).
[CrossRef]

Nanotechnology

J. Alda, J. M. Rico-García, J. M. López, and G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16, S230–S234 (2005).
[CrossRef]

Nat. Mater.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Nat. Photonics

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

L. Novotny and N. Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

A. Alu and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307–310 (2008).
[CrossRef]

Phys. Rev.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductive of thin gold films at the metal-insulator percolation transition,” Phys. Rev. 76, 125408 (2007).
[CrossRef]

Proc. SPIE

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, and S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE 8583, 83533B (2012).
[CrossRef]

N. Abedin, T. F. Refaat, R. P. Joshi, O. V. Sulima, M. G. Mauk, and U. N. Singh, “Characterization and analysis of InGaAsSb detectors,” Proc. SPIE 5074, 332–342 (2003).
[CrossRef]

Sol. Energy Mater. Sol. Cells

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Sol. Energy Mater. Sol. Cells 94, 509–514 (2010).
[CrossRef]

Other

C. J. Vineis, “Characterization of OMVPE grown GaSb based epilayers using in situ reflectance and ex situ TEM,” Ph. D. dissertation (Massachusetts Institute of Technology, 2001).

D. Long, “Photovoltaic and photoconductive infrared detectors,” in Optical and Infrared Detectors, R. J. Keyes, ed. (Springer, 1977), Chap. 4, p. 103.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Dielectric constant and conductivity of InGaAsSb.

Fig. 2.
Fig. 2.

(a) Planar bowtie antenna structure. (b) Side view of the parallel strip transmission line stub loaded at the center with InGaAsSb photodiode and (c) top view of the same structure.

Fig. 3.
Fig. 3.

Input impedance of bowtie antenna without the load region (intrinsic, solid lines) and with the load region filled with air (dashed lines) with L=605nm, W=160nm, α=30°, H=30nm, l=30nm, and S=0nm.

Fig. 4.
Fig. 4.

Equivalent circuit of the bowtie nanoantenna loaded with InGaAsSb load in receiving mode.

Fig. 5.
Fig. 5.

Input impedance of bowtie antenna loaded with the InGaAsSb load (solid line with dots), and input impedance of bowtie antenna loaded with the InGaAsSb load shunt with 0.12 pH of an ideal inductor (dashed line), and bowtie antenna intrinsic input impedance (solid line).

Fig. 6.
Fig. 6.

Field enhancement (the ratio of electric field at the antenna terminal to the incident electric field intensities) for a loaded bowtie antenna with and without a stub length of 138 nm as a function of frequency.

Fig. 7.
Fig. 7.

Unit cell (950nm×610nm) of the bowtie antenna for infinite array.

Fig. 8.
Fig. 8.

Optical area and detector area for a bulk InGaAsSb detector and a nanoantenna loaded IR detector.

Fig. 9.
Fig. 9.

45°-titled array configuration of bowtie nanoantennas illuminated with a vertical and 45°-titled polarizations and the resulting current distributions (calculated from the tangential H field on the gold surface at 180 THz).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

R=(iDV)V=01=kTqisat,
iN=2q(iD+2isat+ip)Δf,
iN=2q[kTqReqVkT+kTqR+qη(Φsig+Φb)Ad]Δf,
iN=[4kTR+2q2ηΦbAd]Δf.
isigiN=qηΦsigAd4kTRΔf.
NEP=1qη4kTΔfR(hcλ).
D*=AoΔfNEP=qηAoR4kT(λhc).
isigiN=qηΦsigg2Ad4kTRΔf,
NEP=1qηg24kTΔfRhcλA0Ad,
D*=AoΔfNEP=qηg2AoR4kTλhc(AdAo).

Metrics