Abstract

A new procedure of designing slotted photonic crystal waveguides is proposed to achieve slow light with improved normalized delay-bandwidth product and low group velocity dispersion that is suitable for both the W1 defect mode and the slot mode. The lateral symmetry of the waveguide in our study is broken by shifting the air holes periodically along the slot axis. The conversion of the “flat band” from band-up slow light to band-down slow light is achieved for the W1 defect mode. The group index curves of the W1 mode change from U-like to step-like and the group indices of 47, 67 and 130 are obtained with the bandwidth over 7.2, 4.8, and 2.3 nm around 1550 nm, respectively. We also obtain the group indices of 42, 55, and 108 for the slot mode with the bandwidth over 6.2, 5.6, and 2.2 nm, respectively. Then the low dispersion slow light propagation is numerically demonstrated by the finite-difference time-domain method.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Okawachi, M. Foster, J. Sharping, A. Gaeta, Q. Xu, and M. Lipson, “All-optical slow-light on a photonic chip,” Opt. Express 14, 2317–2322 (2006).
    [Crossref]
  2. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
    [Crossref]
  3. M. D. Lukin and A. Imamoglu, “Nonlinear optics and quantum entanglement of ultraslow single photons,” Phys. Rev. Lett. 84, 1419–1422 (2000).
    [Crossref]
  4. K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, “Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation,” Appl. Phys. Lett. 88, 201904 (2006).
    [Crossref]
  5. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
    [Crossref]
  6. C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
    [Crossref]
  7. A. D. Falco, L. O. Faolain, and T. F. Krauss, “Photonic crystal slotted slab waveguides,” Photon. Nanostr. Fundam. Appl. 6, 38–41 (2008).
    [Crossref]
  8. J. D. Ryckman and S. M. Weiss, “Localized field enhancements in guided and defect modes of a periodic slot waveguide,” IEEE Photon. J. 3, 986–995 (2011).
    [Crossref]
  9. J. Hou, H. Wu, and D. S. Citrin, “Wideband slow light in chirped slot photonic-crystal coupled waveguides,” Opt. Express 18, 10567–10580 (2010).
    [Crossref]
  10. L. Dai, T. Li, and C. Jiang, “Wideband ultralow high-order-dispersion photonic crystal slow-light waveguide,” J. Opt. Soc. Am. B 28, 1622–1626 (2011).
    [Crossref]
  11. H. Kurt, K. Üstün, and L. Ayas, “Study of different spectral regions and delay bandwidth relation in slow light photonic crystal waveguides,” Opt. Express 18, 26965–26977 (2010).
    [Crossref]
  12. J. Liang, L. Y. Ren, M. J. Yun, and X. J. Wang, “Wideband slow light with ultralow dispersion in a W1 photonic crystal waveguide,” Appl. Opt. 50, G98–G103 (2011).
    [Crossref]
  13. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal wave-guide,” Opt. Lett. 34, 1072–1074 (2009).
    [Crossref]
  14. Y. Zhao, Y. N. Zhang, and Q. Wang, “Wideband slow light with large group index and low dispersion in slotted photonic crystal waveguide,” J. Lightwave Technol. 30, 2812–2817 (2012).
    [Crossref]
  15. J. Ma and C. Jiang, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769 (2008).
    [Crossref]
  16. J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20, 1237–1239 (2008).
    [Crossref]
  17. J. Wu, Y. P. Li, C. Peng, and Z. Y. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
    [Crossref]
  18. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [Crossref]
  19. J. H. Wülbern, S. Prorok, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K. Y. Jen, M. Jenett, and A. Jacob, “40 GHz electro-optic modulation in hybrid silicon–organic slotted photonic crystal waveguides,” Opt. Lett. 35, 2753–2755 (2010).
    [Crossref]
  20. X. Wang, C. Y. Lin, S. Chakravarty, J. Luo, A. K. Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett. 36, 882–884 (2011).
    [Crossref]
  21. J. Gao, J. F. McMillan, M. C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96, 051123 (2010).
    [Crossref]
  22. J. M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed-low voltage electro-optic modulator with a polymer infiltrated silicon photonic crystal waveguide,” Opt. Express 16, 4177–4191 (2008).
    [Crossref]
  23. A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
    [Crossref]
  24. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14, 1658–1672 (2006).
    [Crossref]
  25. K. Yamada, H. Morita, A. Shinya, and M. Notomi, “Improved line-defect structures for photonic-crystal waveguides with high group velocity,” Opt. Commun. 198, 395–402 (2001).
    [Crossref]
  26. C. Caer, X. L. Roux, L. Vivien, and E. Cassan, “Enhanced localization of light in slow wave slot photonic crystal waveguides,” Opt. Lett. 37, 3660–3662 (2012).
    [Crossref]
  27. C. Caer, X. L. Roux, L. Vivien, and E. Cassan, “Dispersion engineered slot photonic crystal waveguides for slow light operation,” Appl. Phys. A 109, 895–899 (2012).
    [Crossref]
  28. K. T. Zhu, T. S. Deng, Y. Sun, Q. F. Zhang, and J. L. Wu, “Slow light property in ring-shape-hole slotted photonic crystal waveguide,” Opt. Commun. 290, 87–91 (2013).
    [Crossref]
  29. C. Caer, X. L. Roux, V. K. Do, D. M. Morini, N. Izard, L. Vivien, D. S. Gao, and E. Cassan, “Dispersion engineering of wide slot photonic crystal waveguides by Bragg-like corrugation of the slot,” IEEE Photon. Technol. Lett. 23, 1298–1300 (2011).
    [Crossref]
  30. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electro-magnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [Crossref]

2013 (1)

K. T. Zhu, T. S. Deng, Y. Sun, Q. F. Zhang, and J. L. Wu, “Slow light property in ring-shape-hole slotted photonic crystal waveguide,” Opt. Commun. 290, 87–91 (2013).
[Crossref]

2012 (3)

2011 (5)

L. Dai, T. Li, and C. Jiang, “Wideband ultralow high-order-dispersion photonic crystal slow-light waveguide,” J. Opt. Soc. Am. B 28, 1622–1626 (2011).
[Crossref]

J. Liang, L. Y. Ren, M. J. Yun, and X. J. Wang, “Wideband slow light with ultralow dispersion in a W1 photonic crystal waveguide,” Appl. Opt. 50, G98–G103 (2011).
[Crossref]

J. D. Ryckman and S. M. Weiss, “Localized field enhancements in guided and defect modes of a periodic slot waveguide,” IEEE Photon. J. 3, 986–995 (2011).
[Crossref]

X. Wang, C. Y. Lin, S. Chakravarty, J. Luo, A. K. Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett. 36, 882–884 (2011).
[Crossref]

C. Caer, X. L. Roux, V. K. Do, D. M. Morini, N. Izard, L. Vivien, D. S. Gao, and E. Cassan, “Dispersion engineering of wide slot photonic crystal waveguides by Bragg-like corrugation of the slot,” IEEE Photon. Technol. Lett. 23, 1298–1300 (2011).
[Crossref]

2010 (7)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electro-magnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

J. H. Wülbern, S. Prorok, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K. Y. Jen, M. Jenett, and A. Jacob, “40 GHz electro-optic modulation in hybrid silicon–organic slotted photonic crystal waveguides,” Opt. Lett. 35, 2753–2755 (2010).
[Crossref]

J. Gao, J. F. McMillan, M. C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96, 051123 (2010).
[Crossref]

J. Hou, H. Wu, and D. S. Citrin, “Wideband slow light in chirped slot photonic-crystal coupled waveguides,” Opt. Express 18, 10567–10580 (2010).
[Crossref]

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

H. Kurt, K. Üstün, and L. Ayas, “Study of different spectral regions and delay bandwidth relation in slow light photonic crystal waveguides,” Opt. Express 18, 26965–26977 (2010).
[Crossref]

J. Wu, Y. P. Li, C. Peng, and Z. Y. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
[Crossref]

2009 (1)

2008 (5)

J. Ma and C. Jiang, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769 (2008).
[Crossref]

J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20, 1237–1239 (2008).
[Crossref]

A. D. Falco, L. O. Faolain, and T. F. Krauss, “Photonic crystal slotted slab waveguides,” Photon. Nanostr. Fundam. Appl. 6, 38–41 (2008).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[Crossref]

J. M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed-low voltage electro-optic modulator with a polymer infiltrated silicon photonic crystal waveguide,” Opt. Express 16, 4177–4191 (2008).
[Crossref]

2006 (3)

2004 (2)

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[Crossref]

2001 (2)

K. Yamada, H. Morita, A. Shinya, and M. Notomi, “Improved line-defect structures for photonic-crystal waveguides with high group velocity,” Opt. Commun. 198, 395–402 (2001).
[Crossref]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref]

2000 (1)

M. D. Lukin and A. Imamoglu, “Nonlinear optics and quantum entanglement of ultraslow single photons,” Phys. Rev. Lett. 84, 1419–1422 (2000).
[Crossref]

Andreani, L. C.

Asakawa, K.

Assefa, S.

J. Gao, J. F. McMillan, M. C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96, 051123 (2010).
[Crossref]

Ayas, L.

Baba, T.

Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal wave-guide,” Opt. Lett. 34, 1072–1074 (2009).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[Crossref]

K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, “Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation,” Appl. Phys. Lett. 88, 201904 (2006).
[Crossref]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electro-magnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Brosi, J. M.

Caer, C.

C. Caer, X. L. Roux, L. Vivien, and E. Cassan, “Enhanced localization of light in slow wave slot photonic crystal waveguides,” Opt. Lett. 37, 3660–3662 (2012).
[Crossref]

C. Caer, X. L. Roux, L. Vivien, and E. Cassan, “Dispersion engineered slot photonic crystal waveguides for slow light operation,” Appl. Phys. A 109, 895–899 (2012).
[Crossref]

C. Caer, X. L. Roux, V. K. Do, D. M. Morini, N. Izard, L. Vivien, D. S. Gao, and E. Cassan, “Dispersion engineering of wide slot photonic crystal waveguides by Bragg-like corrugation of the slot,” IEEE Photon. Technol. Lett. 23, 1298–1300 (2011).
[Crossref]

Cassan, E.

C. Caer, X. L. Roux, L. Vivien, and E. Cassan, “Dispersion engineered slot photonic crystal waveguides for slow light operation,” Appl. Phys. A 109, 895–899 (2012).
[Crossref]

C. Caer, X. L. Roux, L. Vivien, and E. Cassan, “Enhanced localization of light in slow wave slot photonic crystal waveguides,” Opt. Lett. 37, 3660–3662 (2012).
[Crossref]

C. Caer, X. L. Roux, V. K. Do, D. M. Morini, N. Izard, L. Vivien, D. S. Gao, and E. Cassan, “Dispersion engineering of wide slot photonic crystal waveguides by Bragg-like corrugation of the slot,” IEEE Photon. Technol. Lett. 23, 1298–1300 (2011).
[Crossref]

Chakravarty, S.

Chen, R. T.

Citrin, D. S.

Corcoran, B.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

Dai, L.

Deng, T. S.

K. T. Zhu, T. S. Deng, Y. Sun, Q. F. Zhang, and J. L. Wu, “Slow light property in ring-shape-hole slotted photonic crystal waveguide,” Opt. Commun. 290, 87–91 (2013).
[Crossref]

Do, V. K.

C. Caer, X. L. Roux, V. K. Do, D. M. Morini, N. Izard, L. Vivien, D. S. Gao, and E. Cassan, “Dispersion engineering of wide slot photonic crystal waveguides by Bragg-like corrugation of the slot,” IEEE Photon. Technol. Lett. 23, 1298–1300 (2011).
[Crossref]

Ebnali-Heidari, M.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

Eggleton, B. J.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

Eich, M.

Engelen, R. J. P.

Falco, A. D.

A. D. Falco, L. O. Faolain, and T. F. Krauss, “Photonic crystal slotted slab waveguides,” Photon. Nanostr. Fundam. Appl. 6, 38–41 (2008).
[Crossref]

Fan, S.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

Faolain, L. O.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

A. D. Falco, L. O. Faolain, and T. F. Krauss, “Photonic crystal slotted slab waveguides,” Photon. Nanostr. Fundam. Appl. 6, 38–41 (2008).
[Crossref]

Foster, M.

Freude, W.

Gaeta, A.

Gao, D. S.

C. Caer, X. L. Roux, V. K. Do, D. M. Morini, N. Izard, L. Vivien, D. S. Gao, and E. Cassan, “Dispersion engineering of wide slot photonic crystal waveguides by Bragg-like corrugation of the slot,” IEEE Photon. Technol. Lett. 23, 1298–1300 (2011).
[Crossref]

Gao, J.

J. Gao, J. F. McMillan, M. C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96, 051123 (2010).
[Crossref]

Grillet, C.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

Hamachi, Y.

Hampe, J.

Hou, J.

Hulst, N. F.

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electro-magnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Ide, T.

K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, “Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation,” Appl. Phys. Lett. 88, 201904 (2006).
[Crossref]

Ikeda, N.

Imamoglu, A.

M. D. Lukin and A. Imamoglu, “Nonlinear optics and quantum entanglement of ultraslow single photons,” Phys. Rev. Lett. 84, 1419–1422 (2000).
[Crossref]

Izard, N.

C. Caer, X. L. Roux, V. K. Do, D. M. Morini, N. Izard, L. Vivien, D. S. Gao, and E. Cassan, “Dispersion engineering of wide slot photonic crystal waveguides by Bragg-like corrugation of the slot,” IEEE Photon. Technol. Lett. 23, 1298–1300 (2011).
[Crossref]

Jacob, A.

Jen, A. K. Y.

Jenett, M.

Jiang, C.

L. Dai, T. Li, and C. Jiang, “Wideband ultralow high-order-dispersion photonic crystal slow-light waveguide,” J. Opt. Soc. Am. B 28, 1622–1626 (2011).
[Crossref]

J. Ma and C. Jiang, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769 (2008).
[Crossref]

J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20, 1237–1239 (2008).
[Crossref]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electro-magnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electro-magnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref]

Kise, T.

K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, “Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation,” Appl. Phys. Lett. 88, 201904 (2006).
[Crossref]

Kiyota, K.

K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, “Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation,” Appl. Phys. Lett. 88, 201904 (2006).
[Crossref]

Koos, C.

Korterik, J. P.

Krauss, T. F.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

A. D. Falco, L. O. Faolain, and T. F. Krauss, “Photonic crystal slotted slab waveguides,” Photon. Nanostr. Fundam. Appl. 6, 38–41 (2008).
[Crossref]

Kubo, S.

Kuipers, L.

Kurt, H.

Leuthold, J.

Li, T.

Li, Y. P.

J. Wu, Y. P. Li, C. Peng, and Z. Y. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
[Crossref]

Liang, J.

Lin, C. Y.

Lipson, M.

Lukin, M. D.

M. D. Lukin and A. Imamoglu, “Nonlinear optics and quantum entanglement of ultraslow single photons,” Phys. Rev. Lett. 84, 1419–1422 (2000).
[Crossref]

Luo, J.

Ma, J.

J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20, 1237–1239 (2008).
[Crossref]

J. Ma and C. Jiang, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769 (2008).
[Crossref]

McMillan, J. F.

J. Gao, J. F. McMillan, M. C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96, 051123 (2010).
[Crossref]

Monat, C.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

Morini, D. M.

C. Caer, X. L. Roux, V. K. Do, D. M. Morini, N. Izard, L. Vivien, D. S. Gao, and E. Cassan, “Dispersion engineering of wide slot photonic crystal waveguides by Bragg-like corrugation of the slot,” IEEE Photon. Technol. Lett. 23, 1298–1300 (2011).
[Crossref]

Morita, H.

K. Yamada, H. Morita, A. Shinya, and M. Notomi, “Improved line-defect structures for photonic-crystal waveguides with high group velocity,” Opt. Commun. 198, 395–402 (2001).
[Crossref]

Moss, D. J.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

Notomi, M.

K. Yamada, H. Morita, A. Shinya, and M. Notomi, “Improved line-defect structures for photonic-crystal waveguides with high group velocity,” Opt. Commun. 198, 395–402 (2001).
[Crossref]

Okawachi, Y.

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electro-magnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Pelusi, M. D.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

Peng, C.

J. Wu, Y. P. Li, C. Peng, and Z. Y. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
[Crossref]

Petrov, A.

Petrov, A. Y.

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[Crossref]

Prorok, S.

Pudo, D.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

Ren, L. Y.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electro-magnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Roux, X. L.

C. Caer, X. L. Roux, L. Vivien, and E. Cassan, “Dispersion engineered slot photonic crystal waveguides for slow light operation,” Appl. Phys. A 109, 895–899 (2012).
[Crossref]

C. Caer, X. L. Roux, L. Vivien, and E. Cassan, “Enhanced localization of light in slow wave slot photonic crystal waveguides,” Opt. Lett. 37, 3660–3662 (2012).
[Crossref]

C. Caer, X. L. Roux, V. K. Do, D. M. Morini, N. Izard, L. Vivien, D. S. Gao, and E. Cassan, “Dispersion engineering of wide slot photonic crystal waveguides by Bragg-like corrugation of the slot,” IEEE Photon. Technol. Lett. 23, 1298–1300 (2011).
[Crossref]

Ryckman, J. D.

J. D. Ryckman and S. M. Weiss, “Localized field enhancements in guided and defect modes of a periodic slot waveguide,” IEEE Photon. J. 3, 986–995 (2011).
[Crossref]

Sharping, J.

Shinya, A.

K. Yamada, H. Morita, A. Shinya, and M. Notomi, “Improved line-defect structures for photonic-crystal waveguides with high group velocity,” Opt. Commun. 198, 395–402 (2001).
[Crossref]

Sugimoto, Y.

Suh, W.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

Sun, Y.

K. T. Zhu, T. S. Deng, Y. Sun, Q. F. Zhang, and J. L. Wu, “Slow light property in ring-shape-hole slotted photonic crystal waveguide,” Opt. Commun. 290, 87–91 (2013).
[Crossref]

Üstün, K.

Vivien, L.

C. Caer, X. L. Roux, L. Vivien, and E. Cassan, “Enhanced localization of light in slow wave slot photonic crystal waveguides,” Opt. Lett. 37, 3660–3662 (2012).
[Crossref]

C. Caer, X. L. Roux, L. Vivien, and E. Cassan, “Dispersion engineered slot photonic crystal waveguides for slow light operation,” Appl. Phys. A 109, 895–899 (2012).
[Crossref]

C. Caer, X. L. Roux, V. K. Do, D. M. Morini, N. Izard, L. Vivien, D. S. Gao, and E. Cassan, “Dispersion engineering of wide slot photonic crystal waveguides by Bragg-like corrugation of the slot,” IEEE Photon. Technol. Lett. 23, 1298–1300 (2011).
[Crossref]

Waldow, M.

Wang, Q.

Wang, X.

Wang, X. J.

Wang, Z.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

Wang, Z. Y.

J. Wu, Y. P. Li, C. Peng, and Z. Y. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
[Crossref]

Watanabe, Y.

Weiss, S. M.

J. D. Ryckman and S. M. Weiss, “Localized field enhancements in guided and defect modes of a periodic slot waveguide,” IEEE Photon. J. 3, 986–995 (2011).
[Crossref]

White, T. P.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

Wong, C. W.

J. Gao, J. F. McMillan, M. C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96, 051123 (2010).
[Crossref]

Wu, H.

Wu, J.

J. Wu, Y. P. Li, C. Peng, and Z. Y. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
[Crossref]

Wu, J. L.

K. T. Zhu, T. S. Deng, Y. Sun, Q. F. Zhang, and J. L. Wu, “Slow light property in ring-shape-hole slotted photonic crystal waveguide,” Opt. Commun. 290, 87–91 (2013).
[Crossref]

Wu, M. C.

J. Gao, J. F. McMillan, M. C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96, 051123 (2010).
[Crossref]

Wülbern, J. H.

Xu, Q.

Yamada, K.

K. Yamada, H. Morita, A. Shinya, and M. Notomi, “Improved line-defect structures for photonic-crystal waveguides with high group velocity,” Opt. Commun. 198, 395–402 (2001).
[Crossref]

Yanik, M. F.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

Yokouchi, N.

K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, “Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation,” Appl. Phys. Lett. 88, 201904 (2006).
[Crossref]

Yun, M. J.

Zhang, Q. F.

K. T. Zhu, T. S. Deng, Y. Sun, Q. F. Zhang, and J. L. Wu, “Slow light property in ring-shape-hole slotted photonic crystal waveguide,” Opt. Commun. 290, 87–91 (2013).
[Crossref]

Zhang, Y. N.

Zhao, Y.

Zheng, J.

J. Gao, J. F. McMillan, M. C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96, 051123 (2010).
[Crossref]

Zhu, K. T.

K. T. Zhu, T. S. Deng, Y. Sun, Q. F. Zhang, and J. L. Wu, “Slow light property in ring-shape-hole slotted photonic crystal waveguide,” Opt. Commun. 290, 87–91 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (1)

C. Caer, X. L. Roux, L. Vivien, and E. Cassan, “Dispersion engineered slot photonic crystal waveguides for slow light operation,” Appl. Phys. A 109, 895–899 (2012).
[Crossref]

Appl. Phys. Lett. (3)

J. Gao, J. F. McMillan, M. C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96, 051123 (2010).
[Crossref]

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[Crossref]

K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, “Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation,” Appl. Phys. Lett. 88, 201904 (2006).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electro-magnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Ma and C. Jiang, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

IEEE Photon. J. (1)

J. D. Ryckman and S. M. Weiss, “Localized field enhancements in guided and defect modes of a periodic slot waveguide,” IEEE Photon. J. 3, 986–995 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (2)

J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20, 1237–1239 (2008).
[Crossref]

C. Caer, X. L. Roux, V. K. Do, D. M. Morini, N. Izard, L. Vivien, D. S. Gao, and E. Cassan, “Dispersion engineering of wide slot photonic crystal waveguides by Bragg-like corrugation of the slot,” IEEE Photon. Technol. Lett. 23, 1298–1300 (2011).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[Crossref]

Opt. Commun. (3)

J. Wu, Y. P. Li, C. Peng, and Z. Y. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
[Crossref]

K. T. Zhu, T. S. Deng, Y. Sun, Q. F. Zhang, and J. L. Wu, “Slow light property in ring-shape-hole slotted photonic crystal waveguide,” Opt. Commun. 290, 87–91 (2013).
[Crossref]

K. Yamada, H. Morita, A. Shinya, and M. Notomi, “Improved line-defect structures for photonic-crystal waveguides with high group velocity,” Opt. Commun. 198, 395–402 (2001).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Photon. Nanostr. Fundam. Appl. (1)

A. D. Falco, L. O. Faolain, and T. F. Krauss, “Photonic crystal slotted slab waveguides,” Photon. Nanostr. Fundam. Appl. 6, 38–41 (2008).
[Crossref]

Phys. Rev. Lett. (2)

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

M. D. Lukin and A. Imamoglu, “Nonlinear optics and quantum entanglement of ultraslow single photons,” Phys. Rev. Lett. 84, 1419–1422 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Basic structure of a SPCW, where a is the lattice constant, r is the radius of the air holes, and ωs is the slot width; p1 and p2 denote the shift distance of the first two rows of holes along the x axis and are set to be optimized.

Fig. 2.
Fig. 2.

(a) Band curves for the basic SPCW. Points M and N are marked as the connection points between the index-guided mode and the gap-guided mode; (b) the Ey electric field component distribution of the slot mode and the W1 defect mode at kx=0.4(2π/a).

Fig. 3.
Fig. 3.

(a) Dispersion diagrams (band-up slow light) for different shifts of p1 from 0a to 0.05a with p2=0a and (b) the corresponding U-like group index curves for different shifts of p1 from 0a to 0.05a with p2=0a.

Fig. 4.
Fig. 4.

(a) Dispersion diagrams for different shift of p2 from 0a to 0.21a with p1=0.03a. We change the flat band of the W1 defect mode from band-up slow light (p2=0a0.15a) to band-down slow light (p2=0.18a0.21a) and (b) the corresponding group index curves for different shifts of p2 from 0a to 0.21a with p1=0.03a. The group index curves change from U-like (p2=0a0.15a) to step-like (p2=0.18a0.21a).

Fig. 5.
Fig. 5.

(a) Dispersion diagrams, (b) group index curves, and (c) the GVD curves for three different sets of p1 and p2, which are named A1, A2, and A3. For the three asymmetric structures A1, A2, and A3, we obtain the higher NDBP values of 0.223, 0.21, and 0.192, respectively. All of them are compared with the basic structure.

Fig. 6.
Fig. 6.

(a) Dispersion diagrams and (b) group index curves with different sets of p1 for the slot mode.

Fig. 7.
Fig. 7.

(a) Dispersion diagrams for the three optimized structures, B1, B2, and B3; (b), (c) the corresponding group index curves and GVD curves for B1, B2, and B3, respectively.

Fig. 8.
Fig. 8.

(a) Schematic of FDTD simulation system of the proposed slow light waveguides. (b) Temporal pulses detected at the input and output detecting points in the proposed SPCW-A2.

Tables (4)

Tables Icon

Table 1. ng, Δλ, and NDBP of W1 Defect Mode for Different Parameters p1

Tables Icon

Table 2. ng, Δλ, and NDBP of W1 Defect Mode for p1=0.03a and Different Parameters p2

Tables Icon

Table 3. Comparison among the Optimized W1 Defect Mode and References

Tables Icon

Table 4. Comparison among the Optimized Slot Mode and References

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

NDBP=nG×(Δω/ω0),
ng=c·(dk/dω),
β=2kω2.

Metrics