Abstract

A range of optical fibers with surface-enhanced Raman scattering (SERS) functionalized tips have been evaluated for use as micro-scale sensing devices. In order to optimize the sensitivity of the optical fiber probe, the relationship between SERS intensity and different fiber parameters was investigated. It was found that the numerical aperture, core size, mode structure, and core material have a major effect on the probe performance, as does the numerical aperture of the microscope objective. The results suggest that an ideal fiber for SERS sensing should be single mode at the excitation wavelength and have low-background core material.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. R. Stoddart and D. J. White, “Optical fibre SERS sensors,” Anal. Bioanal. Chem 394, 1761–1774 (2009).
    [CrossRef]
  2. R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, “Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development,” J. Am. Chem. Soc. 362, 349–373 (1998).
  3. Y. Han, M. K. K. Oo, Y. Zhu, L. Xiao, M. S. Demohan, W. Jin, and H. Du, “Index-guiding liquid-core photonic crystal fiber for solution measurement using normal and surface-enhanced Raman scattering,” Opt. Eng. 47, 040502 (2008).
    [CrossRef]
  4. H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
    [CrossRef]
  5. Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504 (2007).
    [CrossRef]
  6. M. K. K. Oo, Y. Han, J. Kanka, S. Sukhishvili, and H. Du, “Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy,” Opt. Lett. 35, 466–468 (2010).
    [CrossRef]
  7. M. K. K. Oo, Y. Han, R. Martini, S. Sukhishvili, and H. Du, “Forward-propagating surface-enhanced Raman scattering and intensity distrubuition in photonic crystal fiber with immobilized Ag nanoparticles,” Opt. Lett. 34, 968–970 (2009).
    [CrossRef]
  8. C. Viets and W. Hill, “Comparison of fibre-optic SERS sensors with differently prepared tips,” Sens. Acta B 51, 92–99 (1998).
    [CrossRef]
  9. S. Jayawardhana, G. Kostovski, A. P. Mazzolini, and P. R. Stoddart, “Optical fiber sensor based on oblique angle deposition,” Appl. Opt. 50, 155–162 (2011).
    [CrossRef]
  10. Y. Komachi, H. Sato, K. Aizawa, and H. Tashiro, “Micro-optical fiber probe for use in an intravascular Raman endoscope,” Appl. Opt. 44, 4722–4732 (2005).
    [CrossRef]
  11. S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Opt. Lett. 31, 1911–1913 (2006).
    [CrossRef]
  12. S. Dochow, I. Latka, M. Becker, R. Spittel, J. Kobelke, K. Schuster, A. Graf, S. Brückner, S. Unger, M. Rothhardt, B. Dietzek, C. Krafft, and J. Popp, “Multicore fiber with integrated fiber Bragg gratings for background-free Raman sensing,” Opt. Exp. 20, 20156–20169 (2012).
    [CrossRef]
  13. J. Stadler, T. Schmid, and R. Zenobi, “Developments in and practical guidelines for tip-enhanced Raman spectroscopy,” Nanoscale 4, 1856–1870 (2012).
    [CrossRef]
  14. J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131, 849–854 (2009).
    [CrossRef]
  15. K. K. Maiti, U. S. Dinish, A. Samanta, M. Vendrell, K. Soh, S. Park, M. Olivo, and Y. Chang, “Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags,” Nano Today 7(2), 85–93 (2012).
    [CrossRef]
  16. K. Ma, J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. van Duyne, “In vivo, transcutaneous glucose sensing using surface-enhanced spatially offset Raman spectroscopy: multiple rats, improved hypoglycemic accuracy, low incident power, and continuous monitoring for greater than 17 days,” J. Am. Chem. Soc. 83, 9146–9152 (2011).
  17. J. T. Motz, M. Hunter, L. H. Galindo, J. A. Gardecki, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Optical fiber probe for biomedical Raman spectroscopy,” Appl. Opt. 43, 542–554 (2004).
    [CrossRef]
  18. S. Jayawardhana, A. P. Mazzolini, and P. R. Stoddart, “Collection efficiency of scattered light in single-ended optical fiber sensors,” Opt. Lett. 37, 2142–2144 (2012).
    [CrossRef]
  19. S. Jayawardhana, L. Rosa, S. Juodkazis, and P. R. Stoddart, “Additional enhancement of electric field in surface-enhanced Raman scattering due to Fresnel mechanism,” Sci. Rep. 3, 2335 (2013).
    [CrossRef]
  20. J. Ma and Y. Li, “Fiber Raman background study and its application in setting up optical fiber Raman probes,” Appl. Opt. 35, 2527–2533 (1996).
    [CrossRef]
  21. H. Sato, H. Shinzawa, and Y. Komachi, “Fiber-optic Raman probes for biomedical and pharmaceutical applications,” in Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields, P. Matousek and M. D. Morris, eds. (Springer, 2010), pp. 25–45.
  22. G. Keiser, Optical Fiber Communications (McGraw-Hill, 2000).
  23. R. Buividas, P. R. Stoddart, and S. Juodkazis, “Laser fabricated ripple substrates for surface-enhanced Raman scattering,” Ann. Phys. 524, L5–L10 (2012).
  24. G. Kostovski, U. Chinnasamy, S. Jayawardhana, P. R. Stoddart, and A. Mitchell, “Sub-15 nm optical fiber nanoimprint lithography: a parallel, self-aligned and portable approach,” Adv. Mater 23, 531–535 (2011).
    [CrossRef]
  25. J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors,” ACS Nano 5, 4046–4055 (2011).
    [CrossRef]
  26. A. Polemi, S. M. Wells, N. V. Lavrik, M. J. Sepaniak, and K. L. Shuford, “Local field enhancement of pillar nanosurfaces for SERS,” J. Phys. Chem. C 114, 18096–18102 (2010).
    [CrossRef]
  27. F. L. Galeener, “The Raman spectra of defects in neutron bombarded and Ge-rich vitreous GeO2,” J. Non-Cryst. Solids 40, 527–533 (1980).
    [CrossRef]
  28. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
    [CrossRef]
  29. D. J. White and P. R. Stoddart, “Nanostructured optical fiber with surface-enhanced Raman scattering functionality,” Opt. Lett. 30, 598–600 (2005).
    [CrossRef]

2013 (1)

S. Jayawardhana, L. Rosa, S. Juodkazis, and P. R. Stoddart, “Additional enhancement of electric field in surface-enhanced Raman scattering due to Fresnel mechanism,” Sci. Rep. 3, 2335 (2013).
[CrossRef]

2012 (5)

K. K. Maiti, U. S. Dinish, A. Samanta, M. Vendrell, K. Soh, S. Park, M. Olivo, and Y. Chang, “Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags,” Nano Today 7(2), 85–93 (2012).
[CrossRef]

S. Dochow, I. Latka, M. Becker, R. Spittel, J. Kobelke, K. Schuster, A. Graf, S. Brückner, S. Unger, M. Rothhardt, B. Dietzek, C. Krafft, and J. Popp, “Multicore fiber with integrated fiber Bragg gratings for background-free Raman sensing,” Opt. Exp. 20, 20156–20169 (2012).
[CrossRef]

J. Stadler, T. Schmid, and R. Zenobi, “Developments in and practical guidelines for tip-enhanced Raman spectroscopy,” Nanoscale 4, 1856–1870 (2012).
[CrossRef]

R. Buividas, P. R. Stoddart, and S. Juodkazis, “Laser fabricated ripple substrates for surface-enhanced Raman scattering,” Ann. Phys. 524, L5–L10 (2012).

S. Jayawardhana, A. P. Mazzolini, and P. R. Stoddart, “Collection efficiency of scattered light in single-ended optical fiber sensors,” Opt. Lett. 37, 2142–2144 (2012).
[CrossRef]

2011 (4)

G. Kostovski, U. Chinnasamy, S. Jayawardhana, P. R. Stoddart, and A. Mitchell, “Sub-15 nm optical fiber nanoimprint lithography: a parallel, self-aligned and portable approach,” Adv. Mater 23, 531–535 (2011).
[CrossRef]

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors,” ACS Nano 5, 4046–4055 (2011).
[CrossRef]

K. Ma, J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. van Duyne, “In vivo, transcutaneous glucose sensing using surface-enhanced spatially offset Raman spectroscopy: multiple rats, improved hypoglycemic accuracy, low incident power, and continuous monitoring for greater than 17 days,” J. Am. Chem. Soc. 83, 9146–9152 (2011).

S. Jayawardhana, G. Kostovski, A. P. Mazzolini, and P. R. Stoddart, “Optical fiber sensor based on oblique angle deposition,” Appl. Opt. 50, 155–162 (2011).
[CrossRef]

2010 (2)

M. K. K. Oo, Y. Han, J. Kanka, S. Sukhishvili, and H. Du, “Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy,” Opt. Lett. 35, 466–468 (2010).
[CrossRef]

A. Polemi, S. M. Wells, N. V. Lavrik, M. J. Sepaniak, and K. L. Shuford, “Local field enhancement of pillar nanosurfaces for SERS,” J. Phys. Chem. C 114, 18096–18102 (2010).
[CrossRef]

2009 (3)

M. K. K. Oo, Y. Han, R. Martini, S. Sukhishvili, and H. Du, “Forward-propagating surface-enhanced Raman scattering and intensity distrubuition in photonic crystal fiber with immobilized Ag nanoparticles,” Opt. Lett. 34, 968–970 (2009).
[CrossRef]

P. R. Stoddart and D. J. White, “Optical fibre SERS sensors,” Anal. Bioanal. Chem 394, 1761–1774 (2009).
[CrossRef]

J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131, 849–854 (2009).
[CrossRef]

2008 (1)

Y. Han, M. K. K. Oo, Y. Zhu, L. Xiao, M. S. Demohan, W. Jin, and H. Du, “Index-guiding liquid-core photonic crystal fiber for solution measurement using normal and surface-enhanced Raman scattering,” Opt. Eng. 47, 040502 (2008).
[CrossRef]

2007 (1)

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504 (2007).
[CrossRef]

2006 (2)

S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Opt. Lett. 31, 1911–1913 (2006).
[CrossRef]

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

2005 (2)

2004 (1)

2000 (1)

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[CrossRef]

1998 (2)

C. Viets and W. Hill, “Comparison of fibre-optic SERS sensors with differently prepared tips,” Sens. Acta B 51, 92–99 (1998).
[CrossRef]

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, “Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development,” J. Am. Chem. Soc. 362, 349–373 (1998).

1996 (1)

1980 (1)

F. L. Galeener, “The Raman spectra of defects in neutron bombarded and Ge-rich vitreous GeO2,” J. Non-Cryst. Solids 40, 527–533 (1980).
[CrossRef]

Addison, C. J.

Aizawa, K.

Bassim, N. D.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors,” ACS Nano 5, 4046–4055 (2011).
[CrossRef]

Becker, M.

S. Dochow, I. Latka, M. Becker, R. Spittel, J. Kobelke, K. Schuster, A. Graf, S. Brückner, S. Unger, M. Rothhardt, B. Dietzek, C. Krafft, and J. Popp, “Multicore fiber with integrated fiber Bragg gratings for background-free Raman sensing,” Opt. Exp. 20, 20156–20169 (2012).
[CrossRef]

Bezares, F. J.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors,” ACS Nano 5, 4046–4055 (2011).
[CrossRef]

Blades, M. W.

Brückner, S.

S. Dochow, I. Latka, M. Becker, R. Spittel, J. Kobelke, K. Schuster, A. Graf, S. Brückner, S. Unger, M. Rothhardt, B. Dietzek, C. Krafft, and J. Popp, “Multicore fiber with integrated fiber Bragg gratings for background-free Raman sensing,” Opt. Exp. 20, 20156–20169 (2012).
[CrossRef]

Buividas, R.

R. Buividas, P. R. Stoddart, and S. Juodkazis, “Laser fabricated ripple substrates for surface-enhanced Raman scattering,” Ann. Phys. 524, L5–L10 (2012).

Caldwell, J. D.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors,” ACS Nano 5, 4046–4055 (2011).
[CrossRef]

Camden, J. P.

J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131, 849–854 (2009).
[CrossRef]

Chang, Y.

K. K. Maiti, U. S. Dinish, A. Samanta, M. Vendrell, K. Soh, S. Park, M. Olivo, and Y. Chang, “Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags,” Nano Today 7(2), 85–93 (2012).
[CrossRef]

Chinnasamy, U.

G. Kostovski, U. Chinnasamy, S. Jayawardhana, P. R. Stoddart, and A. Mitchell, “Sub-15 nm optical fiber nanoimprint lithography: a parallel, self-aligned and portable approach,” Adv. Mater 23, 531–535 (2011).
[CrossRef]

Dasari, R. R.

Demohan, M. S.

Y. Han, M. K. K. Oo, Y. Zhu, L. Xiao, M. S. Demohan, W. Jin, and H. Du, “Index-guiding liquid-core photonic crystal fiber for solution measurement using normal and surface-enhanced Raman scattering,” Opt. Eng. 47, 040502 (2008).
[CrossRef]

Dieringer, J. A.

J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131, 849–854 (2009).
[CrossRef]

Dietzek, B.

S. Dochow, I. Latka, M. Becker, R. Spittel, J. Kobelke, K. Schuster, A. Graf, S. Brückner, S. Unger, M. Rothhardt, B. Dietzek, C. Krafft, and J. Popp, “Multicore fiber with integrated fiber Bragg gratings for background-free Raman sensing,” Opt. Exp. 20, 20156–20169 (2012).
[CrossRef]

Dinish, U. S.

K. K. Maiti, U. S. Dinish, A. Samanta, M. Vendrell, K. Soh, S. Park, M. Olivo, and Y. Chang, “Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags,” Nano Today 7(2), 85–93 (2012).
[CrossRef]

Dochow, S.

S. Dochow, I. Latka, M. Becker, R. Spittel, J. Kobelke, K. Schuster, A. Graf, S. Brückner, S. Unger, M. Rothhardt, B. Dietzek, C. Krafft, and J. Popp, “Multicore fiber with integrated fiber Bragg gratings for background-free Raman sensing,” Opt. Exp. 20, 20156–20169 (2012).
[CrossRef]

Du, H.

Feld, M. S.

Feygelson, M.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors,” ACS Nano 5, 4046–4055 (2011).
[CrossRef]

Galeener, F. L.

F. L. Galeener, “The Raman spectra of defects in neutron bombarded and Ge-rich vitreous GeO2,” J. Non-Cryst. Solids 40, 527–533 (1980).
[CrossRef]

Galindo, L. H.

Gardecki, J. A.

Glembocki, O.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors,” ACS Nano 5, 4046–4055 (2011).
[CrossRef]

Glucksberg, M. R.

K. Ma, J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. van Duyne, “In vivo, transcutaneous glucose sensing using surface-enhanced spatially offset Raman spectroscopy: multiple rats, improved hypoglycemic accuracy, low incident power, and continuous monitoring for greater than 17 days,” J. Am. Chem. Soc. 83, 9146–9152 (2011).

Gopinath, A.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[CrossRef]

Graf, A.

S. Dochow, I. Latka, M. Becker, R. Spittel, J. Kobelke, K. Schuster, A. Graf, S. Brückner, S. Unger, M. Rothhardt, B. Dietzek, C. Krafft, and J. Popp, “Multicore fiber with integrated fiber Bragg gratings for background-free Raman sensing,” Opt. Exp. 20, 20156–20169 (2012).
[CrossRef]

Gu, C.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504 (2007).
[CrossRef]

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

Han, Y.

Helfert, S.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[CrossRef]

Hieftje, G. M.

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, “Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development,” J. Am. Chem. Soc. 362, 349–373 (1998).

Hill, W.

C. Viets and W. Hill, “Comparison of fibre-optic SERS sensors with differently prepared tips,” Sens. Acta B 51, 92–99 (1998).
[CrossRef]

Hobbs, S. E.

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, “Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development,” J. Am. Chem. Soc. 362, 349–373 (1998).

Hosten, C.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors,” ACS Nano 5, 4046–4055 (2011).
[CrossRef]

Hou, L.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

Hunter, M.

Jayawardhana, S.

S. Jayawardhana, L. Rosa, S. Juodkazis, and P. R. Stoddart, “Additional enhancement of electric field in surface-enhanced Raman scattering due to Fresnel mechanism,” Sci. Rep. 3, 2335 (2013).
[CrossRef]

S. Jayawardhana, A. P. Mazzolini, and P. R. Stoddart, “Collection efficiency of scattered light in single-ended optical fiber sensors,” Opt. Lett. 37, 2142–2144 (2012).
[CrossRef]

G. Kostovski, U. Chinnasamy, S. Jayawardhana, P. R. Stoddart, and A. Mitchell, “Sub-15 nm optical fiber nanoimprint lithography: a parallel, self-aligned and portable approach,” Adv. Mater 23, 531–535 (2011).
[CrossRef]

S. Jayawardhana, G. Kostovski, A. P. Mazzolini, and P. R. Stoddart, “Optical fiber sensor based on oblique angle deposition,” Appl. Opt. 50, 155–162 (2011).
[CrossRef]

Jin, G.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

Jin, W.

Y. Han, M. K. K. Oo, Y. Zhu, L. Xiao, M. S. Demohan, W. Jin, and H. Du, “Index-guiding liquid-core photonic crystal fiber for solution measurement using normal and surface-enhanced Raman scattering,” Opt. Eng. 47, 040502 (2008).
[CrossRef]

Juodkazis, S.

S. Jayawardhana, L. Rosa, S. Juodkazis, and P. R. Stoddart, “Additional enhancement of electric field in surface-enhanced Raman scattering due to Fresnel mechanism,” Sci. Rep. 3, 2335 (2013).
[CrossRef]

R. Buividas, P. R. Stoddart, and S. Juodkazis, “Laser fabricated ripple substrates for surface-enhanced Raman scattering,” Ann. Phys. 524, L5–L10 (2012).

Kanka, J.

Kasica, R.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors,” ACS Nano 5, 4046–4055 (2011).
[CrossRef]

Keiser, G.

G. Keiser, Optical Fiber Communications (McGraw-Hill, 2000).

Kleinman, S. L.

J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131, 849–854 (2009).
[CrossRef]

Kobelke, J.

S. Dochow, I. Latka, M. Becker, R. Spittel, J. Kobelke, K. Schuster, A. Graf, S. Brückner, S. Unger, M. Rothhardt, B. Dietzek, C. Krafft, and J. Popp, “Multicore fiber with integrated fiber Bragg gratings for background-free Raman sensing,” Opt. Exp. 20, 20156–20169 (2012).
[CrossRef]

Komachi, Y.

Y. Komachi, H. Sato, K. Aizawa, and H. Tashiro, “Micro-optical fiber probe for use in an intravascular Raman endoscope,” Appl. Opt. 44, 4722–4732 (2005).
[CrossRef]

H. Sato, H. Shinzawa, and Y. Komachi, “Fiber-optic Raman probes for biomedical and pharmaceutical applications,” in Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields, P. Matousek and M. D. Morris, eds. (Springer, 2010), pp. 25–45.

Konorov, S. O.

Kostovski, G.

S. Jayawardhana, G. Kostovski, A. P. Mazzolini, and P. R. Stoddart, “Optical fiber sensor based on oblique angle deposition,” Appl. Opt. 50, 155–162 (2011).
[CrossRef]

G. Kostovski, U. Chinnasamy, S. Jayawardhana, P. R. Stoddart, and A. Mitchell, “Sub-15 nm optical fiber nanoimprint lithography: a parallel, self-aligned and portable approach,” Adv. Mater 23, 531–535 (2011).
[CrossRef]

Krafft, C.

S. Dochow, I. Latka, M. Becker, R. Spittel, J. Kobelke, K. Schuster, A. Graf, S. Brückner, S. Unger, M. Rothhardt, B. Dietzek, C. Krafft, and J. Popp, “Multicore fiber with integrated fiber Bragg gratings for background-free Raman sensing,” Opt. Exp. 20, 20156–20169 (2012).
[CrossRef]

Kramer, J. R.

Latka, I.

S. Dochow, I. Latka, M. Becker, R. Spittel, J. Kobelke, K. Schuster, A. Graf, S. Brückner, S. Unger, M. Rothhardt, B. Dietzek, C. Krafft, and J. Popp, “Multicore fiber with integrated fiber Bragg gratings for background-free Raman sensing,” Opt. Exp. 20, 20156–20169 (2012).
[CrossRef]

Lavrik, N. V.

A. Polemi, S. M. Wells, N. V. Lavrik, M. J. Sepaniak, and K. L. Shuford, “Local field enhancement of pillar nanosurfaces for SERS,” J. Phys. Chem. C 114, 18096–18102 (2010).
[CrossRef]

Li, Y.

Liu, J.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

Ma, J.

Ma, K.

K. Ma, J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. van Duyne, “In vivo, transcutaneous glucose sensing using surface-enhanced spatially offset Raman spectroscopy: multiple rats, improved hypoglycemic accuracy, low incident power, and continuous monitoring for greater than 17 days,” J. Am. Chem. Soc. 83, 9146–9152 (2011).

Maiti, K. K.

K. K. Maiti, U. S. Dinish, A. Samanta, M. Vendrell, K. Soh, S. Park, M. Olivo, and Y. Chang, “Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags,” Nano Today 7(2), 85–93 (2012).
[CrossRef]

Martini, R.

Masiello, D. J.

J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131, 849–854 (2009).
[CrossRef]

Mazzolini, A. P.

Mitchell, A.

G. Kostovski, U. Chinnasamy, S. Jayawardhana, P. R. Stoddart, and A. Mitchell, “Sub-15 nm optical fiber nanoimprint lithography: a parallel, self-aligned and portable approach,” Adv. Mater 23, 531–535 (2011).
[CrossRef]

Motz, J. T.

Olivo, M.

K. K. Maiti, U. S. Dinish, A. Samanta, M. Vendrell, K. Soh, S. Park, M. Olivo, and Y. Chang, “Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags,” Nano Today 7(2), 85–93 (2012).
[CrossRef]

Oo, M. K. K.

Park, S.

K. K. Maiti, U. S. Dinish, A. Samanta, M. Vendrell, K. Soh, S. Park, M. Olivo, and Y. Chang, “Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags,” Nano Today 7(2), 85–93 (2012).
[CrossRef]

Polemi, A.

A. Polemi, S. M. Wells, N. V. Lavrik, M. J. Sepaniak, and K. L. Shuford, “Local field enhancement of pillar nanosurfaces for SERS,” J. Phys. Chem. C 114, 18096–18102 (2010).
[CrossRef]

Popp, J.

S. Dochow, I. Latka, M. Becker, R. Spittel, J. Kobelke, K. Schuster, A. Graf, S. Brückner, S. Unger, M. Rothhardt, B. Dietzek, C. Krafft, and J. Popp, “Multicore fiber with integrated fiber Bragg gratings for background-free Raman sensing,” Opt. Exp. 20, 20156–20169 (2012).
[CrossRef]

Potyrailo, R. A.

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, “Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development,” J. Am. Chem. Soc. 362, 349–373 (1998).

Pregla, R.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[CrossRef]

Rendell, R. W.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors,” ACS Nano 5, 4046–4055 (2011).
[CrossRef]

Rosa, L.

S. Jayawardhana, L. Rosa, S. Juodkazis, and P. R. Stoddart, “Additional enhancement of electric field in surface-enhanced Raman scattering due to Fresnel mechanism,” Sci. Rep. 3, 2335 (2013).
[CrossRef]

Rothhardt, M.

S. Dochow, I. Latka, M. Becker, R. Spittel, J. Kobelke, K. Schuster, A. Graf, S. Brückner, S. Unger, M. Rothhardt, B. Dietzek, C. Krafft, and J. Popp, “Multicore fiber with integrated fiber Bragg gratings for background-free Raman sensing,” Opt. Exp. 20, 20156–20169 (2012).
[CrossRef]

Samanta, A.

K. K. Maiti, U. S. Dinish, A. Samanta, M. Vendrell, K. Soh, S. Park, M. Olivo, and Y. Chang, “Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags,” Nano Today 7(2), 85–93 (2012).
[CrossRef]

Sato, H.

Y. Komachi, H. Sato, K. Aizawa, and H. Tashiro, “Micro-optical fiber probe for use in an intravascular Raman endoscope,” Appl. Opt. 44, 4722–4732 (2005).
[CrossRef]

H. Sato, H. Shinzawa, and Y. Komachi, “Fiber-optic Raman probes for biomedical and pharmaceutical applications,” in Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields, P. Matousek and M. D. Morris, eds. (Springer, 2010), pp. 25–45.

Scarmozzino, R.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[CrossRef]

Schatz, G. C.

J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131, 849–854 (2009).
[CrossRef]

Schmid, T.

J. Stadler, T. Schmid, and R. Zenobi, “Developments in and practical guidelines for tip-enhanced Raman spectroscopy,” Nanoscale 4, 1856–1870 (2012).
[CrossRef]

Schulze, H. G.

Schuster, K.

S. Dochow, I. Latka, M. Becker, R. Spittel, J. Kobelke, K. Schuster, A. Graf, S. Brückner, S. Unger, M. Rothhardt, B. Dietzek, C. Krafft, and J. Popp, “Multicore fiber with integrated fiber Bragg gratings for background-free Raman sensing,” Opt. Exp. 20, 20156–20169 (2012).
[CrossRef]

Seballos, L.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504 (2007).
[CrossRef]

Sepaniak, M. J.

A. Polemi, S. M. Wells, N. V. Lavrik, M. J. Sepaniak, and K. L. Shuford, “Local field enhancement of pillar nanosurfaces for SERS,” J. Phys. Chem. C 114, 18096–18102 (2010).
[CrossRef]

Shah, N. C.

K. Ma, J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. van Duyne, “In vivo, transcutaneous glucose sensing using surface-enhanced spatially offset Raman spectroscopy: multiple rats, improved hypoglycemic accuracy, low incident power, and continuous monitoring for greater than 17 days,” J. Am. Chem. Soc. 83, 9146–9152 (2011).

Shi, C.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504 (2007).
[CrossRef]

Shinzawa, H.

H. Sato, H. Shinzawa, and Y. Komachi, “Fiber-optic Raman probes for biomedical and pharmaceutical applications,” in Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields, P. Matousek and M. D. Morris, eds. (Springer, 2010), pp. 25–45.

Shirey, L.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors,” ACS Nano 5, 4046–4055 (2011).
[CrossRef]

Shuford, K. L.

A. Polemi, S. M. Wells, N. V. Lavrik, M. J. Sepaniak, and K. L. Shuford, “Local field enhancement of pillar nanosurfaces for SERS,” J. Phys. Chem. C 114, 18096–18102 (2010).
[CrossRef]

Soh, K.

K. K. Maiti, U. S. Dinish, A. Samanta, M. Vendrell, K. Soh, S. Park, M. Olivo, and Y. Chang, “Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags,” Nano Today 7(2), 85–93 (2012).
[CrossRef]

Spittel, R.

S. Dochow, I. Latka, M. Becker, R. Spittel, J. Kobelke, K. Schuster, A. Graf, S. Brückner, S. Unger, M. Rothhardt, B. Dietzek, C. Krafft, and J. Popp, “Multicore fiber with integrated fiber Bragg gratings for background-free Raman sensing,” Opt. Exp. 20, 20156–20169 (2012).
[CrossRef]

Stadler, J.

J. Stadler, T. Schmid, and R. Zenobi, “Developments in and practical guidelines for tip-enhanced Raman spectroscopy,” Nanoscale 4, 1856–1870 (2012).
[CrossRef]

Stoddart, P. R.

S. Jayawardhana, L. Rosa, S. Juodkazis, and P. R. Stoddart, “Additional enhancement of electric field in surface-enhanced Raman scattering due to Fresnel mechanism,” Sci. Rep. 3, 2335 (2013).
[CrossRef]

S. Jayawardhana, A. P. Mazzolini, and P. R. Stoddart, “Collection efficiency of scattered light in single-ended optical fiber sensors,” Opt. Lett. 37, 2142–2144 (2012).
[CrossRef]

R. Buividas, P. R. Stoddart, and S. Juodkazis, “Laser fabricated ripple substrates for surface-enhanced Raman scattering,” Ann. Phys. 524, L5–L10 (2012).

G. Kostovski, U. Chinnasamy, S. Jayawardhana, P. R. Stoddart, and A. Mitchell, “Sub-15 nm optical fiber nanoimprint lithography: a parallel, self-aligned and portable approach,” Adv. Mater 23, 531–535 (2011).
[CrossRef]

S. Jayawardhana, G. Kostovski, A. P. Mazzolini, and P. R. Stoddart, “Optical fiber sensor based on oblique angle deposition,” Appl. Opt. 50, 155–162 (2011).
[CrossRef]

P. R. Stoddart and D. J. White, “Optical fibre SERS sensors,” Anal. Bioanal. Chem 394, 1761–1774 (2009).
[CrossRef]

D. J. White and P. R. Stoddart, “Nanostructured optical fiber with surface-enhanced Raman scattering functionality,” Opt. Lett. 30, 598–600 (2005).
[CrossRef]

Sukhishvili, S.

Tashiro, H.

Turner, R. F. B.

Ukaegbu, M.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors,” ACS Nano 5, 4046–4055 (2011).
[CrossRef]

Unger, S.

S. Dochow, I. Latka, M. Becker, R. Spittel, J. Kobelke, K. Schuster, A. Graf, S. Brückner, S. Unger, M. Rothhardt, B. Dietzek, C. Krafft, and J. Popp, “Multicore fiber with integrated fiber Bragg gratings for background-free Raman sensing,” Opt. Exp. 20, 20156–20169 (2012).
[CrossRef]

van Duyne, R. P.

K. Ma, J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. van Duyne, “In vivo, transcutaneous glucose sensing using surface-enhanced spatially offset Raman spectroscopy: multiple rats, improved hypoglycemic accuracy, low incident power, and continuous monitoring for greater than 17 days,” J. Am. Chem. Soc. 83, 9146–9152 (2011).

J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131, 849–854 (2009).
[CrossRef]

Vendrell, M.

K. K. Maiti, U. S. Dinish, A. Samanta, M. Vendrell, K. Soh, S. Park, M. Olivo, and Y. Chang, “Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags,” Nano Today 7(2), 85–93 (2012).
[CrossRef]

Viets, C.

C. Viets and W. Hill, “Comparison of fibre-optic SERS sensors with differently prepared tips,” Sens. Acta B 51, 92–99 (1998).
[CrossRef]

Walsh, J. T.

K. Ma, J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. van Duyne, “In vivo, transcutaneous glucose sensing using surface-enhanced spatially offset Raman spectroscopy: multiple rats, improved hypoglycemic accuracy, low incident power, and continuous monitoring for greater than 17 days,” J. Am. Chem. Soc. 83, 9146–9152 (2011).

Wells, S. M.

A. Polemi, S. M. Wells, N. V. Lavrik, M. J. Sepaniak, and K. L. Shuford, “Local field enhancement of pillar nanosurfaces for SERS,” J. Phys. Chem. C 114, 18096–18102 (2010).
[CrossRef]

White, D. J.

Wustholz, K. L.

J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131, 849–854 (2009).
[CrossRef]

Xiao, L.

Y. Han, M. K. K. Oo, Y. Zhu, L. Xiao, M. S. Demohan, W. Jin, and H. Du, “Index-guiding liquid-core photonic crystal fiber for solution measurement using normal and surface-enhanced Raman scattering,” Opt. Eng. 47, 040502 (2008).
[CrossRef]

Yan, H.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

Yang, C.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

Yao, Y.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

Yuen, J. M.

K. Ma, J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. van Duyne, “In vivo, transcutaneous glucose sensing using surface-enhanced spatially offset Raman spectroscopy: multiple rats, improved hypoglycemic accuracy, low incident power, and continuous monitoring for greater than 17 days,” J. Am. Chem. Soc. 83, 9146–9152 (2011).

Zenobi, R.

J. Stadler, T. Schmid, and R. Zenobi, “Developments in and practical guidelines for tip-enhanced Raman spectroscopy,” Nanoscale 4, 1856–1870 (2012).
[CrossRef]

Zhang, J.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

Zhang, J. Z.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504 (2007).
[CrossRef]

Zhang, Y.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504 (2007).
[CrossRef]

Zhu, Y.

Y. Han, M. K. K. Oo, Y. Zhu, L. Xiao, M. S. Demohan, W. Jin, and H. Du, “Index-guiding liquid-core photonic crystal fiber for solution measurement using normal and surface-enhanced Raman scattering,” Opt. Eng. 47, 040502 (2008).
[CrossRef]

ACS Nano (1)

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors,” ACS Nano 5, 4046–4055 (2011).
[CrossRef]

Adv. Mater (1)

G. Kostovski, U. Chinnasamy, S. Jayawardhana, P. R. Stoddart, and A. Mitchell, “Sub-15 nm optical fiber nanoimprint lithography: a parallel, self-aligned and portable approach,” Adv. Mater 23, 531–535 (2011).
[CrossRef]

Anal. Bioanal. Chem (1)

P. R. Stoddart and D. J. White, “Optical fibre SERS sensors,” Anal. Bioanal. Chem 394, 1761–1774 (2009).
[CrossRef]

Ann. Phys. (1)

R. Buividas, P. R. Stoddart, and S. Juodkazis, “Laser fabricated ripple substrates for surface-enhanced Raman scattering,” Ann. Phys. 524, L5–L10 (2012).

Appl. Opt. (4)

Appl. Phys. Lett. (2)

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[CrossRef]

J. Am. Chem. Soc. (3)

K. Ma, J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. van Duyne, “In vivo, transcutaneous glucose sensing using surface-enhanced spatially offset Raman spectroscopy: multiple rats, improved hypoglycemic accuracy, low incident power, and continuous monitoring for greater than 17 days,” J. Am. Chem. Soc. 83, 9146–9152 (2011).

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, “Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development,” J. Am. Chem. Soc. 362, 349–373 (1998).

J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131, 849–854 (2009).
[CrossRef]

J. Non-Cryst. Solids (1)

F. L. Galeener, “The Raman spectra of defects in neutron bombarded and Ge-rich vitreous GeO2,” J. Non-Cryst. Solids 40, 527–533 (1980).
[CrossRef]

J. Phys. Chem. C (1)

A. Polemi, S. M. Wells, N. V. Lavrik, M. J. Sepaniak, and K. L. Shuford, “Local field enhancement of pillar nanosurfaces for SERS,” J. Phys. Chem. C 114, 18096–18102 (2010).
[CrossRef]

Nano Today (1)

K. K. Maiti, U. S. Dinish, A. Samanta, M. Vendrell, K. Soh, S. Park, M. Olivo, and Y. Chang, “Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags,” Nano Today 7(2), 85–93 (2012).
[CrossRef]

Nanoscale (1)

J. Stadler, T. Schmid, and R. Zenobi, “Developments in and practical guidelines for tip-enhanced Raman spectroscopy,” Nanoscale 4, 1856–1870 (2012).
[CrossRef]

Opt. Eng. (1)

Y. Han, M. K. K. Oo, Y. Zhu, L. Xiao, M. S. Demohan, W. Jin, and H. Du, “Index-guiding liquid-core photonic crystal fiber for solution measurement using normal and surface-enhanced Raman scattering,” Opt. Eng. 47, 040502 (2008).
[CrossRef]

Opt. Exp. (1)

S. Dochow, I. Latka, M. Becker, R. Spittel, J. Kobelke, K. Schuster, A. Graf, S. Brückner, S. Unger, M. Rothhardt, B. Dietzek, C. Krafft, and J. Popp, “Multicore fiber with integrated fiber Bragg gratings for background-free Raman sensing,” Opt. Exp. 20, 20156–20169 (2012).
[CrossRef]

Opt. Lett. (5)

Sci. Rep. (1)

S. Jayawardhana, L. Rosa, S. Juodkazis, and P. R. Stoddart, “Additional enhancement of electric field in surface-enhanced Raman scattering due to Fresnel mechanism,” Sci. Rep. 3, 2335 (2013).
[CrossRef]

Sens. Acta B (1)

C. Viets and W. Hill, “Comparison of fibre-optic SERS sensors with differently prepared tips,” Sens. Acta B 51, 92–99 (1998).
[CrossRef]

Other (2)

H. Sato, H. Shinzawa, and Y. Komachi, “Fiber-optic Raman probes for biomedical and pharmaceutical applications,” in Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields, P. Matousek and M. D. Morris, eds. (Springer, 2010), pp. 25–45.

G. Keiser, Optical Fiber Communications (McGraw-Hill, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Samples and mounting block, showing the brass shim used to bend the fibers. (b) Direct and remote-sensing configurations.

Fig. 2.
Fig. 2.

Examples of projected mode patterns before and after stripping the cladding modes for different fiber/NA, objective/NA combinations. The patterns appear oval as the camera was positioned obliquely due to space constraints. The typical diameter of the pattern on the screen was approximately 2 cm.

Fig. 3.
Fig. 3.

Comparison of remote measurements for the four fibers. The dashed lines show the main thiophenol SERS peaks, and the arrows show the most intense silica band. These peaks were used to quantify probe performance.

Fig. 4.
Fig. 4.

Average intensity of the thiophenol SERS signal measured in the remote configuration.

Fig. 5.
Fig. 5.

Ratio of SERS signal to fiber Raman background.

Fig. 6.
Fig. 6.

Ratio of remote to direct SERS intensities.

Tables (1)

Tables Icon

Table 1. List of Fiber Types Testeda

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

IfibIdir(ΩfibΩobj)(ρa)20g(z)dz,

Metrics