Abstract

The luminous distribution characteristics of light sources can be measured by goniophotometry. In this work, the misalignment of luminary-induced measurement errors as the main factor affecting the measurement accuracy is analyzed. A calculation method for measurement error is proposed. Then, the translational and angular misalignment-induced measurement errors are calculated and analyzed. Results show that the measurement errors induced by misalignments may be great in some cases even if the far-field condition is satisfied. For luminaries with different radiation patterns, the acceptable misalignment tolerances corresponding to measurement error of less than 1% are given.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Szylowski, M. Mossman, D. Barclay, and L. Whitehead, “Novel fiber-based integrating sphere for luminous flux measurements,” Rev. Sci. Instrum. 77, 063102 (2006).
    [CrossRef]
  2. C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193–2195 (2006).
    [CrossRef]
  3. W. T. Chien, C. C. Sun, and I. Moreno, “Precise optical model of multi-chip white LEDs,” Opt. Express 15, 7572–7577 (2007).
    [CrossRef]
  4. H. Yang, J. W. M. Bergmans, T. C. W. Schenk, J. P. M. G. Linnartz, and R. Linnartz, “An analytical model for the illuminance distribution of a power LED,” Opt. Express 16, 21641–21646 (2008).
    [CrossRef]
  5. C. C. Sun, W. T. Chien, I. Moreno, C. C. Hsieh, and Y. C. Lo, “Analysis of the far-field region of LEDs,” Opt. Express 17, 13918–13927 (2009).
    [CrossRef]
  6. I. Moreno and C. C. Sun, “LED array: where does far-field begin?” Proc. SPIE 7058, 70580R (2008).
    [CrossRef]
  7. I. Moreno, C. C. Sun, and R. Ivanov, “Far-field condition for light-emitting diode arrays,” Appl. Opt. 48, 1190–1197 (2009).
    [CrossRef]
  8. L. Svilainis and V. Dumbrava, “LED far field pattern approximation performance study,” in Proceedings of the ITI 2007 29th International Conference on Information Technology Interfaces (ITI, 2007), pp. 645–649.
  9. C. H. Ho, “A practical and inexpensive design for measuring the radiation patterns and luminescent spectra of optoelectronic devices,” Rev. Sci. Instrum. 72, 3103–3113 (2001).
    [CrossRef]
  10. A. S. J. Bergen, “A practical method of comparing luminous intensity distributions,” Lighting Res. Technol. 44, 27–36 (2012).
    [CrossRef]
  11. G. Sauter, “Goniophotometry: new calibration method and instrument design,” Metrologia 32, 685–688 (1996).
  12. P. Manninen, J. Hovila, P. Karha, and E. Ikonen, “Method for analysing luminous intensity of light-emitting diodes,” Meas. Sci. Technol. 18, 223–229 (2007).
    [CrossRef]
  13. CIE 121-1996, “Photometry and Goniophotometry of Luminaires,” CIE Technical Committee TC2-10 (1996).
  14. A. Ryer, Light Measurement Handbook (International Light, 1998).
  15. I. Moreno and C. C. Sun, “Modeling the radiation pattern of LEDs,” Opt. Express 16, 1808–1819 (2008).
    [CrossRef]
  16. X. Liu, W. Cai, X. Lei, X. Du, and W. Chen, “Far-field distance for surface light source with different luminous area,” Appl. Opt. 52, 1629–1635 (2013).
    [CrossRef]

2013 (1)

2012 (1)

A. S. J. Bergen, “A practical method of comparing luminous intensity distributions,” Lighting Res. Technol. 44, 27–36 (2012).
[CrossRef]

2009 (2)

2008 (3)

2007 (2)

P. Manninen, J. Hovila, P. Karha, and E. Ikonen, “Method for analysing luminous intensity of light-emitting diodes,” Meas. Sci. Technol. 18, 223–229 (2007).
[CrossRef]

W. T. Chien, C. C. Sun, and I. Moreno, “Precise optical model of multi-chip white LEDs,” Opt. Express 15, 7572–7577 (2007).
[CrossRef]

2006 (2)

C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193–2195 (2006).
[CrossRef]

M. Szylowski, M. Mossman, D. Barclay, and L. Whitehead, “Novel fiber-based integrating sphere for luminous flux measurements,” Rev. Sci. Instrum. 77, 063102 (2006).
[CrossRef]

2001 (1)

C. H. Ho, “A practical and inexpensive design for measuring the radiation patterns and luminescent spectra of optoelectronic devices,” Rev. Sci. Instrum. 72, 3103–3113 (2001).
[CrossRef]

1996 (1)

G. Sauter, “Goniophotometry: new calibration method and instrument design,” Metrologia 32, 685–688 (1996).

Barclay, D.

M. Szylowski, M. Mossman, D. Barclay, and L. Whitehead, “Novel fiber-based integrating sphere for luminous flux measurements,” Rev. Sci. Instrum. 77, 063102 (2006).
[CrossRef]

Bergen, A. S. J.

A. S. J. Bergen, “A practical method of comparing luminous intensity distributions,” Lighting Res. Technol. 44, 27–36 (2012).
[CrossRef]

Bergmans, J. W. M.

Cai, W.

Chen, W.

Chien, W. T.

Du, X.

Dumbrava, V.

L. Svilainis and V. Dumbrava, “LED far field pattern approximation performance study,” in Proceedings of the ITI 2007 29th International Conference on Information Technology Interfaces (ITI, 2007), pp. 645–649.

Ho, C. H.

C. H. Ho, “A practical and inexpensive design for measuring the radiation patterns and luminescent spectra of optoelectronic devices,” Rev. Sci. Instrum. 72, 3103–3113 (2001).
[CrossRef]

Hovila, J.

P. Manninen, J. Hovila, P. Karha, and E. Ikonen, “Method for analysing luminous intensity of light-emitting diodes,” Meas. Sci. Technol. 18, 223–229 (2007).
[CrossRef]

Hsieh, C. C.

Huang, S. M.

Ikonen, E.

P. Manninen, J. Hovila, P. Karha, and E. Ikonen, “Method for analysing luminous intensity of light-emitting diodes,” Meas. Sci. Technol. 18, 223–229 (2007).
[CrossRef]

Ivanov, R.

Karha, P.

P. Manninen, J. Hovila, P. Karha, and E. Ikonen, “Method for analysing luminous intensity of light-emitting diodes,” Meas. Sci. Technol. 18, 223–229 (2007).
[CrossRef]

Lee, T. X.

Lee, Y. L.

Lei, X.

Linnartz, J. P. M. G.

Linnartz, R.

Liu, X.

Lo, Y. C.

Ma, S. H.

Manninen, P.

P. Manninen, J. Hovila, P. Karha, and E. Ikonen, “Method for analysing luminous intensity of light-emitting diodes,” Meas. Sci. Technol. 18, 223–229 (2007).
[CrossRef]

Moreno, I.

Mossman, M.

M. Szylowski, M. Mossman, D. Barclay, and L. Whitehead, “Novel fiber-based integrating sphere for luminous flux measurements,” Rev. Sci. Instrum. 77, 063102 (2006).
[CrossRef]

Ryer, A.

A. Ryer, Light Measurement Handbook (International Light, 1998).

Sauter, G.

G. Sauter, “Goniophotometry: new calibration method and instrument design,” Metrologia 32, 685–688 (1996).

Schenk, T. C. W.

Sun, C. C.

Svilainis, L.

L. Svilainis and V. Dumbrava, “LED far field pattern approximation performance study,” in Proceedings of the ITI 2007 29th International Conference on Information Technology Interfaces (ITI, 2007), pp. 645–649.

Szylowski, M.

M. Szylowski, M. Mossman, D. Barclay, and L. Whitehead, “Novel fiber-based integrating sphere for luminous flux measurements,” Rev. Sci. Instrum. 77, 063102 (2006).
[CrossRef]

Whitehead, L.

M. Szylowski, M. Mossman, D. Barclay, and L. Whitehead, “Novel fiber-based integrating sphere for luminous flux measurements,” Rev. Sci. Instrum. 77, 063102 (2006).
[CrossRef]

Yang, H.

Appl. Opt. (2)

Lighting Res. Technol. (1)

A. S. J. Bergen, “A practical method of comparing luminous intensity distributions,” Lighting Res. Technol. 44, 27–36 (2012).
[CrossRef]

Meas. Sci. Technol. (1)

P. Manninen, J. Hovila, P. Karha, and E. Ikonen, “Method for analysing luminous intensity of light-emitting diodes,” Meas. Sci. Technol. 18, 223–229 (2007).
[CrossRef]

Metrologia (1)

G. Sauter, “Goniophotometry: new calibration method and instrument design,” Metrologia 32, 685–688 (1996).

Opt. Express (4)

Opt. Lett. (1)

Proc. SPIE (1)

I. Moreno and C. C. Sun, “LED array: where does far-field begin?” Proc. SPIE 7058, 70580R (2008).
[CrossRef]

Rev. Sci. Instrum. (2)

M. Szylowski, M. Mossman, D. Barclay, and L. Whitehead, “Novel fiber-based integrating sphere for luminous flux measurements,” Rev. Sci. Instrum. 77, 063102 (2006).
[CrossRef]

C. H. Ho, “A practical and inexpensive design for measuring the radiation patterns and luminescent spectra of optoelectronic devices,” Rev. Sci. Instrum. 72, 3103–3113 (2001).
[CrossRef]

Other (3)

L. Svilainis and V. Dumbrava, “LED far field pattern approximation performance study,” in Proceedings of the ITI 2007 29th International Conference on Information Technology Interfaces (ITI, 2007), pp. 645–649.

CIE 121-1996, “Photometry and Goniophotometry of Luminaires,” CIE Technical Committee TC2-10 (1996).

A. Ryer, Light Measurement Handbook (International Light, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Geometry for measuring LED arrays.

Fig. 2.
Fig. 2.

Several radiation patterns: (a) Lambertian; (b) concentrated; (c) side-emitting; and (d) batwing.

Fig. 3.
Fig. 3.

Error values with three different error definitions as functions of relative measurement distance for LED arrays with different radiation patterns: (a) Lambertian; (b) concentrated; (c) side-emitting; and (d) batwing.

Fig. 4.
Fig. 4.

RMSwsum as functions of relative measurement distance for LED arrays with different radiation patterns.

Fig. 5.
Fig. 5.

Schematic diagram of LED array with transverse misalignment.

Fig. 6.
Fig. 6.

RMSwsum as functions of relative transverse misalignments for LED arrays with different radiation patterns.

Fig. 7.
Fig. 7.

Schematic diagram of LED array with longitudinal misalignment.

Fig. 8.
Fig. 8.

RMSwsum as functions of relative longitudinal misalignments for LED arrays with different radiation patterns.

Fig. 9.
Fig. 9.

Schematic diagram of LED array with angular tilt misalignment.

Fig. 10.
Fig. 10.

RMSwsum as functions of angular tilt misalignments for LED arrays with different radiation patterns.

Fig. 11.
Fig. 11.

Schematic diagram of LED array with rotational misalignment.

Fig. 12.
Fig. 12.

RMSwsum as functions of rotational misalignments for LED arrays with different radiation patterns.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

I(A,α)=Is(Ai,αi)d2|r⃗i|2cosθi,
r⃗i=(Rix,Riy,Riz)=(dcosαsinAxi,dsinαyi,dcosαcosA),
Ai=arctan(Rix/Riz),
αi=arcsin(Riy/|r⃗i|).
I(A,α)=M·Is(A,α),
ΔNCC=1i=1M[I(Ai,αi)I¯][I(Ai,αi)I¯]i=1M[I(Ai,αi)I¯]2i=1M[I(Ai,αi)I¯]2,
ΔRMS=1Mi=1MI(Ai,αi)Imax[I(Ai,αi)I(Ai,αi)1]2.
i=1MI(Ai,αi)M·Imaxi=1MI(Ai,αi)I=1,
ΔRMS=i=1MI(Ai,αi)I[I(Ai,αi)I(Ai,αi)1]2.
r⃗i=(dcosαsinAxiΔx,dsinαyi,dcosαcosA).
r⃗i=(dcosαsinAxi,dsinαyi,dcosαcosA+Δz).
tanAx=cosαsinAsinαsinφx+cosαcosAcosφx,
sinαx=sinαcosφxcosαcosAsinφx,
Ay=A+φy,
αy=α.
tanA=cosC×tanγ,
sinα=sinC×sinγ.

Metrics