Abstract

The thermal-piezoelectric deformable mirror (TPDM) is a device employed to compensate for laser-induced mirror deformation and thermal lensing in high-power optical systems. The TPDM setup is a unimorph deformable mirror with thermal and piezoelectric actuation properties. Laser-induced thermal lensing is compensated for by heating of the TPDM. We show that this mirror can be applied to high-power laser systems of up to 6.2 kW laser power and high power densities of up to 2kW/cm2. The piezoelectric stroke of the single actuators is between 1.5 and 4 μm and is not reduced by either the absorbed laser power or mirror heating.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Feinleib, S. G. Lipson, and P. F. Cone, “Monolithic piezoelectric mirror for wavefront correction,” Appl. Phys. Lett. 25, 311–313 (1974).
    [CrossRef]
  2. E. Steinhaus and S. G. Lipson, “Bimorph piezoelectric flexible mirror,” J. Opt. Soc. Am. 69, 478–481 (1979).
    [CrossRef]
  3. C. A. Primmerman and D. G. Fouche, “Thermal-blooming compensation: experimental observations using a deformable-mirror system,” Appl. Opt. 15, 990–995 (1976).
    [CrossRef]
  4. A. A. Aleksandrov, A. V. Kudryashov, A. L. Rukosuev, T. Yu. Cherezova, and Yu. V. Sheldakova, “An adaptive optical system for controlling laser radiation,” J. Opt. Technol. 74, 550–554 (2007) http://www.opticsinfobase.org/jot/abstract.cfm?URI=jot-74-8-550 .
    [CrossRef]
  5. G. Cheriaux, J.-P. Rousseau, F. Burgy, J.-C. Sinquin, J.-M. Lurçon, and C. Guillemard, “Monomorph large aperture adaptive optics for high peak-power femtosecond lasers,” Proc. SPIE 6584, 658405 (2007).
  6. A. G. Aleksandrov, V. E. Zavalova, A. V. Kudryashov, A. L. Rukosuev, and V. Samarkin, “Adaptive correction of a high-power titanium–sapphire laser radiation,” J. Appl. Spectrosc. 72, 744–750 (2005).
    [CrossRef]
  7. Z.-J. Ren, X.-Y. Liang, M.-B. Liu, C.-Q. Xia, X.-M. Lu, R.-X. Li, and Z.-Z. Xu, “Wavefront correction of petawatt laser system by a deformable mirror with 50  mm active aperture,” Chin. Phys. Lett. 26, 124203 (2009).
    [CrossRef]
  8. J. Ma, Y. Liu, T. He, B. Li, and J. Chu, “Double drive modes unimorph deformable mirror for low-cost adaptive optics,” Appl. Opt. 50, 5647–5654 (2011) http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-29-5647 .
    [CrossRef]
  9. S. Verpoort and U. Wittrock, “Actuator patterns for unimorph and bimorph deformable mirrors,” Appl. Opt. 49, G37–G46 (2010) http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-31-G37 .
    [CrossRef]
  10. K. Patterson and S. Pellegrino, “Ultralightweight deformable mirrors,” Appl. Opt. 52, 5327–5341 (2013) http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-22-5327 .
    [CrossRef]
  11. C. Reinlein, M. Appelfelder, S. Gebhardt, E. Beckert, R. Eberhardt, and A. Tünnermann, “Thermomechanical design, hybrid fabrication, and testing of a MOEMS deformable mirror,” J. Micro/Nanolithogr., MEMS, MOEMS 12, 013016 (2013).
  12. M. Arain, W. Korth, L. Williams, R. Martin, G. Mueller, D. Tanner, and D. Reitze, “Adaptive control of modal properties of optical beams using photothermal effects,” Opt. Express 18, 2767–2781 (2010).
    [CrossRef]
  13. R. Lawrence, D. Ottaway, M. Zucker, and P. Fritschel, “Active correction of thermal lensing through external radiative thermal actuation,” Opt. Lett. 29, 2635–2637 (2004).
    [CrossRef]
  14. J. Degallaix, C. Zhao, L. Ju, and D. Blair, “Thermal lensing compensation for AIGO high optical power test facility,” Classical Quantum Gravity 21, S903–S908 (2004).
    [CrossRef]
  15. H. Luck, A. Freise, S. Gobler, S. Hild, K. Kawabe, and K. Danzmann, “Thermal correction of the radii of curvature of mirrors for GEO 600,” Classical Quantum Gravity 21, S985–S989 (2004).
    [CrossRef]
  16. B. Canuel, R. Day, E. Genin, P. La Penna, and J. Marque, “Wavefront aberration compensation with a thermally deformable mirror,” Classical Quantum Gravity 29, 085012 (2012).
    [CrossRef]
  17. M. Kasprzack, B. Canuel, F. Cavalier, R. Day, E. Genin, J. Marque, D. Sentenac, and G. Vajente, “Performance of a thermally deformable mirror for correction of low-order aberrations in laser beams,” Appl. Opt. 52, 2909–2916 (2013).
    [CrossRef]
  18. C. Reinlein, “Thermo-mechanical design, realization and testing of screen-printed deformable mirrors,” Ph.D. dissertation (TU-Ilmenau, 2012) http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-25432/ilm1-2012000191.pdf .

2013

2012

B. Canuel, R. Day, E. Genin, P. La Penna, and J. Marque, “Wavefront aberration compensation with a thermally deformable mirror,” Classical Quantum Gravity 29, 085012 (2012).
[CrossRef]

2011

2010

2009

Z.-J. Ren, X.-Y. Liang, M.-B. Liu, C.-Q. Xia, X.-M. Lu, R.-X. Li, and Z.-Z. Xu, “Wavefront correction of petawatt laser system by a deformable mirror with 50  mm active aperture,” Chin. Phys. Lett. 26, 124203 (2009).
[CrossRef]

2007

G. Cheriaux, J.-P. Rousseau, F. Burgy, J.-C. Sinquin, J.-M. Lurçon, and C. Guillemard, “Monomorph large aperture adaptive optics for high peak-power femtosecond lasers,” Proc. SPIE 6584, 658405 (2007).

A. A. Aleksandrov, A. V. Kudryashov, A. L. Rukosuev, T. Yu. Cherezova, and Yu. V. Sheldakova, “An adaptive optical system for controlling laser radiation,” J. Opt. Technol. 74, 550–554 (2007) http://www.opticsinfobase.org/jot/abstract.cfm?URI=jot-74-8-550 .
[CrossRef]

2005

A. G. Aleksandrov, V. E. Zavalova, A. V. Kudryashov, A. L. Rukosuev, and V. Samarkin, “Adaptive correction of a high-power titanium–sapphire laser radiation,” J. Appl. Spectrosc. 72, 744–750 (2005).
[CrossRef]

2004

J. Degallaix, C. Zhao, L. Ju, and D. Blair, “Thermal lensing compensation for AIGO high optical power test facility,” Classical Quantum Gravity 21, S903–S908 (2004).
[CrossRef]

H. Luck, A. Freise, S. Gobler, S. Hild, K. Kawabe, and K. Danzmann, “Thermal correction of the radii of curvature of mirrors for GEO 600,” Classical Quantum Gravity 21, S985–S989 (2004).
[CrossRef]

R. Lawrence, D. Ottaway, M. Zucker, and P. Fritschel, “Active correction of thermal lensing through external radiative thermal actuation,” Opt. Lett. 29, 2635–2637 (2004).
[CrossRef]

1979

1976

1974

J. Feinleib, S. G. Lipson, and P. F. Cone, “Monolithic piezoelectric mirror for wavefront correction,” Appl. Phys. Lett. 25, 311–313 (1974).
[CrossRef]

Aleksandrov, A. A.

Aleksandrov, A. G.

A. G. Aleksandrov, V. E. Zavalova, A. V. Kudryashov, A. L. Rukosuev, and V. Samarkin, “Adaptive correction of a high-power titanium–sapphire laser radiation,” J. Appl. Spectrosc. 72, 744–750 (2005).
[CrossRef]

Appelfelder, M.

C. Reinlein, M. Appelfelder, S. Gebhardt, E. Beckert, R. Eberhardt, and A. Tünnermann, “Thermomechanical design, hybrid fabrication, and testing of a MOEMS deformable mirror,” J. Micro/Nanolithogr., MEMS, MOEMS 12, 013016 (2013).

Arain, M.

Beckert, E.

C. Reinlein, M. Appelfelder, S. Gebhardt, E. Beckert, R. Eberhardt, and A. Tünnermann, “Thermomechanical design, hybrid fabrication, and testing of a MOEMS deformable mirror,” J. Micro/Nanolithogr., MEMS, MOEMS 12, 013016 (2013).

Blair, D.

J. Degallaix, C. Zhao, L. Ju, and D. Blair, “Thermal lensing compensation for AIGO high optical power test facility,” Classical Quantum Gravity 21, S903–S908 (2004).
[CrossRef]

Burgy, F.

G. Cheriaux, J.-P. Rousseau, F. Burgy, J.-C. Sinquin, J.-M. Lurçon, and C. Guillemard, “Monomorph large aperture adaptive optics for high peak-power femtosecond lasers,” Proc. SPIE 6584, 658405 (2007).

Canuel, B.

M. Kasprzack, B. Canuel, F. Cavalier, R. Day, E. Genin, J. Marque, D. Sentenac, and G. Vajente, “Performance of a thermally deformable mirror for correction of low-order aberrations in laser beams,” Appl. Opt. 52, 2909–2916 (2013).
[CrossRef]

B. Canuel, R. Day, E. Genin, P. La Penna, and J. Marque, “Wavefront aberration compensation with a thermally deformable mirror,” Classical Quantum Gravity 29, 085012 (2012).
[CrossRef]

Cavalier, F.

Cherezova, T. Yu.

Cheriaux, G.

G. Cheriaux, J.-P. Rousseau, F. Burgy, J.-C. Sinquin, J.-M. Lurçon, and C. Guillemard, “Monomorph large aperture adaptive optics for high peak-power femtosecond lasers,” Proc. SPIE 6584, 658405 (2007).

Chu, J.

Cone, P. F.

J. Feinleib, S. G. Lipson, and P. F. Cone, “Monolithic piezoelectric mirror for wavefront correction,” Appl. Phys. Lett. 25, 311–313 (1974).
[CrossRef]

Danzmann, K.

H. Luck, A. Freise, S. Gobler, S. Hild, K. Kawabe, and K. Danzmann, “Thermal correction of the radii of curvature of mirrors for GEO 600,” Classical Quantum Gravity 21, S985–S989 (2004).
[CrossRef]

Day, R.

M. Kasprzack, B. Canuel, F. Cavalier, R. Day, E. Genin, J. Marque, D. Sentenac, and G. Vajente, “Performance of a thermally deformable mirror for correction of low-order aberrations in laser beams,” Appl. Opt. 52, 2909–2916 (2013).
[CrossRef]

B. Canuel, R. Day, E. Genin, P. La Penna, and J. Marque, “Wavefront aberration compensation with a thermally deformable mirror,” Classical Quantum Gravity 29, 085012 (2012).
[CrossRef]

Degallaix, J.

J. Degallaix, C. Zhao, L. Ju, and D. Blair, “Thermal lensing compensation for AIGO high optical power test facility,” Classical Quantum Gravity 21, S903–S908 (2004).
[CrossRef]

Eberhardt, R.

C. Reinlein, M. Appelfelder, S. Gebhardt, E. Beckert, R. Eberhardt, and A. Tünnermann, “Thermomechanical design, hybrid fabrication, and testing of a MOEMS deformable mirror,” J. Micro/Nanolithogr., MEMS, MOEMS 12, 013016 (2013).

Feinleib, J.

J. Feinleib, S. G. Lipson, and P. F. Cone, “Monolithic piezoelectric mirror for wavefront correction,” Appl. Phys. Lett. 25, 311–313 (1974).
[CrossRef]

Fouche, D. G.

Freise, A.

H. Luck, A. Freise, S. Gobler, S. Hild, K. Kawabe, and K. Danzmann, “Thermal correction of the radii of curvature of mirrors for GEO 600,” Classical Quantum Gravity 21, S985–S989 (2004).
[CrossRef]

Fritschel, P.

Gebhardt, S.

C. Reinlein, M. Appelfelder, S. Gebhardt, E. Beckert, R. Eberhardt, and A. Tünnermann, “Thermomechanical design, hybrid fabrication, and testing of a MOEMS deformable mirror,” J. Micro/Nanolithogr., MEMS, MOEMS 12, 013016 (2013).

Genin, E.

M. Kasprzack, B. Canuel, F. Cavalier, R. Day, E. Genin, J. Marque, D. Sentenac, and G. Vajente, “Performance of a thermally deformable mirror for correction of low-order aberrations in laser beams,” Appl. Opt. 52, 2909–2916 (2013).
[CrossRef]

B. Canuel, R. Day, E. Genin, P. La Penna, and J. Marque, “Wavefront aberration compensation with a thermally deformable mirror,” Classical Quantum Gravity 29, 085012 (2012).
[CrossRef]

Gobler, S.

H. Luck, A. Freise, S. Gobler, S. Hild, K. Kawabe, and K. Danzmann, “Thermal correction of the radii of curvature of mirrors for GEO 600,” Classical Quantum Gravity 21, S985–S989 (2004).
[CrossRef]

Guillemard, C.

G. Cheriaux, J.-P. Rousseau, F. Burgy, J.-C. Sinquin, J.-M. Lurçon, and C. Guillemard, “Monomorph large aperture adaptive optics for high peak-power femtosecond lasers,” Proc. SPIE 6584, 658405 (2007).

He, T.

Hild, S.

H. Luck, A. Freise, S. Gobler, S. Hild, K. Kawabe, and K. Danzmann, “Thermal correction of the radii of curvature of mirrors for GEO 600,” Classical Quantum Gravity 21, S985–S989 (2004).
[CrossRef]

Ju, L.

J. Degallaix, C. Zhao, L. Ju, and D. Blair, “Thermal lensing compensation for AIGO high optical power test facility,” Classical Quantum Gravity 21, S903–S908 (2004).
[CrossRef]

Kasprzack, M.

Kawabe, K.

H. Luck, A. Freise, S. Gobler, S. Hild, K. Kawabe, and K. Danzmann, “Thermal correction of the radii of curvature of mirrors for GEO 600,” Classical Quantum Gravity 21, S985–S989 (2004).
[CrossRef]

Korth, W.

Kudryashov, A. V.

A. A. Aleksandrov, A. V. Kudryashov, A. L. Rukosuev, T. Yu. Cherezova, and Yu. V. Sheldakova, “An adaptive optical system for controlling laser radiation,” J. Opt. Technol. 74, 550–554 (2007) http://www.opticsinfobase.org/jot/abstract.cfm?URI=jot-74-8-550 .
[CrossRef]

A. G. Aleksandrov, V. E. Zavalova, A. V. Kudryashov, A. L. Rukosuev, and V. Samarkin, “Adaptive correction of a high-power titanium–sapphire laser radiation,” J. Appl. Spectrosc. 72, 744–750 (2005).
[CrossRef]

La Penna, P.

B. Canuel, R. Day, E. Genin, P. La Penna, and J. Marque, “Wavefront aberration compensation with a thermally deformable mirror,” Classical Quantum Gravity 29, 085012 (2012).
[CrossRef]

Lawrence, R.

Li, B.

Li, R.-X.

Z.-J. Ren, X.-Y. Liang, M.-B. Liu, C.-Q. Xia, X.-M. Lu, R.-X. Li, and Z.-Z. Xu, “Wavefront correction of petawatt laser system by a deformable mirror with 50  mm active aperture,” Chin. Phys. Lett. 26, 124203 (2009).
[CrossRef]

Liang, X.-Y.

Z.-J. Ren, X.-Y. Liang, M.-B. Liu, C.-Q. Xia, X.-M. Lu, R.-X. Li, and Z.-Z. Xu, “Wavefront correction of petawatt laser system by a deformable mirror with 50  mm active aperture,” Chin. Phys. Lett. 26, 124203 (2009).
[CrossRef]

Lipson, S. G.

E. Steinhaus and S. G. Lipson, “Bimorph piezoelectric flexible mirror,” J. Opt. Soc. Am. 69, 478–481 (1979).
[CrossRef]

J. Feinleib, S. G. Lipson, and P. F. Cone, “Monolithic piezoelectric mirror for wavefront correction,” Appl. Phys. Lett. 25, 311–313 (1974).
[CrossRef]

Liu, M.-B.

Z.-J. Ren, X.-Y. Liang, M.-B. Liu, C.-Q. Xia, X.-M. Lu, R.-X. Li, and Z.-Z. Xu, “Wavefront correction of petawatt laser system by a deformable mirror with 50  mm active aperture,” Chin. Phys. Lett. 26, 124203 (2009).
[CrossRef]

Liu, Y.

Lu, X.-M.

Z.-J. Ren, X.-Y. Liang, M.-B. Liu, C.-Q. Xia, X.-M. Lu, R.-X. Li, and Z.-Z. Xu, “Wavefront correction of petawatt laser system by a deformable mirror with 50  mm active aperture,” Chin. Phys. Lett. 26, 124203 (2009).
[CrossRef]

Luck, H.

H. Luck, A. Freise, S. Gobler, S. Hild, K. Kawabe, and K. Danzmann, “Thermal correction of the radii of curvature of mirrors for GEO 600,” Classical Quantum Gravity 21, S985–S989 (2004).
[CrossRef]

Lurçon, J.-M.

G. Cheriaux, J.-P. Rousseau, F. Burgy, J.-C. Sinquin, J.-M. Lurçon, and C. Guillemard, “Monomorph large aperture adaptive optics for high peak-power femtosecond lasers,” Proc. SPIE 6584, 658405 (2007).

Ma, J.

Marque, J.

M. Kasprzack, B. Canuel, F. Cavalier, R. Day, E. Genin, J. Marque, D. Sentenac, and G. Vajente, “Performance of a thermally deformable mirror for correction of low-order aberrations in laser beams,” Appl. Opt. 52, 2909–2916 (2013).
[CrossRef]

B. Canuel, R. Day, E. Genin, P. La Penna, and J. Marque, “Wavefront aberration compensation with a thermally deformable mirror,” Classical Quantum Gravity 29, 085012 (2012).
[CrossRef]

Martin, R.

Mueller, G.

Ottaway, D.

Patterson, K.

Pellegrino, S.

Primmerman, C. A.

Reinlein, C.

C. Reinlein, M. Appelfelder, S. Gebhardt, E. Beckert, R. Eberhardt, and A. Tünnermann, “Thermomechanical design, hybrid fabrication, and testing of a MOEMS deformable mirror,” J. Micro/Nanolithogr., MEMS, MOEMS 12, 013016 (2013).

C. Reinlein, “Thermo-mechanical design, realization and testing of screen-printed deformable mirrors,” Ph.D. dissertation (TU-Ilmenau, 2012) http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-25432/ilm1-2012000191.pdf .

Reitze, D.

Ren, Z.-J.

Z.-J. Ren, X.-Y. Liang, M.-B. Liu, C.-Q. Xia, X.-M. Lu, R.-X. Li, and Z.-Z. Xu, “Wavefront correction of petawatt laser system by a deformable mirror with 50  mm active aperture,” Chin. Phys. Lett. 26, 124203 (2009).
[CrossRef]

Rousseau, J.-P.

G. Cheriaux, J.-P. Rousseau, F. Burgy, J.-C. Sinquin, J.-M. Lurçon, and C. Guillemard, “Monomorph large aperture adaptive optics for high peak-power femtosecond lasers,” Proc. SPIE 6584, 658405 (2007).

Rukosuev, A. L.

A. A. Aleksandrov, A. V. Kudryashov, A. L. Rukosuev, T. Yu. Cherezova, and Yu. V. Sheldakova, “An adaptive optical system for controlling laser radiation,” J. Opt. Technol. 74, 550–554 (2007) http://www.opticsinfobase.org/jot/abstract.cfm?URI=jot-74-8-550 .
[CrossRef]

A. G. Aleksandrov, V. E. Zavalova, A. V. Kudryashov, A. L. Rukosuev, and V. Samarkin, “Adaptive correction of a high-power titanium–sapphire laser radiation,” J. Appl. Spectrosc. 72, 744–750 (2005).
[CrossRef]

Samarkin, V.

A. G. Aleksandrov, V. E. Zavalova, A. V. Kudryashov, A. L. Rukosuev, and V. Samarkin, “Adaptive correction of a high-power titanium–sapphire laser radiation,” J. Appl. Spectrosc. 72, 744–750 (2005).
[CrossRef]

Sentenac, D.

Sheldakova, Yu. V.

Sinquin, J.-C.

G. Cheriaux, J.-P. Rousseau, F. Burgy, J.-C. Sinquin, J.-M. Lurçon, and C. Guillemard, “Monomorph large aperture adaptive optics for high peak-power femtosecond lasers,” Proc. SPIE 6584, 658405 (2007).

Steinhaus, E.

Tanner, D.

Tünnermann, A.

C. Reinlein, M. Appelfelder, S. Gebhardt, E. Beckert, R. Eberhardt, and A. Tünnermann, “Thermomechanical design, hybrid fabrication, and testing of a MOEMS deformable mirror,” J. Micro/Nanolithogr., MEMS, MOEMS 12, 013016 (2013).

Vajente, G.

Verpoort, S.

Williams, L.

Wittrock, U.

Xia, C.-Q.

Z.-J. Ren, X.-Y. Liang, M.-B. Liu, C.-Q. Xia, X.-M. Lu, R.-X. Li, and Z.-Z. Xu, “Wavefront correction of petawatt laser system by a deformable mirror with 50  mm active aperture,” Chin. Phys. Lett. 26, 124203 (2009).
[CrossRef]

Xu, Z.-Z.

Z.-J. Ren, X.-Y. Liang, M.-B. Liu, C.-Q. Xia, X.-M. Lu, R.-X. Li, and Z.-Z. Xu, “Wavefront correction of petawatt laser system by a deformable mirror with 50  mm active aperture,” Chin. Phys. Lett. 26, 124203 (2009).
[CrossRef]

Zavalova, V. E.

A. G. Aleksandrov, V. E. Zavalova, A. V. Kudryashov, A. L. Rukosuev, and V. Samarkin, “Adaptive correction of a high-power titanium–sapphire laser radiation,” J. Appl. Spectrosc. 72, 744–750 (2005).
[CrossRef]

Zhao, C.

J. Degallaix, C. Zhao, L. Ju, and D. Blair, “Thermal lensing compensation for AIGO high optical power test facility,” Classical Quantum Gravity 21, S903–S908 (2004).
[CrossRef]

Zucker, M.

Appl. Opt.

Appl. Phys. Lett.

J. Feinleib, S. G. Lipson, and P. F. Cone, “Monolithic piezoelectric mirror for wavefront correction,” Appl. Phys. Lett. 25, 311–313 (1974).
[CrossRef]

Chin. Phys. Lett.

Z.-J. Ren, X.-Y. Liang, M.-B. Liu, C.-Q. Xia, X.-M. Lu, R.-X. Li, and Z.-Z. Xu, “Wavefront correction of petawatt laser system by a deformable mirror with 50  mm active aperture,” Chin. Phys. Lett. 26, 124203 (2009).
[CrossRef]

Classical Quantum Gravity

J. Degallaix, C. Zhao, L. Ju, and D. Blair, “Thermal lensing compensation for AIGO high optical power test facility,” Classical Quantum Gravity 21, S903–S908 (2004).
[CrossRef]

H. Luck, A. Freise, S. Gobler, S. Hild, K. Kawabe, and K. Danzmann, “Thermal correction of the radii of curvature of mirrors for GEO 600,” Classical Quantum Gravity 21, S985–S989 (2004).
[CrossRef]

B. Canuel, R. Day, E. Genin, P. La Penna, and J. Marque, “Wavefront aberration compensation with a thermally deformable mirror,” Classical Quantum Gravity 29, 085012 (2012).
[CrossRef]

J. Appl. Spectrosc.

A. G. Aleksandrov, V. E. Zavalova, A. V. Kudryashov, A. L. Rukosuev, and V. Samarkin, “Adaptive correction of a high-power titanium–sapphire laser radiation,” J. Appl. Spectrosc. 72, 744–750 (2005).
[CrossRef]

J. Micro/Nanolithogr., MEMS, MOEMS

C. Reinlein, M. Appelfelder, S. Gebhardt, E. Beckert, R. Eberhardt, and A. Tünnermann, “Thermomechanical design, hybrid fabrication, and testing of a MOEMS deformable mirror,” J. Micro/Nanolithogr., MEMS, MOEMS 12, 013016 (2013).

J. Opt. Soc. Am.

J. Opt. Technol.

Opt. Express

Opt. Lett.

Proc. SPIE

G. Cheriaux, J.-P. Rousseau, F. Burgy, J.-C. Sinquin, J.-M. Lurçon, and C. Guillemard, “Monomorph large aperture adaptive optics for high peak-power femtosecond lasers,” Proc. SPIE 6584, 658405 (2007).

Other

C. Reinlein, “Thermo-mechanical design, realization and testing of screen-printed deformable mirrors,” Ph.D. dissertation (TU-Ilmenau, 2012) http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-25432/ilm1-2012000191.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Simplified 3D view of the TPDM and a top-down view with indication of the cross section. Lower panels show the cross-sectional view and the decomposition of mirror into rim and center: (a) temperature- and (b) laser-induced mirror deformation. (I) Decomposed bi-material into the rim and center, (II) analysis of the induced deflection for each decomposed material, and (III) deflection of the entire bi-material.

Fig. 2.
Fig. 2.

Measurement setup: a laser beam is collimated and incident on the deformable mirror (TPDM). The beam power is reduced by dielectric mirrors and a telescope adapts the beam diameter to the wavefront sensor (SH).

Fig. 3.
Fig. 3.

Time response of the thermal-piezoelectric deformable mirror upon laser loading for characteristic laser loads of 3.2 and 5 kW, respectively.

Fig. 4.
Fig. 4.

Mirror heating induced change of defocus for laser loads between 1 and 6.2 kW. The corresponding mount temperatures Tc3=0 used to compensate for the defocus are marked for 1 and 6.2 kW, respectively.

Fig. 5.
Fig. 5.

Thermal imaging picture of the TPDM.

Fig. 6.
Fig. 6.

Measured temperature distribution for different laser powers.

Fig. 7.
Fig. 7.

Actuator pattern and characteristic piezoelectrically generated AIFs for low (0.1 kW) and high (6.5 kW) power.

Metrics