Abstract

In this paper, we present a novel prism with the ability to enhance the contrast ratio and maintain the optical efficiency in a digital light processing projection system. The working theorem for the novel prism is derived as well. In this novel prism design, the ghost ray is directed away from the projection lens by a total internal reflection surface. Since the ghost ray does not even enter the projection lens, the contrast ratio enhancement is more effective than that achieved by an asymmetrical stop. Compared with the conventional method, the full-on/full-off contrast ratio is increased from 9211 to 463471 and the American National Standards Institute contrast ratio is increased from 1771 to 2951. The imaging system efficiency can maintain at 79.8% under the contrast ratio enhancement process. Ghost ray analysis for the novel prism explains the contrast enhancement well.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription