Abstract

The special properties of volume phase holographic gratings make them promising candidates for spectrometry applications where high spectral resolution, low levels of straylight, and low polarization sensitivity are required. Therefore it is of interest to assess the maturity and suitability of volume phase holographic gratings as enabling technologies for future space missions, with demanding requirements for spectrometry. One of the main areas of research is related to grating ageing under space radiation. In the present paper, two volume grating technologies are analyzed and compared under gamma irradiation. The performances of both technologies, the photo–thermo–refractive glass and the Dichromated Gelatin, are tested on samples and assessed in the Hα and near-infrared bands. The diffraction efficiency degradation under gamma irradiation is assessed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Harihaman, Basics of Holography (Cambridge University, 2002).
  2. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).
  3. S. C. Barden, J. A. Arns, and W. S. Colburn, “Volume-phase holographic gratings and their potential for astronomical applications,” Proc. SPIE 3355, 866–876 (1998).
    [CrossRef]
  4. P. Blanche, P. Gailly, S. Habraken, P. Lemaire, and C. Jamar, “Volume phase holographic gratings: large size and high diffraction efficiency,” Opt. Eng. 43, 2603–2612 (2004).
    [CrossRef]
  5. C. Kitchin, Astrophysical Techniques (IOP, 1991).
  6. D. Schroeder, Astronomical Optics (Academic, 2000).
  7. O. Efimov, L. Glebov, and V. Smirnov, “High-frequency Bragg gratings in photothermorefractive glass,” Opt. Lett. 25, 1693–1695 (2000).
    [CrossRef]
  8. L. Glebov, “Volume hologram recording in inorganic glasses,” Glass Sci. Technol. 75, 73–90 (2002).
  9. H. Kogelnik, “Coupled-wave theory of thick hologram gratings,” AT&T Tech. J. 48, 2909–2947 (1969).
  10. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
    [CrossRef]
  11. M. G. Moharam and T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73, 1105–1112 (1983).
    [CrossRef]
  12. A. Bianco, G. Pariani, A. Zanutta, and C. Bertarelli, “Practical considerations in the case of astronomical instrumentation,” Proc. SPIE 8450, 84502W(2012).
  13. H. I. Bjelkhagen, Silver-Halide Recording Materials: For Holography and Their Processing (Springer-Verlag, 1995).
  14. T. Shankoff, “Phase holograms in dichromated gelatin,” Appl. Opt. 7, 2101–2105 (1968).
    [CrossRef]
  15. J. Chang and C. D. Leonard, “Dichromated gelatin for the fabrication of holographic optical elements,” Appl. Opt. 18, 2407–2417 (1979).
    [CrossRef]
  16. S. Martin, C. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36, 5757–5768 (1997).
    [CrossRef]
  17. J. Lawrence, F. O’Neill, and J. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001).
    [CrossRef]
  18. B. L. Booth, “Photopolymer material for holography,” Appl. Opt. 14, 593–601 (1975).
    [CrossRef]
  19. H. Bouas-Laurent and H. Durr, “Organic photochromism,” Pure Appl. Chem. 73, 639–665 (2001).
    [CrossRef]
  20. J. Crano, T. Flood, D. Knowles, A. Kumar, and B. V. Gemert, “Photochromic compounds: chemistry and application in ophthalmic lenses,” Pure Appl. Chem. 68, 1395–1398 (1996).
    [CrossRef]
  21. J. Loicq, M. Georges, and L. Venancio, “Investigation on the high efficiency volume Bragg gratings performances for spectrometry in space environment: preliminary results,” Proc. SPIE 8442, 84424Z (2012).
    [CrossRef]
  22. V. Natraj, R. Spurr, H. Boesch, Y. Jiang, and Y. Yung, “Evaluation of errors from neglecting polarization in the forward modeling of O2 A band measurements from space, with relevance to CO2 column retrieval from polarization-sensitive instruments,” J. Quant. Spectrosc. Radiat. Transfer 103, 245–259 (2007).
    [CrossRef]
  23. E. Boesche, P. Stammes, and R. Bennartz, “Aerosol influence on polarization and intensity in near-infrared O2 and CO2 absorption bands observed from space,” J. Quant. Spectrosc. Radiat. Transfer 110, 223–239 (2009).
    [CrossRef]
  24. C. Plamer and E. Loewen, Diffraction Grating Handbook (Newport Corporation, 2005).
  25. E. Loewen, M. Neviere, and D. Maystre, “Efficiency optimization of rectangular groove gratings for use in the visible and IR regions,” Appl. Opt. 18, 2262–2266 (1979).
    [CrossRef]
  26. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982).
    [CrossRef]
  27. K. Yokomori, “Dielectric surface-relief gratings with high diffraction efficiency,” Appl. Opt. 23, 2303–2310 (1984).
    [CrossRef]
  28. C. Donlon, “Sentinel-3 Mission Requirements Trace-ability Document,” Technical report (ESA, 2011).
  29. “The Radiation Design Handbook,” (ESA, 1993).

2012 (2)

A. Bianco, G. Pariani, A. Zanutta, and C. Bertarelli, “Practical considerations in the case of astronomical instrumentation,” Proc. SPIE 8450, 84502W(2012).

J. Loicq, M. Georges, and L. Venancio, “Investigation on the high efficiency volume Bragg gratings performances for spectrometry in space environment: preliminary results,” Proc. SPIE 8442, 84424Z (2012).
[CrossRef]

2009 (1)

E. Boesche, P. Stammes, and R. Bennartz, “Aerosol influence on polarization and intensity in near-infrared O2 and CO2 absorption bands observed from space,” J. Quant. Spectrosc. Radiat. Transfer 110, 223–239 (2009).
[CrossRef]

2007 (1)

V. Natraj, R. Spurr, H. Boesch, Y. Jiang, and Y. Yung, “Evaluation of errors from neglecting polarization in the forward modeling of O2 A band measurements from space, with relevance to CO2 column retrieval from polarization-sensitive instruments,” J. Quant. Spectrosc. Radiat. Transfer 103, 245–259 (2007).
[CrossRef]

2004 (1)

P. Blanche, P. Gailly, S. Habraken, P. Lemaire, and C. Jamar, “Volume phase holographic gratings: large size and high diffraction efficiency,” Opt. Eng. 43, 2603–2612 (2004).
[CrossRef]

2002 (1)

L. Glebov, “Volume hologram recording in inorganic glasses,” Glass Sci. Technol. 75, 73–90 (2002).

2001 (2)

J. Lawrence, F. O’Neill, and J. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001).
[CrossRef]

H. Bouas-Laurent and H. Durr, “Organic photochromism,” Pure Appl. Chem. 73, 639–665 (2001).
[CrossRef]

2000 (1)

1998 (1)

S. C. Barden, J. A. Arns, and W. S. Colburn, “Volume-phase holographic gratings and their potential for astronomical applications,” Proc. SPIE 3355, 866–876 (1998).
[CrossRef]

1997 (1)

1996 (1)

J. Crano, T. Flood, D. Knowles, A. Kumar, and B. V. Gemert, “Photochromic compounds: chemistry and application in ophthalmic lenses,” Pure Appl. Chem. 68, 1395–1398 (1996).
[CrossRef]

1984 (1)

1983 (1)

1982 (1)

1981 (1)

1979 (2)

1975 (1)

1969 (1)

H. Kogelnik, “Coupled-wave theory of thick hologram gratings,” AT&T Tech. J. 48, 2909–2947 (1969).

1968 (1)

Arns, J. A.

S. C. Barden, J. A. Arns, and W. S. Colburn, “Volume-phase holographic gratings and their potential for astronomical applications,” Proc. SPIE 3355, 866–876 (1998).
[CrossRef]

Barden, S. C.

S. C. Barden, J. A. Arns, and W. S. Colburn, “Volume-phase holographic gratings and their potential for astronomical applications,” Proc. SPIE 3355, 866–876 (1998).
[CrossRef]

Bennartz, R.

E. Boesche, P. Stammes, and R. Bennartz, “Aerosol influence on polarization and intensity in near-infrared O2 and CO2 absorption bands observed from space,” J. Quant. Spectrosc. Radiat. Transfer 110, 223–239 (2009).
[CrossRef]

Bertarelli, C.

A. Bianco, G. Pariani, A. Zanutta, and C. Bertarelli, “Practical considerations in the case of astronomical instrumentation,” Proc. SPIE 8450, 84502W(2012).

Bianco, A.

A. Bianco, G. Pariani, A. Zanutta, and C. Bertarelli, “Practical considerations in the case of astronomical instrumentation,” Proc. SPIE 8450, 84502W(2012).

Bjelkhagen, H. I.

H. I. Bjelkhagen, Silver-Halide Recording Materials: For Holography and Their Processing (Springer-Verlag, 1995).

Blanche, P.

P. Blanche, P. Gailly, S. Habraken, P. Lemaire, and C. Jamar, “Volume phase holographic gratings: large size and high diffraction efficiency,” Opt. Eng. 43, 2603–2612 (2004).
[CrossRef]

Boesch, H.

V. Natraj, R. Spurr, H. Boesch, Y. Jiang, and Y. Yung, “Evaluation of errors from neglecting polarization in the forward modeling of O2 A band measurements from space, with relevance to CO2 column retrieval from polarization-sensitive instruments,” J. Quant. Spectrosc. Radiat. Transfer 103, 245–259 (2007).
[CrossRef]

Boesche, E.

E. Boesche, P. Stammes, and R. Bennartz, “Aerosol influence on polarization and intensity in near-infrared O2 and CO2 absorption bands observed from space,” J. Quant. Spectrosc. Radiat. Transfer 110, 223–239 (2009).
[CrossRef]

Booth, B. L.

Bouas-Laurent, H.

H. Bouas-Laurent and H. Durr, “Organic photochromism,” Pure Appl. Chem. 73, 639–665 (2001).
[CrossRef]

Burckhardt, C. B.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Chang, J.

Colburn, W. S.

S. C. Barden, J. A. Arns, and W. S. Colburn, “Volume-phase holographic gratings and their potential for astronomical applications,” Proc. SPIE 3355, 866–876 (1998).
[CrossRef]

Collier, R. J.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Crano, J.

J. Crano, T. Flood, D. Knowles, A. Kumar, and B. V. Gemert, “Photochromic compounds: chemistry and application in ophthalmic lenses,” Pure Appl. Chem. 68, 1395–1398 (1996).
[CrossRef]

Donlon, C.

C. Donlon, “Sentinel-3 Mission Requirements Trace-ability Document,” Technical report (ESA, 2011).

Durr, H.

H. Bouas-Laurent and H. Durr, “Organic photochromism,” Pure Appl. Chem. 73, 639–665 (2001).
[CrossRef]

Efimov, O.

Feely, C.

Flood, T.

J. Crano, T. Flood, D. Knowles, A. Kumar, and B. V. Gemert, “Photochromic compounds: chemistry and application in ophthalmic lenses,” Pure Appl. Chem. 68, 1395–1398 (1996).
[CrossRef]

Gailly, P.

P. Blanche, P. Gailly, S. Habraken, P. Lemaire, and C. Jamar, “Volume phase holographic gratings: large size and high diffraction efficiency,” Opt. Eng. 43, 2603–2612 (2004).
[CrossRef]

Gaylord, T. K.

Gemert, B. V.

J. Crano, T. Flood, D. Knowles, A. Kumar, and B. V. Gemert, “Photochromic compounds: chemistry and application in ophthalmic lenses,” Pure Appl. Chem. 68, 1395–1398 (1996).
[CrossRef]

Georges, M.

J. Loicq, M. Georges, and L. Venancio, “Investigation on the high efficiency volume Bragg gratings performances for spectrometry in space environment: preliminary results,” Proc. SPIE 8442, 84424Z (2012).
[CrossRef]

Glebov, L.

L. Glebov, “Volume hologram recording in inorganic glasses,” Glass Sci. Technol. 75, 73–90 (2002).

O. Efimov, L. Glebov, and V. Smirnov, “High-frequency Bragg gratings in photothermorefractive glass,” Opt. Lett. 25, 1693–1695 (2000).
[CrossRef]

Habraken, S.

P. Blanche, P. Gailly, S. Habraken, P. Lemaire, and C. Jamar, “Volume phase holographic gratings: large size and high diffraction efficiency,” Opt. Eng. 43, 2603–2612 (2004).
[CrossRef]

Harihaman, P.

P. Harihaman, Basics of Holography (Cambridge University, 2002).

Jamar, C.

P. Blanche, P. Gailly, S. Habraken, P. Lemaire, and C. Jamar, “Volume phase holographic gratings: large size and high diffraction efficiency,” Opt. Eng. 43, 2603–2612 (2004).
[CrossRef]

Jiang, Y.

V. Natraj, R. Spurr, H. Boesch, Y. Jiang, and Y. Yung, “Evaluation of errors from neglecting polarization in the forward modeling of O2 A band measurements from space, with relevance to CO2 column retrieval from polarization-sensitive instruments,” J. Quant. Spectrosc. Radiat. Transfer 103, 245–259 (2007).
[CrossRef]

Kitchin, C.

C. Kitchin, Astrophysical Techniques (IOP, 1991).

Knowles, D.

J. Crano, T. Flood, D. Knowles, A. Kumar, and B. V. Gemert, “Photochromic compounds: chemistry and application in ophthalmic lenses,” Pure Appl. Chem. 68, 1395–1398 (1996).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled-wave theory of thick hologram gratings,” AT&T Tech. J. 48, 2909–2947 (1969).

Kumar, A.

J. Crano, T. Flood, D. Knowles, A. Kumar, and B. V. Gemert, “Photochromic compounds: chemistry and application in ophthalmic lenses,” Pure Appl. Chem. 68, 1395–1398 (1996).
[CrossRef]

Lawrence, J.

J. Lawrence, F. O’Neill, and J. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001).
[CrossRef]

Lemaire, P.

P. Blanche, P. Gailly, S. Habraken, P. Lemaire, and C. Jamar, “Volume phase holographic gratings: large size and high diffraction efficiency,” Opt. Eng. 43, 2603–2612 (2004).
[CrossRef]

Leonard, C. D.

Lin, L. H.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Loewen, E.

Loicq, J.

J. Loicq, M. Georges, and L. Venancio, “Investigation on the high efficiency volume Bragg gratings performances for spectrometry in space environment: preliminary results,” Proc. SPIE 8442, 84424Z (2012).
[CrossRef]

Martin, S.

Maystre, D.

Moharam, M. G.

Natraj, V.

V. Natraj, R. Spurr, H. Boesch, Y. Jiang, and Y. Yung, “Evaluation of errors from neglecting polarization in the forward modeling of O2 A band measurements from space, with relevance to CO2 column retrieval from polarization-sensitive instruments,” J. Quant. Spectrosc. Radiat. Transfer 103, 245–259 (2007).
[CrossRef]

Neviere, M.

O’Neill, F.

J. Lawrence, F. O’Neill, and J. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001).
[CrossRef]

Pariani, G.

A. Bianco, G. Pariani, A. Zanutta, and C. Bertarelli, “Practical considerations in the case of astronomical instrumentation,” Proc. SPIE 8450, 84502W(2012).

Plamer, C.

C. Plamer and E. Loewen, Diffraction Grating Handbook (Newport Corporation, 2005).

Schroeder, D.

D. Schroeder, Astronomical Optics (Academic, 2000).

Shankoff, T.

Sheridan, J.

J. Lawrence, F. O’Neill, and J. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001).
[CrossRef]

Smirnov, V.

Spurr, R.

V. Natraj, R. Spurr, H. Boesch, Y. Jiang, and Y. Yung, “Evaluation of errors from neglecting polarization in the forward modeling of O2 A band measurements from space, with relevance to CO2 column retrieval from polarization-sensitive instruments,” J. Quant. Spectrosc. Radiat. Transfer 103, 245–259 (2007).
[CrossRef]

Stammes, P.

E. Boesche, P. Stammes, and R. Bennartz, “Aerosol influence on polarization and intensity in near-infrared O2 and CO2 absorption bands observed from space,” J. Quant. Spectrosc. Radiat. Transfer 110, 223–239 (2009).
[CrossRef]

Toal, V.

Venancio, L.

J. Loicq, M. Georges, and L. Venancio, “Investigation on the high efficiency volume Bragg gratings performances for spectrometry in space environment: preliminary results,” Proc. SPIE 8442, 84424Z (2012).
[CrossRef]

Yokomori, K.

Yung, Y.

V. Natraj, R. Spurr, H. Boesch, Y. Jiang, and Y. Yung, “Evaluation of errors from neglecting polarization in the forward modeling of O2 A band measurements from space, with relevance to CO2 column retrieval from polarization-sensitive instruments,” J. Quant. Spectrosc. Radiat. Transfer 103, 245–259 (2007).
[CrossRef]

Zanutta, A.

A. Bianco, G. Pariani, A. Zanutta, and C. Bertarelli, “Practical considerations in the case of astronomical instrumentation,” Proc. SPIE 8450, 84502W(2012).

Appl. Opt. (6)

AT&T Tech. J. (1)

H. Kogelnik, “Coupled-wave theory of thick hologram gratings,” AT&T Tech. J. 48, 2909–2947 (1969).

Glass Sci. Technol. (1)

L. Glebov, “Volume hologram recording in inorganic glasses,” Glass Sci. Technol. 75, 73–90 (2002).

J. Opt. Soc. Am. (3)

J. Quant. Spectrosc. Radiat. Transfer (2)

V. Natraj, R. Spurr, H. Boesch, Y. Jiang, and Y. Yung, “Evaluation of errors from neglecting polarization in the forward modeling of O2 A band measurements from space, with relevance to CO2 column retrieval from polarization-sensitive instruments,” J. Quant. Spectrosc. Radiat. Transfer 103, 245–259 (2007).
[CrossRef]

E. Boesche, P. Stammes, and R. Bennartz, “Aerosol influence on polarization and intensity in near-infrared O2 and CO2 absorption bands observed from space,” J. Quant. Spectrosc. Radiat. Transfer 110, 223–239 (2009).
[CrossRef]

Opt. Eng. (1)

P. Blanche, P. Gailly, S. Habraken, P. Lemaire, and C. Jamar, “Volume phase holographic gratings: large size and high diffraction efficiency,” Opt. Eng. 43, 2603–2612 (2004).
[CrossRef]

Opt. Lett. (1)

Optik (1)

J. Lawrence, F. O’Neill, and J. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001).
[CrossRef]

Proc. SPIE (3)

J. Loicq, M. Georges, and L. Venancio, “Investigation on the high efficiency volume Bragg gratings performances for spectrometry in space environment: preliminary results,” Proc. SPIE 8442, 84424Z (2012).
[CrossRef]

A. Bianco, G. Pariani, A. Zanutta, and C. Bertarelli, “Practical considerations in the case of astronomical instrumentation,” Proc. SPIE 8450, 84502W(2012).

S. C. Barden, J. A. Arns, and W. S. Colburn, “Volume-phase holographic gratings and their potential for astronomical applications,” Proc. SPIE 3355, 866–876 (1998).
[CrossRef]

Pure Appl. Chem. (2)

H. Bouas-Laurent and H. Durr, “Organic photochromism,” Pure Appl. Chem. 73, 639–665 (2001).
[CrossRef]

J. Crano, T. Flood, D. Knowles, A. Kumar, and B. V. Gemert, “Photochromic compounds: chemistry and application in ophthalmic lenses,” Pure Appl. Chem. 68, 1395–1398 (1996).
[CrossRef]

Other (8)

C. Kitchin, Astrophysical Techniques (IOP, 1991).

D. Schroeder, Astronomical Optics (Academic, 2000).

P. Harihaman, Basics of Holography (Cambridge University, 2002).

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

H. I. Bjelkhagen, Silver-Halide Recording Materials: For Holography and Their Processing (Springer-Verlag, 1995).

C. Plamer and E. Loewen, Diffraction Grating Handbook (Newport Corporation, 2005).

C. Donlon, “Sentinel-3 Mission Requirements Trace-ability Document,” Technical report (ESA, 2011).

“The Radiation Design Handbook,” (ESA, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Types of slanted phase holograms (a) in transmission mode and (b) in reflection mode. α and β are considered inside the holographic material.

Fig. 2.
Fig. 2.

Structure of a DCG–VPH transmission grating.

Fig. 3.
Fig. 3.

Spectral characterization of the DCG grating designed for the NIR band. The curves represent diffraction efficiency acquired by (a) TE incident polarization and (b) TM incident polarization. Each curve corresponds to a given angle of incidence. The design wavelength is 763 nm.

Fig. 4.
Fig. 4.

Spectral characterization of the PTR grating designed for the Hα band: As presented in Fig. 3, PTR also exhibits super blazed properties. Each curve corresponds to a given angle of incidence. The design wavelength is 656 nm.

Fig. 5.
Fig. 5.

Dependency of polarization sensitivity of DCG–NIR grating measured at a fixed incident angle on its spectral band peaked at 765 nm.

Fig. 6.
Fig. 6.

(a) Hyperspectral generic scheme related to wide-field imager for Earth observation. (b) Grating efficiencies are characterized following the diffraction direction defined by the αext angle and the geometric field angle δext. αext and δext are considered outside the holographic material.

Fig. 7.
Fig. 7.

Evolution of the diffraction efficiency with the field incidence δ. The range scanned goes from 0° to 30°. On each graph, the “super blazed” behaviors are represented. Both samples are analyzed in such configurations.

Fig. 8.
Fig. 8.

Transmittance in the zeroth order of TE–diffraction (solid curve) of the DCG grating. Dashed lines correspond to the transmittance of the substrate and cover irradiated under the same condition of γ-irradiation. From those curves, diffraction efficiency is extracted. The evolution of the diffraction efficiency is then presented in Fig. 9.

Fig. 9.
Fig. 9.

Evolution with the gamma irradiation dose of the diffraction efficiency at the wavelength design. PTR and DCG diffraction efficiency are presented for both polarizations.

Fig. 10.
Fig. 10.

Polarization sensitivity evolution at the wavelength design as a function of the gamma dose.

Tables (2)

Tables Icon

Table 1. Summary of the Characteristics of the VPH Grating Devices Tested

Tables Icon

Table 2. Typical Annual Doses Received by Low Earth Orbit and Geostationary Earth Orbit Satellites

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

InI0=ηdiffnT1T2,
ηrefn=Ini=0Ii.
2Λcos(ϕα)=λn,
S=|ηTEηTM||ηTE+ηTM|.

Metrics