Abstract

This paper proposes a low-beam system for an LED-based headlamp architecture, which is composed of an elliptical reflector, a baffle, and a faceted reflector. Using a single device with high brightness LED of merely 6.00 W, two devices total 12.00 W. With a low beam 55 W traditional halogen light source compared to 78.18% energy savings, the specified illumination requirements for the headlamp low beam can be achieved, according to the ECE regulation “Addendum 111: Regulation No. 112 Revision 2.” As we have expected, on the test screen at a distance of 25 m, the simulation results as well as the testing results for the prototype can reach the illuminance distribution requirements, including all specified regions and key points. Moreover, this faceted low beam system enjoys the features of high compactness, high energy efficiency, and feasibility of manufacturing.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Luce, “LED headlamps—the spiny path to a legal headlamp,” Proc. SPIE 5663, 112–121 (2005).
  2. A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR optics for non-rotationally symmetric illumination design,” Proc. SPIE 7103, 710304 (2008).
    [CrossRef]
  3. J. L. Alvarez, M. Hernandez, P. Benitez, and J. C. Minano, “TIR-R concentrator: a new compact high-gain SMS design,” Proc. SPIE 4446, 32–42 (2002).
  4. A. Cvetkovic, O. Dross, J. Chaves, P. Benitez, J. C. Miñano, and R. Mohedano, “Etendue-preserving mixing and projection optics for high-luminance LEDs, applied to automotive headlamps,” Opt. Express 14, 13014–13020 (2006).
    [CrossRef]
  5. A. Domhardt, U. Rohlfing, and S. Weingaertner, “New design tools for LED headlamps,” Proc. SPIE 7003, 70032C (2008).
    [CrossRef]
  6. A. M. Ge, W. Wang, and Z. Q. Du, “Design of an LED-based compound optical system for a driving beam system,” Appl. Opt. 52, 2688–2693 (2013).
    [CrossRef]
  7. F. Chen, K. Wang, and Z. Qin, “Design method of high-efficient LED headlamp lens,” Opt. Express 18, 20926–20938 (2010).
    [CrossRef]
  8. W. J. Cassarly, S. R. David, D. G. Jenkins, A. P. Riser, and T. L. Davenport, “Automated design of a uniform distribution using faceted reflectors,” Opt. Eng. 39, 1830–1839 (2000).
    [CrossRef]
  9. UNECE Addendum 111: Regulation No. 112 Revision 2, 20 September 2010, Amendment 1, 27 January 2011, “Uniform provisions concerning the approval of motor vehicle headlamps emitting an asymmetrical passing beam or a driving beam or both and equipped with filament lamps and/or light-emitting diode (LED) module.”

2013

2010

2008

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR optics for non-rotationally symmetric illumination design,” Proc. SPIE 7103, 710304 (2008).
[CrossRef]

A. Domhardt, U. Rohlfing, and S. Weingaertner, “New design tools for LED headlamps,” Proc. SPIE 7003, 70032C (2008).
[CrossRef]

2006

2005

T. Luce, “LED headlamps—the spiny path to a legal headlamp,” Proc. SPIE 5663, 112–121 (2005).

2002

J. L. Alvarez, M. Hernandez, P. Benitez, and J. C. Minano, “TIR-R concentrator: a new compact high-gain SMS design,” Proc. SPIE 4446, 32–42 (2002).

2000

W. J. Cassarly, S. R. David, D. G. Jenkins, A. P. Riser, and T. L. Davenport, “Automated design of a uniform distribution using faceted reflectors,” Opt. Eng. 39, 1830–1839 (2000).
[CrossRef]

Alvarez, J. L.

J. L. Alvarez, M. Hernandez, P. Benitez, and J. C. Minano, “TIR-R concentrator: a new compact high-gain SMS design,” Proc. SPIE 4446, 32–42 (2002).

Benitez, P.

Cassarly, W. J.

W. J. Cassarly, S. R. David, D. G. Jenkins, A. P. Riser, and T. L. Davenport, “Automated design of a uniform distribution using faceted reflectors,” Opt. Eng. 39, 1830–1839 (2000).
[CrossRef]

Chaves, J.

Chen, F.

Cvetkovic, A.

Davenport, T. L.

W. J. Cassarly, S. R. David, D. G. Jenkins, A. P. Riser, and T. L. Davenport, “Automated design of a uniform distribution using faceted reflectors,” Opt. Eng. 39, 1830–1839 (2000).
[CrossRef]

David, S. R.

W. J. Cassarly, S. R. David, D. G. Jenkins, A. P. Riser, and T. L. Davenport, “Automated design of a uniform distribution using faceted reflectors,” Opt. Eng. 39, 1830–1839 (2000).
[CrossRef]

Domhardt, A.

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR optics for non-rotationally symmetric illumination design,” Proc. SPIE 7103, 710304 (2008).
[CrossRef]

A. Domhardt, U. Rohlfing, and S. Weingaertner, “New design tools for LED headlamps,” Proc. SPIE 7003, 70032C (2008).
[CrossRef]

Dross, O.

Du, Z. Q.

Ge, A. M.

Hernandez, M.

J. L. Alvarez, M. Hernandez, P. Benitez, and J. C. Minano, “TIR-R concentrator: a new compact high-gain SMS design,” Proc. SPIE 4446, 32–42 (2002).

Jenkins, D. G.

W. J. Cassarly, S. R. David, D. G. Jenkins, A. P. Riser, and T. L. Davenport, “Automated design of a uniform distribution using faceted reflectors,” Opt. Eng. 39, 1830–1839 (2000).
[CrossRef]

Lemmer, U.

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR optics for non-rotationally symmetric illumination design,” Proc. SPIE 7103, 710304 (2008).
[CrossRef]

Luce, T.

T. Luce, “LED headlamps—the spiny path to a legal headlamp,” Proc. SPIE 5663, 112–121 (2005).

Minano, J. C.

J. L. Alvarez, M. Hernandez, P. Benitez, and J. C. Minano, “TIR-R concentrator: a new compact high-gain SMS design,” Proc. SPIE 4446, 32–42 (2002).

Miñano, J. C.

Mohedano, R.

Qin, Z.

Riser, A. P.

W. J. Cassarly, S. R. David, D. G. Jenkins, A. P. Riser, and T. L. Davenport, “Automated design of a uniform distribution using faceted reflectors,” Opt. Eng. 39, 1830–1839 (2000).
[CrossRef]

Rohlfing, U.

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR optics for non-rotationally symmetric illumination design,” Proc. SPIE 7103, 710304 (2008).
[CrossRef]

A. Domhardt, U. Rohlfing, and S. Weingaertner, “New design tools for LED headlamps,” Proc. SPIE 7003, 70032C (2008).
[CrossRef]

Wang, K.

Wang, W.

Weingaertner, S.

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR optics for non-rotationally symmetric illumination design,” Proc. SPIE 7103, 710304 (2008).
[CrossRef]

A. Domhardt, U. Rohlfing, and S. Weingaertner, “New design tools for LED headlamps,” Proc. SPIE 7003, 70032C (2008).
[CrossRef]

Appl. Opt.

Opt. Eng.

W. J. Cassarly, S. R. David, D. G. Jenkins, A. P. Riser, and T. L. Davenport, “Automated design of a uniform distribution using faceted reflectors,” Opt. Eng. 39, 1830–1839 (2000).
[CrossRef]

Opt. Express

Proc. SPIE

T. Luce, “LED headlamps—the spiny path to a legal headlamp,” Proc. SPIE 5663, 112–121 (2005).

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR optics for non-rotationally symmetric illumination design,” Proc. SPIE 7103, 710304 (2008).
[CrossRef]

J. L. Alvarez, M. Hernandez, P. Benitez, and J. C. Minano, “TIR-R concentrator: a new compact high-gain SMS design,” Proc. SPIE 4446, 32–42 (2002).

A. Domhardt, U. Rohlfing, and S. Weingaertner, “New design tools for LED headlamps,” Proc. SPIE 7003, 70032C (2008).
[CrossRef]

Other

UNECE Addendum 111: Regulation No. 112 Revision 2, 20 September 2010, Amendment 1, 27 January 2011, “Uniform provisions concerning the approval of motor vehicle headlamps emitting an asymmetrical passing beam or a driving beam or both and equipped with filament lamps and/or light-emitting diode (LED) module.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Low-beam system under U-V coordinate system.

Fig. 2.
Fig. 2.

Profile of the low-beam system.

Fig. 3.
Fig. 3.

Tailoring relationship between the faceted reflector and beam pattern.

Fig. 4.
Fig. 4.

Beam created by relevant facets.

Fig. 5.
Fig. 5.

Extended source in the system.

Fig. 6.
Fig. 6.

Simulation beam pattern.

Fig. 7.
Fig. 7.

Real prototype model consisted of two theoretical low beam systems and the tested beam pattern. (a) Real prototype model and (b) tested beam pattern.

Tables (3)

Tables Icon

Table 1. Parameters for the Ellipse Profile

Tables Icon

Table 2. Parameters for the Reference Parabolic Profile

Tables Icon

Table 3. Tested Illumination Result Compared with the Corresponding Value of ECE R112 R2

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

FcF=π/2π/205π/6I0sin2vcosududvπ/2π/20πI0sin2vcosududv=3+5π/12π=96.8%,
{I⃗=[Ix,Iy,Iz]O⃗=[Ox,Oy,Oz]=F2(F1+ρ·I⃗)v=asin(OyO⃗)u=atan(OxOz),

Metrics