Abstract

We propose a new device that is able to perform highly sensitive wavefront measurements based on the use of continuous position sensitive detectors and without resorting to any reconstruction process. We demonstrate experimentally its ability to measure small wavefront distortions through the characterization of pump-induced refractive index changes in laser material. In addition, it is shown using computer-generated holograms that this device can detect phase discontinuities as well as improve the quality of sharp phase variations measurements. Results are compared to reference Shack–Hartmann measurements, and dramatic enhancements are obtained.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Clare, M. Le Louarn, and C. Béchet, “Laser guide star wavefront sensing for ground-layer adaptive optics on extremely large telescopes,” Appl. Opt. 50, 473–483 (2011).
    [CrossRef]
  2. U. Wittrock, Adaptative Optics for Industry and Medicine, Springer Proceeding in Physics (Springer, 2003).
  3. M. Paurisse, M. Hanna, F. Druon, and P. Georges, “Wavefront control of a multicore ytterbium-doped pulse fiber amplifier by digital holography,” Opt. Lett. 35, 1428–1430 (2010).
    [CrossRef]
  4. P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123–1130 (2003).
    [CrossRef]
  5. D. Rativa, R. E. de Araujo, A. S. L. Gomes, and B. Vohnsen, “Hartmann–Shack wavefront sensing for nonlinear materials characterization,” Opt. Express 17, 22047–22053 (2009).
    [CrossRef]
  6. M. Paurisse, L. Lévèque, M. Hanna, F. Druon, and P. Georges, “Complete measurement of fiber modal content by wavefront analysis,” Opt. Express 20, 4074–4084 (2012).
    [CrossRef]
  7. D. Wanjun, H. Dongxia, Z. Wei, Z. Junpu, J. Feng, Y. Zeping, Z. Kun, J. Xuejun, D. Wu, Z. Runchang, P. Zhitao, and F. Bin, “Beam wavefront control of a thermal inertia laser for inertial confinement fusion application,” Appl. Opt. 48, 3691–3694 (2009).
    [CrossRef]
  8. S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, “Wave-front reconstruction from multidirectional phase derivatives generated by multilateral shearing interferometers,” Opt. Lett. 30, 245–247 (2005).
    [CrossRef]
  9. C. Schulze, D. Naidoo, D. Flamm, O. A. Schmidt, A. Forbes, and M. Duparré, “Wavefront reconstruction by modal decomposition,” Opt. Express 20, 19714–19725 (2012).
    [CrossRef]
  10. S. Marcos, L. Diaz-Santanna, L. Llorente, and C. Dainty, “Ocular aberrations with ray tracing and Shack–Hartmann wave-front sensors: does polarization play a role?” J. Opt. Soc. Am. A 19, 1063–1072 (2002).
    [CrossRef]
  11. S. Wang, C. Rao, H. Xian, J. Zhang, J. Wang, and Z. Liu, “Laboratory demonstrations on a pyramid wavefront sensor without modulation for closed-loop adaptive optics system,” Opt. Express 19, 8135–8150 (2011).
    [CrossRef]
  12. K. Rahbar, K. Faez, and E. Attaran-Kakhki, “Estimation of phase wave-front aberration distribution function using wavelet transform profilometry,” Appl. Opt. 51, 3380–3386 (2012).
    [CrossRef]
  13. S. K. Mishra, R. Bhatt, D. Mohan, A. K. Gupta, and A. Sharma, “Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal,” Appl. Opt. 48, 6458–6465 (2009).
    [CrossRef]
  14. B. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).
  15. D. R. Neal, J. Copland, and D. Neal, “Shack–Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148–160 (2002).
    [CrossRef]
  16. R. G. Lane and M. Tallon, “Wave-front reconstruction using a Shack–Hartmann sensor,” Appl. Opt. 31, 6902–6908 (1992).
    [CrossRef]
  17. S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, Y. Fichot, P. Georges, R. Gaume, B. Viana, G. P. Aka, and D. Vivien, “Thermal lensing measurements in diode-pumped Yb-doped GdCOB, YCOB, YSO, YAG and KGW,” Opt. Mater. 22, 129–137 (2003).
    [CrossRef]
  18. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [CrossRef]
  19. T. Godin, M. Fromager, E. Cagniot, R. Moncorgé, and K. Aït-Ameur, “Baryscan: a sensitive and user-friendly alternative to Z scan for weak nonlinearities measurements,” Opt. Lett. 36, 1401–1403 (2011).
    [CrossRef]
  20. S.-H. Baik, S.-K. Park, C.-J. Kim, and B. Cha, “A center detection algorithm for Shack–Hartmann wavefront sensor,” Opt. Laser Technol. 39, 262–267 (2007).
    [CrossRef]
  21. C. S. Vikram and H. J. Caulfield, “Interference fringe analysis based on centroid detection,” Appl. Opt. 46, 5137–5141 (2007).
    [CrossRef]
  22. T. Godin, M. Fromager, E. Cagniot, and K. Aït-Ameur, “Mesureur de front d'onde à base de capteur continu,” French patent applicationFR13 53065 (2013)
  23. H. Gilles, B. Chéron, and J. Hamel, “Dispersive effects in optically pumped (2S13)He4 atomic vapor measured using a geometrical optics technique,” Opt. Commun. 190, 179–184 (2001) http://www.sciencedirect.com/science/article/pii/S0030401801010707 .
    [CrossRef]
  24. T. Godin, M. Fromager, E. Cagniot, F. Porée, T. Catunda, R. Moncorgé, and K. Aït-Ameur, “Transverse pseudo-nonlinear effects measured in solid-state laser materials using a sensitive time-resolved technique,” Appl. Phys. B 107, 733–740 (2012).
    [CrossRef]
  25. T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92, 061106 (2008).
    [CrossRef]
  26. G. Yoon, S. Pantanelli, and L. J. Nagy, “Large-dynamic-range Shack–Hartmann wavefront sensor for highly aberrated eyes,” J. Biomed. Opt. 11, 030502 (2006).
    [CrossRef]
  27. H. Shengyang, N. Yu, X. Fengjie, and J. Zongfu, “Modal wavefront reconstruction with Zernike polynomials and eigenfunctions of Laplacian,” Opt. Commun. 288, 7–12 (2013).
    [CrossRef]
  28. W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).
  29. O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob’ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39, 910–918 (2003).
    [CrossRef]
  30. S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
    [CrossRef]
  31. G. Boudebs and K. Fedus, “Absolute measurement of the nonlinear refractive indices of reference materials,” J. Appl. Phys. 105, 103106 (2009).
    [CrossRef]
  32. D. P. Rhodes, G. P. T. Lancaster, J. Livesey, D. McGloin, J. Artl, and K. Dholakia, “Guiding a cold atomic beam along a co-propagating and oblique light guide,” Opt. Commun. 214, 247–254 (2002).
    [CrossRef]
  33. B. Dépret, P. Verkerk, and D. Hennequin, “Characterization and modeling of the hollow beam produced by a real conical lens,” Opt. Commun. 211, 31–38 (2002).
    [CrossRef]
  34. G. Popescu, Y. Park, W. Choi, R. Dasari, M. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cell. Mol. Dis. 41, 10–16 (2008).
    [CrossRef]
  35. F. V. Ignatovich and L. Novotny, “Real-time and background-free detection of nanoscale particles,” Phys. Rev. Lett. 96, 013901 (2006).
    [CrossRef]
  36. M. Brunel, H. Shen, S. Coetmellec, D. Lebrun, and K. Aït-Ameur, “Femtosecond digital in-line holography with the fractional Fourier transform: application to phase-contrast metrology,” Appl. Phys. B 106, 583–591 (2012).
    [CrossRef]

2013 (1)

H. Shengyang, N. Yu, X. Fengjie, and J. Zongfu, “Modal wavefront reconstruction with Zernike polynomials and eigenfunctions of Laplacian,” Opt. Commun. 288, 7–12 (2013).
[CrossRef]

2012 (5)

M. Brunel, H. Shen, S. Coetmellec, D. Lebrun, and K. Aït-Ameur, “Femtosecond digital in-line holography with the fractional Fourier transform: application to phase-contrast metrology,” Appl. Phys. B 106, 583–591 (2012).
[CrossRef]

T. Godin, M. Fromager, E. Cagniot, F. Porée, T. Catunda, R. Moncorgé, and K. Aït-Ameur, “Transverse pseudo-nonlinear effects measured in solid-state laser materials using a sensitive time-resolved technique,” Appl. Phys. B 107, 733–740 (2012).
[CrossRef]

M. Paurisse, L. Lévèque, M. Hanna, F. Druon, and P. Georges, “Complete measurement of fiber modal content by wavefront analysis,” Opt. Express 20, 4074–4084 (2012).
[CrossRef]

K. Rahbar, K. Faez, and E. Attaran-Kakhki, “Estimation of phase wave-front aberration distribution function using wavelet transform profilometry,” Appl. Opt. 51, 3380–3386 (2012).
[CrossRef]

C. Schulze, D. Naidoo, D. Flamm, O. A. Schmidt, A. Forbes, and M. Duparré, “Wavefront reconstruction by modal decomposition,” Opt. Express 20, 19714–19725 (2012).
[CrossRef]

2011 (3)

2010 (1)

2009 (4)

2008 (2)

G. Popescu, Y. Park, W. Choi, R. Dasari, M. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cell. Mol. Dis. 41, 10–16 (2008).
[CrossRef]

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92, 061106 (2008).
[CrossRef]

2007 (2)

S.-H. Baik, S.-K. Park, C.-J. Kim, and B. Cha, “A center detection algorithm for Shack–Hartmann wavefront sensor,” Opt. Laser Technol. 39, 262–267 (2007).
[CrossRef]

C. S. Vikram and H. J. Caulfield, “Interference fringe analysis based on centroid detection,” Appl. Opt. 46, 5137–5141 (2007).
[CrossRef]

2006 (3)

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[CrossRef]

G. Yoon, S. Pantanelli, and L. J. Nagy, “Large-dynamic-range Shack–Hartmann wavefront sensor for highly aberrated eyes,” J. Biomed. Opt. 11, 030502 (2006).
[CrossRef]

F. V. Ignatovich and L. Novotny, “Real-time and background-free detection of nanoscale particles,” Phys. Rev. Lett. 96, 013901 (2006).
[CrossRef]

2005 (1)

2003 (3)

P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123–1130 (2003).
[CrossRef]

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob’ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39, 910–918 (2003).
[CrossRef]

S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, Y. Fichot, P. Georges, R. Gaume, B. Viana, G. P. Aka, and D. Vivien, “Thermal lensing measurements in diode-pumped Yb-doped GdCOB, YCOB, YSO, YAG and KGW,” Opt. Mater. 22, 129–137 (2003).
[CrossRef]

2002 (4)

D. R. Neal, J. Copland, and D. Neal, “Shack–Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148–160 (2002).
[CrossRef]

D. P. Rhodes, G. P. T. Lancaster, J. Livesey, D. McGloin, J. Artl, and K. Dholakia, “Guiding a cold atomic beam along a co-propagating and oblique light guide,” Opt. Commun. 214, 247–254 (2002).
[CrossRef]

B. Dépret, P. Verkerk, and D. Hennequin, “Characterization and modeling of the hollow beam produced by a real conical lens,” Opt. Commun. 211, 31–38 (2002).
[CrossRef]

S. Marcos, L. Diaz-Santanna, L. Llorente, and C. Dainty, “Ocular aberrations with ray tracing and Shack–Hartmann wave-front sensors: does polarization play a role?” J. Opt. Soc. Am. A 19, 1063–1072 (2002).
[CrossRef]

2001 (2)

B. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).

H. Gilles, B. Chéron, and J. Hamel, “Dispersive effects in optically pumped (2S13)He4 atomic vapor measured using a geometrical optics technique,” Opt. Commun. 190, 179–184 (2001) http://www.sciencedirect.com/science/article/pii/S0030401801010707 .
[CrossRef]

1992 (1)

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Aït-Ameur, K.

M. Brunel, H. Shen, S. Coetmellec, D. Lebrun, and K. Aït-Ameur, “Femtosecond digital in-line holography with the fractional Fourier transform: application to phase-contrast metrology,” Appl. Phys. B 106, 583–591 (2012).
[CrossRef]

T. Godin, M. Fromager, E. Cagniot, F. Porée, T. Catunda, R. Moncorgé, and K. Aït-Ameur, “Transverse pseudo-nonlinear effects measured in solid-state laser materials using a sensitive time-resolved technique,” Appl. Phys. B 107, 733–740 (2012).
[CrossRef]

T. Godin, M. Fromager, E. Cagniot, R. Moncorgé, and K. Aït-Ameur, “Baryscan: a sensitive and user-friendly alternative to Z scan for weak nonlinearities measurements,” Opt. Lett. 36, 1401–1403 (2011).
[CrossRef]

T. Godin, M. Fromager, E. Cagniot, and K. Aït-Ameur, “Mesureur de front d'onde à base de capteur continu,” French patent applicationFR13 53065 (2013)

Aka, G. P.

S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, Y. Fichot, P. Georges, R. Gaume, B. Viana, G. P. Aka, and D. Vivien, “Thermal lensing measurements in diode-pumped Yb-doped GdCOB, YCOB, YSO, YAG and KGW,” Opt. Mater. 22, 129–137 (2003).
[CrossRef]

Antipov, O. L.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob’ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39, 910–918 (2003).
[CrossRef]

Artl, J.

D. P. Rhodes, G. P. T. Lancaster, J. Livesey, D. McGloin, J. Artl, and K. Dholakia, “Guiding a cold atomic beam along a co-propagating and oblique light guide,” Opt. Commun. 214, 247–254 (2002).
[CrossRef]

Attaran-Kakhki, E.

Badizadegan, K.

G. Popescu, Y. Park, W. Choi, R. Dasari, M. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cell. Mol. Dis. 41, 10–16 (2008).
[CrossRef]

Baik, S.-H.

S.-H. Baik, S.-K. Park, C.-J. Kim, and B. Cha, “A center detection algorithm for Shack–Hartmann wavefront sensor,” Opt. Laser Technol. 39, 262–267 (2007).
[CrossRef]

Balembois, F.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[CrossRef]

S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, Y. Fichot, P. Georges, R. Gaume, B. Viana, G. P. Aka, and D. Vivien, “Thermal lensing measurements in diode-pumped Yb-doped GdCOB, YCOB, YSO, YAG and KGW,” Opt. Mater. 22, 129–137 (2003).
[CrossRef]

Béchet, C.

Bhatt, R.

Bin, F.

Bohman, S.

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92, 061106 (2008).
[CrossRef]

Boudebs, G.

G. Boudebs and K. Fedus, “Absolute measurement of the nonlinear refractive indices of reference materials,” J. Appl. Phys. 105, 103106 (2009).
[CrossRef]

Bredikhin, D. V.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob’ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39, 910–918 (2003).
[CrossRef]

Brunel, M.

M. Brunel, H. Shen, S. Coetmellec, D. Lebrun, and K. Aït-Ameur, “Femtosecond digital in-line holography with the fractional Fourier transform: application to phase-contrast metrology,” Appl. Phys. B 106, 583–591 (2012).
[CrossRef]

Burns, D.

Cagniot, E.

T. Godin, M. Fromager, E. Cagniot, F. Porée, T. Catunda, R. Moncorgé, and K. Aït-Ameur, “Transverse pseudo-nonlinear effects measured in solid-state laser materials using a sensitive time-resolved technique,” Appl. Phys. B 107, 733–740 (2012).
[CrossRef]

T. Godin, M. Fromager, E. Cagniot, R. Moncorgé, and K. Aït-Ameur, “Baryscan: a sensitive and user-friendly alternative to Z scan for weak nonlinearities measurements,” Opt. Lett. 36, 1401–1403 (2011).
[CrossRef]

T. Godin, M. Fromager, E. Cagniot, and K. Aït-Ameur, “Mesureur de front d'onde à base de capteur continu,” French patent applicationFR13 53065 (2013)

Catunda, T.

T. Godin, M. Fromager, E. Cagniot, F. Porée, T. Catunda, R. Moncorgé, and K. Aït-Ameur, “Transverse pseudo-nonlinear effects measured in solid-state laser materials using a sensitive time-resolved technique,” Appl. Phys. B 107, 733–740 (2012).
[CrossRef]

Caulfield, H. J.

Cha, B.

S.-H. Baik, S.-K. Park, C.-J. Kim, and B. Cha, “A center detection algorithm for Shack–Hartmann wavefront sensor,” Opt. Laser Technol. 39, 262–267 (2007).
[CrossRef]

Chénais, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[CrossRef]

S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, Y. Fichot, P. Georges, R. Gaume, B. Viana, G. P. Aka, and D. Vivien, “Thermal lensing measurements in diode-pumped Yb-doped GdCOB, YCOB, YSO, YAG and KGW,” Opt. Mater. 22, 129–137 (2003).
[CrossRef]

Chéron, B.

H. Gilles, B. Chéron, and J. Hamel, “Dispersive effects in optically pumped (2S13)He4 atomic vapor measured using a geometrical optics technique,” Opt. Commun. 190, 179–184 (2001) http://www.sciencedirect.com/science/article/pii/S0030401801010707 .
[CrossRef]

Choi, W.

G. Popescu, Y. Park, W. Choi, R. Dasari, M. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cell. Mol. Dis. 41, 10–16 (2008).
[CrossRef]

Clare, R. M.

Coetmellec, S.

M. Brunel, H. Shen, S. Coetmellec, D. Lebrun, and K. Aït-Ameur, “Femtosecond digital in-line holography with the fractional Fourier transform: application to phase-contrast metrology,” Appl. Phys. B 106, 583–591 (2012).
[CrossRef]

Cohen, M.

Copland, J.

D. R. Neal, J. Copland, and D. Neal, “Shack–Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148–160 (2002).
[CrossRef]

Dainty, C.

Dasari, R.

G. Popescu, Y. Park, W. Choi, R. Dasari, M. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cell. Mol. Dis. 41, 10–16 (2008).
[CrossRef]

de Araujo, R. E.

Dépret, B.

B. Dépret, P. Verkerk, and D. Hennequin, “Characterization and modeling of the hollow beam produced by a real conical lens,” Opt. Commun. 211, 31–38 (2002).
[CrossRef]

Dholakia, K.

D. P. Rhodes, G. P. T. Lancaster, J. Livesey, D. McGloin, J. Artl, and K. Dholakia, “Guiding a cold atomic beam along a co-propagating and oblique light guide,” Opt. Commun. 214, 247–254 (2002).
[CrossRef]

Diaz-Santanna, L.

Dongxia, H.

Druon, F.

M. Paurisse, L. Lévèque, M. Hanna, F. Druon, and P. Georges, “Complete measurement of fiber modal content by wavefront analysis,” Opt. Express 20, 4074–4084 (2012).
[CrossRef]

M. Paurisse, M. Hanna, F. Druon, and P. Georges, “Wavefront control of a multicore ytterbium-doped pulse fiber amplifier by digital holography,” Opt. Lett. 35, 1428–1430 (2010).
[CrossRef]

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[CrossRef]

S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, Y. Fichot, P. Georges, R. Gaume, B. Viana, G. P. Aka, and D. Vivien, “Thermal lensing measurements in diode-pumped Yb-doped GdCOB, YCOB, YSO, YAG and KGW,” Opt. Mater. 22, 129–137 (2003).
[CrossRef]

Duparré, M.

Eremeykin, O. N.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob’ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39, 910–918 (2003).
[CrossRef]

Faez, K.

Fedus, K.

G. Boudebs and K. Fedus, “Absolute measurement of the nonlinear refractive indices of reference materials,” J. Appl. Phys. 105, 103106 (2009).
[CrossRef]

Feld, M.

G. Popescu, Y. Park, W. Choi, R. Dasari, M. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cell. Mol. Dis. 41, 10–16 (2008).
[CrossRef]

Feng, J.

Fengjie, X.

H. Shengyang, N. Yu, X. Fengjie, and J. Zongfu, “Modal wavefront reconstruction with Zernike polynomials and eigenfunctions of Laplacian,” Opt. Commun. 288, 7–12 (2013).
[CrossRef]

Fichot, Y.

S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, Y. Fichot, P. Georges, R. Gaume, B. Viana, G. P. Aka, and D. Vivien, “Thermal lensing measurements in diode-pumped Yb-doped GdCOB, YCOB, YSO, YAG and KGW,” Opt. Mater. 22, 129–137 (2003).
[CrossRef]

Flamm, D.

Forbes, A.

Forget, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[CrossRef]

Fromager, M.

T. Godin, M. Fromager, E. Cagniot, F. Porée, T. Catunda, R. Moncorgé, and K. Aït-Ameur, “Transverse pseudo-nonlinear effects measured in solid-state laser materials using a sensitive time-resolved technique,” Appl. Phys. B 107, 733–740 (2012).
[CrossRef]

T. Godin, M. Fromager, E. Cagniot, R. Moncorgé, and K. Aït-Ameur, “Baryscan: a sensitive and user-friendly alternative to Z scan for weak nonlinearities measurements,” Opt. Lett. 36, 1401–1403 (2011).
[CrossRef]

T. Godin, M. Fromager, E. Cagniot, and K. Aït-Ameur, “Mesureur de front d'onde à base de capteur continu,” French patent applicationFR13 53065 (2013)

Gaume, R.

S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, Y. Fichot, P. Georges, R. Gaume, B. Viana, G. P. Aka, and D. Vivien, “Thermal lensing measurements in diode-pumped Yb-doped GdCOB, YCOB, YSO, YAG and KGW,” Opt. Mater. 22, 129–137 (2003).
[CrossRef]

Georges, P.

M. Paurisse, L. Lévèque, M. Hanna, F. Druon, and P. Georges, “Complete measurement of fiber modal content by wavefront analysis,” Opt. Express 20, 4074–4084 (2012).
[CrossRef]

M. Paurisse, M. Hanna, F. Druon, and P. Georges, “Wavefront control of a multicore ytterbium-doped pulse fiber amplifier by digital holography,” Opt. Lett. 35, 1428–1430 (2010).
[CrossRef]

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[CrossRef]

S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, Y. Fichot, P. Georges, R. Gaume, B. Viana, G. P. Aka, and D. Vivien, “Thermal lensing measurements in diode-pumped Yb-doped GdCOB, YCOB, YSO, YAG and KGW,” Opt. Mater. 22, 129–137 (2003).
[CrossRef]

Gilles, H.

H. Gilles, B. Chéron, and J. Hamel, “Dispersive effects in optically pumped (2S13)He4 atomic vapor measured using a geometrical optics technique,” Opt. Commun. 190, 179–184 (2001) http://www.sciencedirect.com/science/article/pii/S0030401801010707 .
[CrossRef]

Girkin, J. M.

Godin, T.

T. Godin, M. Fromager, E. Cagniot, F. Porée, T. Catunda, R. Moncorgé, and K. Aït-Ameur, “Transverse pseudo-nonlinear effects measured in solid-state laser materials using a sensitive time-resolved technique,” Appl. Phys. B 107, 733–740 (2012).
[CrossRef]

T. Godin, M. Fromager, E. Cagniot, R. Moncorgé, and K. Aït-Ameur, “Baryscan: a sensitive and user-friendly alternative to Z scan for weak nonlinearities measurements,” Opt. Lett. 36, 1401–1403 (2011).
[CrossRef]

T. Godin, M. Fromager, E. Cagniot, and K. Aït-Ameur, “Mesureur de front d'onde à base de capteur continu,” French patent applicationFR13 53065 (2013)

Gomes, A. S. L.

Guérineau, N.

Gupta, A. K.

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Hamel, J.

H. Gilles, B. Chéron, and J. Hamel, “Dispersive effects in optically pumped (2S13)He4 atomic vapor measured using a geometrical optics technique,” Opt. Commun. 190, 179–184 (2001) http://www.sciencedirect.com/science/article/pii/S0030401801010707 .
[CrossRef]

Hanna, M.

Hennequin, D.

B. Dépret, P. Verkerk, and D. Hennequin, “Characterization and modeling of the hollow beam produced by a real conical lens,” Opt. Commun. 211, 31–38 (2002).
[CrossRef]

Ignatovich, F. V.

F. V. Ignatovich and L. Novotny, “Real-time and background-free detection of nanoscale particles,” Phys. Rev. Lett. 96, 013901 (2006).
[CrossRef]

Junpu, Z.

Kaku, M.

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92, 061106 (2008).
[CrossRef]

Kanai, T.

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92, 061106 (2008).
[CrossRef]

Kim, C.-J.

S.-H. Baik, S.-K. Park, C.-J. Kim, and B. Cha, “A center detection algorithm for Shack–Hartmann wavefront sensor,” Opt. Laser Technol. 39, 262–267 (2007).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).

Kun, Z.

Kuznetsov, M. S.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob’ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39, 910–918 (2003).
[CrossRef]

Lancaster, G. P. T.

D. P. Rhodes, G. P. T. Lancaster, J. Livesey, D. McGloin, J. Artl, and K. Dholakia, “Guiding a cold atomic beam along a co-propagating and oblique light guide,” Opt. Commun. 214, 247–254 (2002).
[CrossRef]

Lane, R. G.

Le Louarn, M.

Lebrun, D.

M. Brunel, H. Shen, S. Coetmellec, D. Lebrun, and K. Aït-Ameur, “Femtosecond digital in-line holography with the fractional Fourier transform: application to phase-contrast metrology,” Appl. Phys. B 106, 583–591 (2012).
[CrossRef]

Lévèque, L.

Liu, Z.

Livesey, J.

D. P. Rhodes, G. P. T. Lancaster, J. Livesey, D. McGloin, J. Artl, and K. Dholakia, “Guiding a cold atomic beam along a co-propagating and oblique light guide,” Opt. Commun. 214, 247–254 (2002).
[CrossRef]

Llorente, L.

Lucas-Leclin, G.

S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, Y. Fichot, P. Georges, R. Gaume, B. Viana, G. P. Aka, and D. Vivien, “Thermal lensing measurements in diode-pumped Yb-doped GdCOB, YCOB, YSO, YAG and KGW,” Opt. Mater. 22, 129–137 (2003).
[CrossRef]

Marcos, S.

Marsh, P. N.

McGloin, D.

D. P. Rhodes, G. P. T. Lancaster, J. Livesey, D. McGloin, J. Artl, and K. Dholakia, “Guiding a cold atomic beam along a co-propagating and oblique light guide,” Opt. Commun. 214, 247–254 (2002).
[CrossRef]

Midorikawa, K.

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92, 061106 (2008).
[CrossRef]

Mishra, S. K.

Mohan, D.

Moncorgé, R.

T. Godin, M. Fromager, E. Cagniot, F. Porée, T. Catunda, R. Moncorgé, and K. Aït-Ameur, “Transverse pseudo-nonlinear effects measured in solid-state laser materials using a sensitive time-resolved technique,” Appl. Phys. B 107, 733–740 (2012).
[CrossRef]

T. Godin, M. Fromager, E. Cagniot, R. Moncorgé, and K. Aït-Ameur, “Baryscan: a sensitive and user-friendly alternative to Z scan for weak nonlinearities measurements,” Opt. Lett. 36, 1401–1403 (2011).
[CrossRef]

Nagy, L. J.

G. Yoon, S. Pantanelli, and L. J. Nagy, “Large-dynamic-range Shack–Hartmann wavefront sensor for highly aberrated eyes,” J. Biomed. Opt. 11, 030502 (2006).
[CrossRef]

Naidoo, D.

Neal, D.

D. R. Neal, J. Copland, and D. Neal, “Shack–Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148–160 (2002).
[CrossRef]

Neal, D. R.

D. R. Neal, J. Copland, and D. Neal, “Shack–Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148–160 (2002).
[CrossRef]

Novotny, L.

F. V. Ignatovich and L. Novotny, “Real-time and background-free detection of nanoscale particles,” Phys. Rev. Lett. 96, 013901 (2006).
[CrossRef]

Pantanelli, S.

G. Yoon, S. Pantanelli, and L. J. Nagy, “Large-dynamic-range Shack–Hartmann wavefront sensor for highly aberrated eyes,” J. Biomed. Opt. 11, 030502 (2006).
[CrossRef]

Park, S.-K.

S.-H. Baik, S.-K. Park, C.-J. Kim, and B. Cha, “A center detection algorithm for Shack–Hartmann wavefront sensor,” Opt. Laser Technol. 39, 262–267 (2007).
[CrossRef]

Park, Y.

G. Popescu, Y. Park, W. Choi, R. Dasari, M. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cell. Mol. Dis. 41, 10–16 (2008).
[CrossRef]

Paurisse, M.

Platt, B.

B. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).

Popescu, G.

G. Popescu, Y. Park, W. Choi, R. Dasari, M. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cell. Mol. Dis. 41, 10–16 (2008).
[CrossRef]

Porée, F.

T. Godin, M. Fromager, E. Cagniot, F. Porée, T. Catunda, R. Moncorgé, and K. Aït-Ameur, “Transverse pseudo-nonlinear effects measured in solid-state laser materials using a sensitive time-resolved technique,” Appl. Phys. B 107, 733–740 (2012).
[CrossRef]

Primot, J.

Rahbar, K.

Rao, C.

Rativa, D.

Rhodes, D. P.

D. P. Rhodes, G. P. T. Lancaster, J. Livesey, D. McGloin, J. Artl, and K. Dholakia, “Guiding a cold atomic beam along a co-propagating and oblique light guide,” Opt. Commun. 214, 247–254 (2002).
[CrossRef]

Runchang, Z.

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Savikin, A. P.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob’ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39, 910–918 (2003).
[CrossRef]

Schmidt, O. A.

Schulze, C.

Shack, R.

B. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).

Sharma, A.

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Shen, H.

M. Brunel, H. Shen, S. Coetmellec, D. Lebrun, and K. Aït-Ameur, “Femtosecond digital in-line holography with the fractional Fourier transform: application to phase-contrast metrology,” Appl. Phys. B 106, 583–591 (2012).
[CrossRef]

Shengyang, H.

H. Shengyang, N. Yu, X. Fengjie, and J. Zongfu, “Modal wavefront reconstruction with Zernike polynomials and eigenfunctions of Laplacian,” Opt. Commun. 288, 7–12 (2013).
[CrossRef]

Suda, A.

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92, 061106 (2008).
[CrossRef]

Tallon, M.

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Velghe, S.

Verkerk, P.

B. Dépret, P. Verkerk, and D. Hennequin, “Characterization and modeling of the hollow beam produced by a real conical lens,” Opt. Commun. 211, 31–38 (2002).
[CrossRef]

Viana, B.

S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, Y. Fichot, P. Georges, R. Gaume, B. Viana, G. P. Aka, and D. Vivien, “Thermal lensing measurements in diode-pumped Yb-doped GdCOB, YCOB, YSO, YAG and KGW,” Opt. Mater. 22, 129–137 (2003).
[CrossRef]

Vikram, C. S.

Vivien, D.

S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, Y. Fichot, P. Georges, R. Gaume, B. Viana, G. P. Aka, and D. Vivien, “Thermal lensing measurements in diode-pumped Yb-doped GdCOB, YCOB, YSO, YAG and KGW,” Opt. Mater. 22, 129–137 (2003).
[CrossRef]

Vohnsen, B.

Vorob’ev, V. A.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob’ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39, 910–918 (2003).
[CrossRef]

Wang, J.

Wang, S.

Wanjun, D.

Wattellier, B.

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Wei, Z.

Wittrock, U.

U. Wittrock, Adaptative Optics for Industry and Medicine, Springer Proceeding in Physics (Springer, 2003).

Wu, D.

Xian, H.

Xuejun, J.

Yamaguchi, S.

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92, 061106 (2008).
[CrossRef]

Yoon, G.

G. Yoon, S. Pantanelli, and L. J. Nagy, “Large-dynamic-range Shack–Hartmann wavefront sensor for highly aberrated eyes,” J. Biomed. Opt. 11, 030502 (2006).
[CrossRef]

Yu, N.

H. Shengyang, N. Yu, X. Fengjie, and J. Zongfu, “Modal wavefront reconstruction with Zernike polynomials and eigenfunctions of Laplacian,” Opt. Commun. 288, 7–12 (2013).
[CrossRef]

Zeping, Y.

Zhang, J.

Zhitao, P.

Zongfu, J.

H. Shengyang, N. Yu, X. Fengjie, and J. Zongfu, “Modal wavefront reconstruction with Zernike polynomials and eigenfunctions of Laplacian,” Opt. Commun. 288, 7–12 (2013).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. B (2)

M. Brunel, H. Shen, S. Coetmellec, D. Lebrun, and K. Aït-Ameur, “Femtosecond digital in-line holography with the fractional Fourier transform: application to phase-contrast metrology,” Appl. Phys. B 106, 583–591 (2012).
[CrossRef]

T. Godin, M. Fromager, E. Cagniot, F. Porée, T. Catunda, R. Moncorgé, and K. Aït-Ameur, “Transverse pseudo-nonlinear effects measured in solid-state laser materials using a sensitive time-resolved technique,” Appl. Phys. B 107, 733–740 (2012).
[CrossRef]

Appl. Phys. Lett. (1)

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92, 061106 (2008).
[CrossRef]

Blood Cell. Mol. Dis. (1)

G. Popescu, Y. Park, W. Choi, R. Dasari, M. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cell. Mol. Dis. 41, 10–16 (2008).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob’ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39, 910–918 (2003).
[CrossRef]

J. Appl. Phys. (1)

G. Boudebs and K. Fedus, “Absolute measurement of the nonlinear refractive indices of reference materials,” J. Appl. Phys. 105, 103106 (2009).
[CrossRef]

J. Biomed. Opt. (1)

G. Yoon, S. Pantanelli, and L. J. Nagy, “Large-dynamic-range Shack–Hartmann wavefront sensor for highly aberrated eyes,” J. Biomed. Opt. 11, 030502 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Refract. Surg. (1)

B. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).

Opt. Commun. (4)

H. Shengyang, N. Yu, X. Fengjie, and J. Zongfu, “Modal wavefront reconstruction with Zernike polynomials and eigenfunctions of Laplacian,” Opt. Commun. 288, 7–12 (2013).
[CrossRef]

D. P. Rhodes, G. P. T. Lancaster, J. Livesey, D. McGloin, J. Artl, and K. Dholakia, “Guiding a cold atomic beam along a co-propagating and oblique light guide,” Opt. Commun. 214, 247–254 (2002).
[CrossRef]

B. Dépret, P. Verkerk, and D. Hennequin, “Characterization and modeling of the hollow beam produced by a real conical lens,” Opt. Commun. 211, 31–38 (2002).
[CrossRef]

H. Gilles, B. Chéron, and J. Hamel, “Dispersive effects in optically pumped (2S13)He4 atomic vapor measured using a geometrical optics technique,” Opt. Commun. 190, 179–184 (2001) http://www.sciencedirect.com/science/article/pii/S0030401801010707 .
[CrossRef]

Opt. Express (5)

Opt. Laser Technol. (1)

S.-H. Baik, S.-K. Park, C.-J. Kim, and B. Cha, “A center detection algorithm for Shack–Hartmann wavefront sensor,” Opt. Laser Technol. 39, 262–267 (2007).
[CrossRef]

Opt. Lett. (3)

Opt. Mater. (1)

S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, Y. Fichot, P. Georges, R. Gaume, B. Viana, G. P. Aka, and D. Vivien, “Thermal lensing measurements in diode-pumped Yb-doped GdCOB, YCOB, YSO, YAG and KGW,” Opt. Mater. 22, 129–137 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

F. V. Ignatovich and L. Novotny, “Real-time and background-free detection of nanoscale particles,” Phys. Rev. Lett. 96, 013901 (2006).
[CrossRef]

Proc. SPIE (1)

D. R. Neal, J. Copland, and D. Neal, “Shack–Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148–160 (2002).
[CrossRef]

Prog. Quantum Electron. (1)

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[CrossRef]

Other (3)

T. Godin, M. Fromager, E. Cagniot, and K. Aït-Ameur, “Mesureur de front d'onde à base de capteur continu,” French patent applicationFR13 53065 (2013)

U. Wittrock, Adaptative Optics for Industry and Medicine, Springer Proceeding in Physics (Springer, 2003).

W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Design of the device. α is the local slope of the wavefront. ΔB is the deviation of the Airy spot centroid from the plane wavefront case.

Fig. 2.
Fig. 2.

Experimental setup. LD, laser diode (λ=980nm); He–Ne, helium–neon laser (λ=632nm); DM, dichroic mirror; LF, bandpass line filter; and PSD, position sensitive detector.

Fig. 3.
Fig. 3.

Experimental measurements. (a) Centroid displacements with and without pumping the crystal. (b) Difference between both signals. (c) Integration of the difference signal leading to the reconstructed wavefront.

Fig. 4.
Fig. 4.

Variation of the heat load in the sample and influence on the measured wavefronts. (a) Centroid differences with and without chopping the beam. (b) Reconstructed wavefronts.

Fig. 5.
Fig. 5.

Experimental setup. Phase objects are simulated via computer-generated holograms displayed on an SLM. BSC, beam splitting cube; BS, 50/50 beam splitter; SHS, Shack–Hartmann wavefront sensor; and PSD, position sensitive detector.

Fig. 6.
Fig. 6.

Recording of an axicon phase shape with an SHS (red line) and our device (black line); the dotted line corresponds to the ideal axicon displayed on the SLM.

Fig. 7.
Fig. 7.

Evolution of the beam centroid position as the axicon peak is scanned.

Fig. 8.
Fig. 8.

Centroid position for a π/2-phase shift step.

Fig. 9.
Fig. 9.

Simulated peak heights for different phase shifts. (NB: the peaks look wide only due to the chosen range of interest, since the wavefront is flat on each side of the peaks.)

Fig. 10.
Fig. 10.

Simulated height of the step after integration of the peak for a 50 μm diameter pinhole.

Metrics