Abstract

We demonstrated broadband terahertz (THz) wave generation by satisfying the noncollinear phase-matching condition with a reflected signal beam. We constructed a dual-wavelength optical parametric oscillator with two potassium titanium oxide phosphate crystals pumped by a frequency-doubled Nd:YAG laser. The collinear pump and signal waves were irradiated into a lithium niobate crystal. The pump and the signal waves were reflected at the crystal surface. Because the pump and the signal waves have a finite beam diameter, when the reflected signal wave and unreflected pump wave were irradiated at the correct angle, the noncollinear phase-matching condition was satisfied. By changing the incident angle to the crystal, broadband THz-wave generation with a range of over 0.2–7.2 THz was achieved.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [CrossRef]
  2. T. Kiwa, J. Kondo, S. Oka, I. Kawayama, H. Yamada, M. Tonouchi, and K. Tsukada, “Chemical sensing plate with a laser-terahertz monitoring system,” Appl. Opt. 47, 3324–3327 (2008).
    [CrossRef]
  3. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
    [CrossRef]
  4. D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, “T-ray tomography,” Opt. Lett. 22, 904–906 (1997).
    [CrossRef]
  5. K. Ajito and Y. Ueno, “THz chemical imaging for biological applications,” IEEE Trans. Terahertz Sci. Technol. 1, 293–300 (2011).
    [CrossRef]
  6. K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68, 2483–2485 (1996).
    [CrossRef]
  7. J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microwave Theor. Tech. 48, 653–661 (2000).
    [CrossRef]
  8. G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, “Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972).
    [CrossRef]
  9. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18–5.27-THz source based on GaSe crystal,” Opt. Lett. 27, 1454–1456 (2002).
    [CrossRef]
  10. A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
    [CrossRef]
  11. A. Nahata, J. T. Yardley, and T. F. Heinz, “Free-space electro-optic detection of continuous-wave terahertz radiation,” Appl. Phys. Lett. 75, 2524–2526 (1999).
    [CrossRef]
  12. T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Appl. Phys. Lett. 83, 237–239 (2003).
    [CrossRef]
  13. W. Shi and Y. J. Ding, “A monochromatic and high-power terahertz source tunable in the ranges of 2.7–38.4 and 58.2–3540  μm for variety of potential applications,” Appl. Phys. Lett. 84, 1635–1637 (2004).
    [CrossRef]
  14. K. Suizu, K. Miyamoto, T. Yamashita, and H. Ito, “High-power terahertz-wave generation using DAST crystal and detection using mid-infrared powermeter,” Opt. Lett. 32, 2885–2887 (2007).
    [CrossRef]
  15. K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, and H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33, 252–254 (2008).
    [CrossRef]
  16. Y. S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77, 1244–1246 (2000).
    [CrossRef]
  17. Y. Avetisyan, Y. Sasaki, and H. Ito, “Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide,” Appl. Phys. B 73, 511–514 (2001).
    [CrossRef]
  18. Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett. 81, 3323–3325 (2002).
    [CrossRef]
  19. Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett. 30, 2927–2929 (2005).
    [CrossRef]
  20. M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Cherenkov radiation of terahertz surface plasmon polaritons from a superluminal optical spot,” Phys. Rev. B 72, 195336 (2005).
    [CrossRef]
  21. K. Suizu, T. Shibuya, T. Akiba, T. Tsutsui, C. Otani, and K. Kawase, “Čherenkov phase-matched monochromatic THz-wave generation using difference frequency generation with a lithium niobate crystal,” Opt. Express 16, 7493–7498 (2008).
    [CrossRef]
  22. K. Suizu, K. Koketsu, T. Shibuya, T. Tsutsui, T. Akiba, and K. Kawase, “Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation,” Opt. Express 17, 6676–6681 (2009).
    [CrossRef]
  23. T. Shibuya, T. Tsutsui, K. Suizu, T. Akiba, and K. Kawase, “Efficient Cherenkov-type phase-matched widely tunable terahertz-wave generation via an optimized pump beam shape,” Appl. Phys. Express 2, 032302 (2009).
    [CrossRef]
  24. K. Suizu, T. Tsutsui, T. Shibuya, T. Akiba, and K. Kawase, “Cherenkov phase matched THz-wave generation with surfing configuration for bulk lithium nobate crystal,” Opt. Express 17, 7102–7109 (2009).
    [CrossRef]
  25. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985), pp. 695–702.
  26. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
    [CrossRef]
  27. P. E. Powers, Fundamentals of Nonlinear Optics (CRC Press, 2011), p. 92.
  28. J. Hebling, G. Almasi, I. Z. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large-area THz-pulse generation,” Opt. Express 10, 1161–1165 (2002).
    [CrossRef]

2011 (1)

K. Ajito and Y. Ueno, “THz chemical imaging for biological applications,” IEEE Trans. Terahertz Sci. Technol. 1, 293–300 (2011).
[CrossRef]

2009 (3)

2008 (3)

2007 (2)

2005 (2)

Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett. 30, 2927–2929 (2005).
[CrossRef]

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Cherenkov radiation of terahertz surface plasmon polaritons from a superluminal optical spot,” Phys. Rev. B 72, 195336 (2005).
[CrossRef]

2004 (1)

W. Shi and Y. J. Ding, “A monochromatic and high-power terahertz source tunable in the ranges of 2.7–38.4 and 58.2–3540  μm for variety of potential applications,” Appl. Phys. Lett. 84, 1635–1637 (2004).
[CrossRef]

2003 (1)

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Appl. Phys. Lett. 83, 237–239 (2003).
[CrossRef]

2002 (3)

2001 (1)

Y. Avetisyan, Y. Sasaki, and H. Ito, “Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide,” Appl. Phys. B 73, 511–514 (2001).
[CrossRef]

2000 (2)

Y. S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77, 1244–1246 (2000).
[CrossRef]

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microwave Theor. Tech. 48, 653–661 (2000).
[CrossRef]

1999 (1)

A. Nahata, J. T. Yardley, and T. F. Heinz, “Free-space electro-optic detection of continuous-wave terahertz radiation,” Appl. Phys. Lett. 75, 2524–2526 (1999).
[CrossRef]

1997 (2)

1996 (2)

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68, 2483–2485 (1996).
[CrossRef]

1994 (1)

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
[CrossRef]

1972 (1)

G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, “Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972).
[CrossRef]

Ajito, K.

K. Ajito and Y. Ueno, “THz chemical imaging for biological applications,” IEEE Trans. Terahertz Sci. Technol. 1, 293–300 (2011).
[CrossRef]

Akiba, T.

Alexander, M.

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
[CrossRef]

Almasi, G.

Avetisyan, Y.

Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett. 30, 2927–2929 (2005).
[CrossRef]

Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett. 81, 3323–3325 (2002).
[CrossRef]

Y. Avetisyan, Y. Sasaki, and H. Ito, “Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide,” Appl. Phys. B 73, 511–514 (2001).
[CrossRef]

Bakunov, M. I.

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Cherenkov radiation of terahertz surface plasmon polaritons from a superluminal optical spot,” Phys. Rev. B 72, 195336 (2005).
[CrossRef]

Bliss, D.

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
[CrossRef]

Bodrov, S. B.

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Cherenkov radiation of terahertz surface plasmon polaritons from a superluminal optical spot,” Phys. Rev. B 72, 195336 (2005).
[CrossRef]

Boivin, L.

Boyd, G. D.

G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, “Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972).
[CrossRef]

Bridges, T. J.

G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, “Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972).
[CrossRef]

Buehler, E.

G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, “Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972).
[CrossRef]

DeCamp, M.

Y. S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77, 1244–1246 (2000).
[CrossRef]

Ding, Y. J.

W. Shi and Y. J. Ding, “A monochromatic and high-power terahertz source tunable in the ranges of 2.7–38.4 and 58.2–3540  μm for variety of potential applications,” Appl. Phys. Lett. 84, 1635–1637 (2004).
[CrossRef]

W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18–5.27-THz source based on GaSe crystal,” Opt. Lett. 27, 1454–1456 (2002).
[CrossRef]

Fernelius, N.

Fujiwara, M.

Galvanauskas, A.

Y. S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77, 1244–1246 (2000).
[CrossRef]

Hashimoto, H.

Hebling, J.

Heinz, T. F.

A. Nahata, J. T. Yardley, and T. F. Heinz, “Free-space electro-optic detection of continuous-wave terahertz radiation,” Appl. Phys. Lett. 75, 2524–2526 (1999).
[CrossRef]

Hunsche, S.

Ito, H.

K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, and H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33, 252–254 (2008).
[CrossRef]

K. Suizu, K. Miyamoto, T. Yamashita, and H. Ito, “High-power terahertz-wave generation using DAST crystal and detection using mid-infrared powermeter,” Opt. Lett. 32, 2885–2887 (2007).
[CrossRef]

Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett. 30, 2927–2929 (2005).
[CrossRef]

Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett. 81, 3323–3325 (2002).
[CrossRef]

Y. Avetisyan, Y. Sasaki, and H. Ito, “Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide,” Appl. Phys. B 73, 511–514 (2001).
[CrossRef]

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microwave Theor. Tech. 48, 653–661 (2000).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68, 2483–2485 (1996).
[CrossRef]

Jacobsen, R. H.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

Jin, Y.

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
[CrossRef]

Jundt, D. H.

Karino, K.

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microwave Theor. Tech. 48, 653–661 (2000).
[CrossRef]

Kawase, K.

T. Shibuya, T. Tsutsui, K. Suizu, T. Akiba, and K. Kawase, “Efficient Cherenkov-type phase-matched widely tunable terahertz-wave generation via an optimized pump beam shape,” Appl. Phys. Express 2, 032302 (2009).
[CrossRef]

K. Suizu, K. Koketsu, T. Shibuya, T. Tsutsui, T. Akiba, and K. Kawase, “Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation,” Opt. Express 17, 6676–6681 (2009).
[CrossRef]

K. Suizu, T. Tsutsui, T. Shibuya, T. Akiba, and K. Kawase, “Cherenkov phase matched THz-wave generation with surfing configuration for bulk lithium nobate crystal,” Opt. Express 17, 7102–7109 (2009).
[CrossRef]

K. Suizu, T. Shibuya, T. Akiba, T. Tsutsui, C. Otani, and K. Kawase, “Čherenkov phase-matched monochromatic THz-wave generation using difference frequency generation with a lithium niobate crystal,” Opt. Express 16, 7493–7498 (2008).
[CrossRef]

Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett. 81, 3323–3325 (2002).
[CrossRef]

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microwave Theor. Tech. 48, 653–661 (2000).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68, 2483–2485 (1996).
[CrossRef]

Kawayama, I.

Kimura, T.

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Appl. Phys. Lett. 83, 237–239 (2003).
[CrossRef]

Kiwa, T.

Koketsu, K.

Kondo, J.

Kozma, I. Z.

Kuhl, J.

Larkin, J.

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
[CrossRef]

Lee, Y. S.

Y. S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77, 1244–1246 (2000).
[CrossRef]

Ma, X. F.

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
[CrossRef]

Maslov, A. V.

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Cherenkov radiation of terahertz surface plasmon polaritons from a superluminal optical spot,” Phys. Rev. B 72, 195336 (2005).
[CrossRef]

Meade, T.

Y. S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77, 1244–1246 (2000).
[CrossRef]

Minamide, H.

Mittleman, D. M.

D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, “T-ray tomography,” Opt. Lett. 22, 904–906 (1997).
[CrossRef]

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

Miyamoto, K.

Nahata, A.

A. Nahata, J. T. Yardley, and T. F. Heinz, “Free-space electro-optic detection of continuous-wave terahertz radiation,” Appl. Phys. Lett. 75, 2524–2526 (1999).
[CrossRef]

Nishizawa, J.

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Appl. Phys. Lett. 83, 237–239 (2003).
[CrossRef]

Norris, T. B.

Y. S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77, 1244–1246 (2000).
[CrossRef]

Nuss, M. C.

D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, “T-ray tomography,” Opt. Lett. 22, 904–906 (1997).
[CrossRef]

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

Oka, S.

Otani, C.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985), pp. 695–702.

Patel, C. K. N.

G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, “Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972).
[CrossRef]

Powers, P. E.

P. E. Powers, Fundamentals of Nonlinear Optics (CRC Press, 2011), p. 92.

Rice, A.

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
[CrossRef]

Saito, K.

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Appl. Phys. Lett. 83, 237–239 (2003).
[CrossRef]

Sasaki, Y.

Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett. 30, 2927–2929 (2005).
[CrossRef]

Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett. 81, 3323–3325 (2002).
[CrossRef]

Y. Avetisyan, Y. Sasaki, and H. Ito, “Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide,” Appl. Phys. B 73, 511–514 (2001).
[CrossRef]

Sato, M.

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68, 2483–2485 (1996).
[CrossRef]

Shi, W.

W. Shi and Y. J. Ding, “A monochromatic and high-power terahertz source tunable in the ranges of 2.7–38.4 and 58.2–3540  μm for variety of potential applications,” Appl. Phys. Lett. 84, 1635–1637 (2004).
[CrossRef]

W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18–5.27-THz source based on GaSe crystal,” Opt. Lett. 27, 1454–1456 (2002).
[CrossRef]

Shibuya, T.

Shikata, J.

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microwave Theor. Tech. 48, 653–661 (2000).
[CrossRef]

Suizu, K.

Suto, K.

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Appl. Phys. Lett. 83, 237–239 (2003).
[CrossRef]

Tanabe, T.

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Appl. Phys. Lett. 83, 237–239 (2003).
[CrossRef]

Taniuchi, T.

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microwave Theor. Tech. 48, 653–661 (2000).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68, 2483–2485 (1996).
[CrossRef]

Tonouchi, M.

Tsukada, K.

Tsutsui, T.

Ueno, Y.

K. Ajito and Y. Ueno, “THz chemical imaging for biological applications,” IEEE Trans. Terahertz Sci. Technol. 1, 293–300 (2011).
[CrossRef]

Vodopyanov, K.

Yamada, H.

Yamashita, T.

Yardley, J. T.

A. Nahata, J. T. Yardley, and T. F. Heinz, “Free-space electro-optic detection of continuous-wave terahertz radiation,” Appl. Phys. Lett. 75, 2524–2526 (1999).
[CrossRef]

Yokoyama, H.

Zhang, X. C.

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

Y. Avetisyan, Y. Sasaki, and H. Ito, “Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide,” Appl. Phys. B 73, 511–514 (2001).
[CrossRef]

Appl. Phys. Express (1)

T. Shibuya, T. Tsutsui, K. Suizu, T. Akiba, and K. Kawase, “Efficient Cherenkov-type phase-matched widely tunable terahertz-wave generation via an optimized pump beam shape,” Appl. Phys. Express 2, 032302 (2009).
[CrossRef]

Appl. Phys. Lett. (8)

Y. S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77, 1244–1246 (2000).
[CrossRef]

Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett. 81, 3323–3325 (2002).
[CrossRef]

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
[CrossRef]

A. Nahata, J. T. Yardley, and T. F. Heinz, “Free-space electro-optic detection of continuous-wave terahertz radiation,” Appl. Phys. Lett. 75, 2524–2526 (1999).
[CrossRef]

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Appl. Phys. Lett. 83, 237–239 (2003).
[CrossRef]

W. Shi and Y. J. Ding, “A monochromatic and high-power terahertz source tunable in the ranges of 2.7–38.4 and 58.2–3540  μm for variety of potential applications,” Appl. Phys. Lett. 84, 1635–1637 (2004).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68, 2483–2485 (1996).
[CrossRef]

G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, “Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microwave Theor. Tech. 48, 653–661 (2000).
[CrossRef]

IEEE Trans. Terahertz Sci. Technol. (1)

K. Ajito and Y. Ueno, “THz chemical imaging for biological applications,” IEEE Trans. Terahertz Sci. Technol. 1, 293–300 (2011).
[CrossRef]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (6)

Phys. Rev. B (1)

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Cherenkov radiation of terahertz surface plasmon polaritons from a superluminal optical spot,” Phys. Rev. B 72, 195336 (2005).
[CrossRef]

Other (2)

P. E. Powers, Fundamentals of Nonlinear Optics (CRC Press, 2011), p. 92.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985), pp. 695–702.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Phase-matched angle as a function of the THz-wave frequency. The pump wavelengths of 1300, 1400, and 1440 nm are shown as a dotted line, a chain line, and a solid line, respectively. Inset shows the scheme of noncollinear phase matching.

Fig. 2.
Fig. 2.

(a) The interaction area when the pump and signal waves are irradiated into the crystal at different angles. (b) The interaction area when the pump and signal waves are irradiated into the crystal parallel with one another.

Fig. 3.
Fig. 3.

Schematic diagram of the experimental setup used for satisfying the noncollinear phase-matching condition with a reflected signal beam. The lithium niobate crystal was mounted on a rotation stage to adjust the angle of incidence of the pump wave.

Fig. 4.
Fig. 4.

THz-wave output spectra obtained for each rotation angle. The maximum output over all frequencies is shown as a heavy line. The individual plots for 0.393.15deg. show the relationship between output and frequency corresponding to rotation angle.

Fig. 5.
Fig. 5.

Rotation angle of the crystal for each frequency and the phase-matched angle as a function of the THz-wave frequency (λp=1440nm). Filled circles indicate the experimental data; the solid line denotes the theoretical values.

Fig. 6.
Fig. 6.

THz-wave output spectra obtained for each pump wave power density. The spectra for 40, 75, and 92MW/cm2 are shown as dotted, chain, and solid lines, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

θk=Cos1(np2ωp2+ns2ωs2nTHz2ωTHz22npωpnsωs),
ITHz=8μ0ωTHz2npnsnTHzcdeff2IpIssin2(Δkz2)Δk2.

Metrics