Abstract

A geometric calculation method is developed to study the pulsed photoacoustic wave forming of an arbitrarily shaped droplet. It is found that for an ellipsoid droplet, either a prolate ellipsoid or an oblate ellipsoid, strict analytical formulas for describing the wave profile developed along the rotation axis can be derived. The results show intriguing differences compared to those of a sphere droplet in terms of the multiple geometric parameters being in effect, the pulse wave profile variant, and the existing of unlimited points of infinite tensile pressure.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Diebold, M. I. Khan, and S. M. Park, “Photoacoustic ‘signatures’ of particulate matter: optical production of acoustic monopole radiation,” Science 250, 101–104 (1990).
    [CrossRef]
  2. G. J. Diebold, S. Tun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67, 3384–3387 (1991).
    [CrossRef]
  3. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (American Institute of Physics, 1993).
  4. L. V. Wang and H. I. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).
  5. C. G. A. Hoelen and F. F. M. De Mul, “A new theoretical approach to photoacoustic signal generation,” J. Acoust. Soc. Am. 106, 695–706 (1999).
    [CrossRef]
  6. G. J. Diebold and P. J. Westervelt, “The photoacoustic effect generated by a spherical droplet in a fluid,” J. Acoust. Soc. Am. 84, 2245–2251 (1988).
    [CrossRef]
  7. G. J. Diebold, A. C. Beveridge, and T. J. Hamilton, “The photoacoustic effect generated by an incompressible sphere,” J. Acoust. Soc. Am. 112, 1780–1786 (2002).
  8. M. I. Khan, T. Sun, and G. J. Diebold, “Photoacoustic waves generated by absorption of laser radiation in optically thin cylinders,” J. Acoust. Soc. Am. 94, 931–940 (1993).
    [CrossRef]
  9. C.-L. Hu, “Spherical model of an acoustical wave generated by rapid laser heating in a liquid,” J. Acoust. Soc. Am. 46, 728–736 (1969).
    [CrossRef]
  10. J. M. Sun and B. S. Gerstman, “Photoacoustic generation for a spherical absorber with impedance mismatch with the surrounding media,” Phys. Rev. E. 59, 5772–5789 (1999).
    [CrossRef]
  11. S. J. Till and P. K. Milsom, “A simplified physical model of pressure wave dynamics and acoustic wave generation induced by laser absorption in the retina,” Bullet. Math. Bio. 66, 791–808 (2004).
    [CrossRef]
  12. E. Faraggi and B. S. Gerstman, “Acoustical resonant absorption of pulsed laser radiation by a spherical absorber,” J. Appl. Phys. 102, 123505 (2007).
    [CrossRef]
  13. C. G. A. Hoelen, F. F. M. De Mul, R. Pongers, and A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648–650 (1998).
    [CrossRef]
  14. R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Select. Top. Quant. Electron. 9, 343–346 (2003).
    [CrossRef]
  15. R. I. Siphanto, R. G. M. Kolkman, A. Huisjes, M. C. Pilatou, F. F. M. de Mul, W. Steenbergen, and L. N. A. van Adrichem, “Imaging of small vessels using photoacoustics: an in vivo study,” Las. Surg. Med. 35, 354–362 (2004).
    [CrossRef]
  16. R. K. Saha, S. Karmakar, E. Hysi, M. Roy, and M. C. Kolios, “Validity of a theoretical model to examine blood oxygenation dependent optoacoustics,” J. Biomed. Opt. 17, 055002 (2012).
    [CrossRef]
  17. E. Hysi, R. K. Saha, and M. C. Kolios, “On the use of photoacoustics to detect red blood cell aggregation,” Biomed. Opt. Express 3, 2326–2338 (2012).
    [CrossRef]
  18. R. K. Saha and M. C. Kolios, “Effects of erythrocyte oxygenation on optoacoustic signals,” J. Biomed. Opt. 16, 115003 (2011).
    [CrossRef]
  19. R. K. Saha and M. C. Kolios, “A simulation study on photoacoustic signals from red blood cells,” J. Acoust. Soc. Am. 129, 2935–2943 (2011).
    [CrossRef]
  20. I. G. Calasso, W. Craig, and G. J. Diebold, “Photoacoustic point source,” Phys. Rev. Lett. 86, 3550–3553 (2001).
    [CrossRef]

2012 (2)

R. K. Saha, S. Karmakar, E. Hysi, M. Roy, and M. C. Kolios, “Validity of a theoretical model to examine blood oxygenation dependent optoacoustics,” J. Biomed. Opt. 17, 055002 (2012).
[CrossRef]

E. Hysi, R. K. Saha, and M. C. Kolios, “On the use of photoacoustics to detect red blood cell aggregation,” Biomed. Opt. Express 3, 2326–2338 (2012).
[CrossRef]

2011 (2)

R. K. Saha and M. C. Kolios, “Effects of erythrocyte oxygenation on optoacoustic signals,” J. Biomed. Opt. 16, 115003 (2011).
[CrossRef]

R. K. Saha and M. C. Kolios, “A simulation study on photoacoustic signals from red blood cells,” J. Acoust. Soc. Am. 129, 2935–2943 (2011).
[CrossRef]

2007 (1)

E. Faraggi and B. S. Gerstman, “Acoustical resonant absorption of pulsed laser radiation by a spherical absorber,” J. Appl. Phys. 102, 123505 (2007).
[CrossRef]

2004 (2)

R. I. Siphanto, R. G. M. Kolkman, A. Huisjes, M. C. Pilatou, F. F. M. de Mul, W. Steenbergen, and L. N. A. van Adrichem, “Imaging of small vessels using photoacoustics: an in vivo study,” Las. Surg. Med. 35, 354–362 (2004).
[CrossRef]

S. J. Till and P. K. Milsom, “A simplified physical model of pressure wave dynamics and acoustic wave generation induced by laser absorption in the retina,” Bullet. Math. Bio. 66, 791–808 (2004).
[CrossRef]

2003 (1)

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Select. Top. Quant. Electron. 9, 343–346 (2003).
[CrossRef]

2002 (1)

G. J. Diebold, A. C. Beveridge, and T. J. Hamilton, “The photoacoustic effect generated by an incompressible sphere,” J. Acoust. Soc. Am. 112, 1780–1786 (2002).

2001 (1)

I. G. Calasso, W. Craig, and G. J. Diebold, “Photoacoustic point source,” Phys. Rev. Lett. 86, 3550–3553 (2001).
[CrossRef]

1999 (2)

J. M. Sun and B. S. Gerstman, “Photoacoustic generation for a spherical absorber with impedance mismatch with the surrounding media,” Phys. Rev. E. 59, 5772–5789 (1999).
[CrossRef]

C. G. A. Hoelen and F. F. M. De Mul, “A new theoretical approach to photoacoustic signal generation,” J. Acoust. Soc. Am. 106, 695–706 (1999).
[CrossRef]

1998 (1)

1993 (1)

M. I. Khan, T. Sun, and G. J. Diebold, “Photoacoustic waves generated by absorption of laser radiation in optically thin cylinders,” J. Acoust. Soc. Am. 94, 931–940 (1993).
[CrossRef]

1991 (1)

G. J. Diebold, S. Tun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67, 3384–3387 (1991).
[CrossRef]

1990 (1)

G. J. Diebold, M. I. Khan, and S. M. Park, “Photoacoustic ‘signatures’ of particulate matter: optical production of acoustic monopole radiation,” Science 250, 101–104 (1990).
[CrossRef]

1988 (1)

G. J. Diebold and P. J. Westervelt, “The photoacoustic effect generated by a spherical droplet in a fluid,” J. Acoust. Soc. Am. 84, 2245–2251 (1988).
[CrossRef]

1969 (1)

C.-L. Hu, “Spherical model of an acoustical wave generated by rapid laser heating in a liquid,” J. Acoust. Soc. Am. 46, 728–736 (1969).
[CrossRef]

Beveridge, A. C.

G. J. Diebold, A. C. Beveridge, and T. J. Hamilton, “The photoacoustic effect generated by an incompressible sphere,” J. Acoust. Soc. Am. 112, 1780–1786 (2002).

Calasso, I. G.

I. G. Calasso, W. Craig, and G. J. Diebold, “Photoacoustic point source,” Phys. Rev. Lett. 86, 3550–3553 (2001).
[CrossRef]

Craig, W.

I. G. Calasso, W. Craig, and G. J. Diebold, “Photoacoustic point source,” Phys. Rev. Lett. 86, 3550–3553 (2001).
[CrossRef]

de Mul, F. F. M.

R. I. Siphanto, R. G. M. Kolkman, A. Huisjes, M. C. Pilatou, F. F. M. de Mul, W. Steenbergen, and L. N. A. van Adrichem, “Imaging of small vessels using photoacoustics: an in vivo study,” Las. Surg. Med. 35, 354–362 (2004).
[CrossRef]

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Select. Top. Quant. Electron. 9, 343–346 (2003).
[CrossRef]

C. G. A. Hoelen and F. F. M. De Mul, “A new theoretical approach to photoacoustic signal generation,” J. Acoust. Soc. Am. 106, 695–706 (1999).
[CrossRef]

C. G. A. Hoelen, F. F. M. De Mul, R. Pongers, and A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648–650 (1998).
[CrossRef]

Dekker, A.

Diebold, G. J.

G. J. Diebold, A. C. Beveridge, and T. J. Hamilton, “The photoacoustic effect generated by an incompressible sphere,” J. Acoust. Soc. Am. 112, 1780–1786 (2002).

I. G. Calasso, W. Craig, and G. J. Diebold, “Photoacoustic point source,” Phys. Rev. Lett. 86, 3550–3553 (2001).
[CrossRef]

M. I. Khan, T. Sun, and G. J. Diebold, “Photoacoustic waves generated by absorption of laser radiation in optically thin cylinders,” J. Acoust. Soc. Am. 94, 931–940 (1993).
[CrossRef]

G. J. Diebold, S. Tun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67, 3384–3387 (1991).
[CrossRef]

G. J. Diebold, M. I. Khan, and S. M. Park, “Photoacoustic ‘signatures’ of particulate matter: optical production of acoustic monopole radiation,” Science 250, 101–104 (1990).
[CrossRef]

G. J. Diebold and P. J. Westervelt, “The photoacoustic effect generated by a spherical droplet in a fluid,” J. Acoust. Soc. Am. 84, 2245–2251 (1988).
[CrossRef]

Faraggi, E.

E. Faraggi and B. S. Gerstman, “Acoustical resonant absorption of pulsed laser radiation by a spherical absorber,” J. Appl. Phys. 102, 123505 (2007).
[CrossRef]

Gerstman, B. S.

E. Faraggi and B. S. Gerstman, “Acoustical resonant absorption of pulsed laser radiation by a spherical absorber,” J. Appl. Phys. 102, 123505 (2007).
[CrossRef]

J. M. Sun and B. S. Gerstman, “Photoacoustic generation for a spherical absorber with impedance mismatch with the surrounding media,” Phys. Rev. E. 59, 5772–5789 (1999).
[CrossRef]

Gusev, V. E.

V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (American Institute of Physics, 1993).

Hamilton, T. J.

G. J. Diebold, A. C. Beveridge, and T. J. Hamilton, “The photoacoustic effect generated by an incompressible sphere,” J. Acoust. Soc. Am. 112, 1780–1786 (2002).

Hoelen, C. G. A.

C. G. A. Hoelen and F. F. M. De Mul, “A new theoretical approach to photoacoustic signal generation,” J. Acoust. Soc. Am. 106, 695–706 (1999).
[CrossRef]

C. G. A. Hoelen, F. F. M. De Mul, R. Pongers, and A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648–650 (1998).
[CrossRef]

Hondebrink, E.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Select. Top. Quant. Electron. 9, 343–346 (2003).
[CrossRef]

Hu, C.-L.

C.-L. Hu, “Spherical model of an acoustical wave generated by rapid laser heating in a liquid,” J. Acoust. Soc. Am. 46, 728–736 (1969).
[CrossRef]

Huisjes, A.

R. I. Siphanto, R. G. M. Kolkman, A. Huisjes, M. C. Pilatou, F. F. M. de Mul, W. Steenbergen, and L. N. A. van Adrichem, “Imaging of small vessels using photoacoustics: an in vivo study,” Las. Surg. Med. 35, 354–362 (2004).
[CrossRef]

Hysi, E.

R. K. Saha, S. Karmakar, E. Hysi, M. Roy, and M. C. Kolios, “Validity of a theoretical model to examine blood oxygenation dependent optoacoustics,” J. Biomed. Opt. 17, 055002 (2012).
[CrossRef]

E. Hysi, R. K. Saha, and M. C. Kolios, “On the use of photoacoustics to detect red blood cell aggregation,” Biomed. Opt. Express 3, 2326–2338 (2012).
[CrossRef]

Karabutov, A. A.

V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (American Institute of Physics, 1993).

Karmakar, S.

R. K. Saha, S. Karmakar, E. Hysi, M. Roy, and M. C. Kolios, “Validity of a theoretical model to examine blood oxygenation dependent optoacoustics,” J. Biomed. Opt. 17, 055002 (2012).
[CrossRef]

Khan, M. I.

M. I. Khan, T. Sun, and G. J. Diebold, “Photoacoustic waves generated by absorption of laser radiation in optically thin cylinders,” J. Acoust. Soc. Am. 94, 931–940 (1993).
[CrossRef]

G. J. Diebold, S. Tun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67, 3384–3387 (1991).
[CrossRef]

G. J. Diebold, M. I. Khan, and S. M. Park, “Photoacoustic ‘signatures’ of particulate matter: optical production of acoustic monopole radiation,” Science 250, 101–104 (1990).
[CrossRef]

Kolios, M. C.

R. K. Saha, S. Karmakar, E. Hysi, M. Roy, and M. C. Kolios, “Validity of a theoretical model to examine blood oxygenation dependent optoacoustics,” J. Biomed. Opt. 17, 055002 (2012).
[CrossRef]

E. Hysi, R. K. Saha, and M. C. Kolios, “On the use of photoacoustics to detect red blood cell aggregation,” Biomed. Opt. Express 3, 2326–2338 (2012).
[CrossRef]

R. K. Saha and M. C. Kolios, “Effects of erythrocyte oxygenation on optoacoustic signals,” J. Biomed. Opt. 16, 115003 (2011).
[CrossRef]

R. K. Saha and M. C. Kolios, “A simulation study on photoacoustic signals from red blood cells,” J. Acoust. Soc. Am. 129, 2935–2943 (2011).
[CrossRef]

Kolkman, R. G. M.

R. I. Siphanto, R. G. M. Kolkman, A. Huisjes, M. C. Pilatou, F. F. M. de Mul, W. Steenbergen, and L. N. A. van Adrichem, “Imaging of small vessels using photoacoustics: an in vivo study,” Las. Surg. Med. 35, 354–362 (2004).
[CrossRef]

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Select. Top. Quant. Electron. 9, 343–346 (2003).
[CrossRef]

Milsom, P. K.

S. J. Till and P. K. Milsom, “A simplified physical model of pressure wave dynamics and acoustic wave generation induced by laser absorption in the retina,” Bullet. Math. Bio. 66, 791–808 (2004).
[CrossRef]

Park, S. M.

G. J. Diebold, M. I. Khan, and S. M. Park, “Photoacoustic ‘signatures’ of particulate matter: optical production of acoustic monopole radiation,” Science 250, 101–104 (1990).
[CrossRef]

Pilatou, M. C.

R. I. Siphanto, R. G. M. Kolkman, A. Huisjes, M. C. Pilatou, F. F. M. de Mul, W. Steenbergen, and L. N. A. van Adrichem, “Imaging of small vessels using photoacoustics: an in vivo study,” Las. Surg. Med. 35, 354–362 (2004).
[CrossRef]

Pongers, R.

Roy, M.

R. K. Saha, S. Karmakar, E. Hysi, M. Roy, and M. C. Kolios, “Validity of a theoretical model to examine blood oxygenation dependent optoacoustics,” J. Biomed. Opt. 17, 055002 (2012).
[CrossRef]

Saha, R. K.

R. K. Saha, S. Karmakar, E. Hysi, M. Roy, and M. C. Kolios, “Validity of a theoretical model to examine blood oxygenation dependent optoacoustics,” J. Biomed. Opt. 17, 055002 (2012).
[CrossRef]

E. Hysi, R. K. Saha, and M. C. Kolios, “On the use of photoacoustics to detect red blood cell aggregation,” Biomed. Opt. Express 3, 2326–2338 (2012).
[CrossRef]

R. K. Saha and M. C. Kolios, “A simulation study on photoacoustic signals from red blood cells,” J. Acoust. Soc. Am. 129, 2935–2943 (2011).
[CrossRef]

R. K. Saha and M. C. Kolios, “Effects of erythrocyte oxygenation on optoacoustic signals,” J. Biomed. Opt. 16, 115003 (2011).
[CrossRef]

Siphanto, R. I.

R. I. Siphanto, R. G. M. Kolkman, A. Huisjes, M. C. Pilatou, F. F. M. de Mul, W. Steenbergen, and L. N. A. van Adrichem, “Imaging of small vessels using photoacoustics: an in vivo study,” Las. Surg. Med. 35, 354–362 (2004).
[CrossRef]

Steenbergen, W.

R. I. Siphanto, R. G. M. Kolkman, A. Huisjes, M. C. Pilatou, F. F. M. de Mul, W. Steenbergen, and L. N. A. van Adrichem, “Imaging of small vessels using photoacoustics: an in vivo study,” Las. Surg. Med. 35, 354–362 (2004).
[CrossRef]

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Select. Top. Quant. Electron. 9, 343–346 (2003).
[CrossRef]

Sun, J. M.

J. M. Sun and B. S. Gerstman, “Photoacoustic generation for a spherical absorber with impedance mismatch with the surrounding media,” Phys. Rev. E. 59, 5772–5789 (1999).
[CrossRef]

Sun, T.

M. I. Khan, T. Sun, and G. J. Diebold, “Photoacoustic waves generated by absorption of laser radiation in optically thin cylinders,” J. Acoust. Soc. Am. 94, 931–940 (1993).
[CrossRef]

Till, S. J.

S. J. Till and P. K. Milsom, “A simplified physical model of pressure wave dynamics and acoustic wave generation induced by laser absorption in the retina,” Bullet. Math. Bio. 66, 791–808 (2004).
[CrossRef]

Tun, S.

G. J. Diebold, S. Tun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67, 3384–3387 (1991).
[CrossRef]

van Adrichem, L. N. A.

R. I. Siphanto, R. G. M. Kolkman, A. Huisjes, M. C. Pilatou, F. F. M. de Mul, W. Steenbergen, and L. N. A. van Adrichem, “Imaging of small vessels using photoacoustics: an in vivo study,” Las. Surg. Med. 35, 354–362 (2004).
[CrossRef]

Wang, L. V.

L. V. Wang and H. I. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

Westervelt, P. J.

G. J. Diebold and P. J. Westervelt, “The photoacoustic effect generated by a spherical droplet in a fluid,” J. Acoust. Soc. Am. 84, 2245–2251 (1988).
[CrossRef]

Wu, H. I.

L. V. Wang and H. I. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

Biomed. Opt. Express (1)

Bullet. Math. Bio. (1)

S. J. Till and P. K. Milsom, “A simplified physical model of pressure wave dynamics and acoustic wave generation induced by laser absorption in the retina,” Bullet. Math. Bio. 66, 791–808 (2004).
[CrossRef]

IEEE J. Select. Top. Quant. Electron. (1)

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Select. Top. Quant. Electron. 9, 343–346 (2003).
[CrossRef]

J. Acoust. Soc. Am. (6)

R. K. Saha and M. C. Kolios, “A simulation study on photoacoustic signals from red blood cells,” J. Acoust. Soc. Am. 129, 2935–2943 (2011).
[CrossRef]

C. G. A. Hoelen and F. F. M. De Mul, “A new theoretical approach to photoacoustic signal generation,” J. Acoust. Soc. Am. 106, 695–706 (1999).
[CrossRef]

G. J. Diebold and P. J. Westervelt, “The photoacoustic effect generated by a spherical droplet in a fluid,” J. Acoust. Soc. Am. 84, 2245–2251 (1988).
[CrossRef]

G. J. Diebold, A. C. Beveridge, and T. J. Hamilton, “The photoacoustic effect generated by an incompressible sphere,” J. Acoust. Soc. Am. 112, 1780–1786 (2002).

M. I. Khan, T. Sun, and G. J. Diebold, “Photoacoustic waves generated by absorption of laser radiation in optically thin cylinders,” J. Acoust. Soc. Am. 94, 931–940 (1993).
[CrossRef]

C.-L. Hu, “Spherical model of an acoustical wave generated by rapid laser heating in a liquid,” J. Acoust. Soc. Am. 46, 728–736 (1969).
[CrossRef]

J. Appl. Phys. (1)

E. Faraggi and B. S. Gerstman, “Acoustical resonant absorption of pulsed laser radiation by a spherical absorber,” J. Appl. Phys. 102, 123505 (2007).
[CrossRef]

J. Biomed. Opt. (2)

R. K. Saha and M. C. Kolios, “Effects of erythrocyte oxygenation on optoacoustic signals,” J. Biomed. Opt. 16, 115003 (2011).
[CrossRef]

R. K. Saha, S. Karmakar, E. Hysi, M. Roy, and M. C. Kolios, “Validity of a theoretical model to examine blood oxygenation dependent optoacoustics,” J. Biomed. Opt. 17, 055002 (2012).
[CrossRef]

Las. Surg. Med. (1)

R. I. Siphanto, R. G. M. Kolkman, A. Huisjes, M. C. Pilatou, F. F. M. de Mul, W. Steenbergen, and L. N. A. van Adrichem, “Imaging of small vessels using photoacoustics: an in vivo study,” Las. Surg. Med. 35, 354–362 (2004).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. E. (1)

J. M. Sun and B. S. Gerstman, “Photoacoustic generation for a spherical absorber with impedance mismatch with the surrounding media,” Phys. Rev. E. 59, 5772–5789 (1999).
[CrossRef]

Phys. Rev. Lett. (2)

G. J. Diebold, S. Tun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67, 3384–3387 (1991).
[CrossRef]

I. G. Calasso, W. Craig, and G. J. Diebold, “Photoacoustic point source,” Phys. Rev. Lett. 86, 3550–3553 (2001).
[CrossRef]

Science (1)

G. J. Diebold, M. I. Khan, and S. M. Park, “Photoacoustic ‘signatures’ of particulate matter: optical production of acoustic monopole radiation,” Science 250, 101–104 (1990).
[CrossRef]

Other (2)

V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (American Institute of Physics, 1993).

L. V. Wang and H. I. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

Geometric calculation model for the photoacoustic wave generation of an arbitrarily shaped particle.

Fig. 2.
Fig. 2.

Schematic diagram of pulsed photoacoustic wave generated by a spherical droplet is shown for (a) r>R and (b) 0r<R. (c) The radial pressure distribution is shown for various of time t.

Fig. 3.
Fig. 3.

Schematic diagram of pulsed photoacoustic wave generated by a prolate ellipsoidal droplet is shown when the observation point satisfies, respectively, (a) r>a; (b) c2/ara; (c) 0r<c2/a.

Fig. 4.
Fig. 4.

Propagation of a pressure pulse after instantaneous and homogeneous heating of a prolate ellipsoid droplet with e=0.6. The pressure distribution on the rotation axis is shown for the different time t, after the heating.

Fig. 5.
Fig. 5.

Normalized σp(0.2088a,vst)/vst of a prolate ellipsoid droplet with e=0.6.

Fig. 6.
Fig. 6.

Comparison of wave profiles of the pulsed photoacoustic waves generated by prolate ellipsoid droplets with different eccentricity is shown for t=2.5a/vs.

Fig. 7.
Fig. 7.

Schematic diagram of pulsed photoacoustic wave generated by an oblate ellipsoidal droplet is shown for e2/2 when the observation point satisfies, respectively, (a) r>b; (b) c2/b<r<b; (c) 0rc2/b.

Fig. 8.
Fig. 8.

Schematic diagram of pulsed photoacoustic wave generated by an oblate ellipsoidal droplet is shown for 2/2<e when the observation point satisfies, respectively, (a) c2/br; (b) b<r<c2/b; (c) 0<r<b.

Fig. 9.
Fig. 9.

Propagation of a pressure pulse after instantaneous and homogeneous heating of an oblate ellipsoid droplet with e=0.6. The pressure distribution on the rotation axis is shown for the different time, t, after the heating.

Fig. 10.
Fig. 10.

Propagation of a pressure pulse after instantaneous and homogeneous heating of an oblate ellipsoid droplet with e=0.85. The pressure distribution on the rotation axis is shown for the different time, t, after the heating.

Fig. 11.
Fig. 11.

Normalized σo(0.3783b,vst)/vst of an oblate ellipsoid droplet with e=0.6.

Fig. 12.
Fig. 12.

Comparison of the bipolar photoacoustic pulse wave of pulsed photoacoustic wave generated by an oblate ellipsoid droplet is shown for t=2.5b/vs.

Fig. 13.
Fig. 13.

Comparison of the waveform of pulsed photoacoustic wave is shown for t=2.5d/vs.

Fig. 14.
Fig. 14.

Comparison of the wave profile of pulsed photoacoustic wave generated by an oblate ellipsoid droplet is shown for t=2.5b/vs.

Fig. 15.
Fig. 15.

Plots representing some terms appeared in Eq. (A4): (a) for U(r+vstR)U(Rr); (b) for U(vst+Rr)U(rR); (c) for the sum of the two terms in (a) and (b). (Gray regions correspond to nonzero regions.)

Fig. 16.
Fig. 16.

Plots representing some terms appeared in Eq. (B6): (a) for U(bc2r2/cvst) and U(vstbc2r2/c)U(arvst); (b) for U(c2/ar) and U(ar)U(rc2/a). (Gray regions correspond to nonzero regions.)

Fig. 17.
Fig. 17.

Plots representing some terms appeared in Eqs. (C9) and (C10), (a) for U(c2/br) and U(rc2/b)U(br), are identified by the gray region; (b) U(br), U(c2/br)U(rb), and U(rc2/b) are identified by the gray region. (Gray regions correspond to nonzero regions.)

Equations (52)

Equations on this page are rendered with MathJax. Learn more.

H(r⃗,t)=Hs(r⃗)×δ(t),
(21vs22t2)p(r⃗,t)=Γvs2δH(r⃗,t)t,
Γ=βκρCV,
p0(r⃗)=ΓHs(r⃗).
p(r⃗,t)=14πvs2t[1vstdr⃗p0(r⃗)δ(t|r⃗r⃗|vs)].
dr⃗vsp0(r⃗)δ(t|r⃗r⃗|vs)=p0×σ(r⃗,vst),
p(r⃗,t)=p04π(vst)[1vstσ(r⃗,vst)].
σs(r,vst)=2π(vst)2(1cosθ)=2π(vst)2[1(vst)2+r2R22(vst)r].
p(r,t)|rR={0,vst<rRp02(1vstr),|vstr|R0,vst>r+R,
p(r,t)|r<R={p0,vst<Rrp02(1vstr),|vstR|r0,vst>R+r.
p(r,t)=p0U(Rvstr)+p02(1vstr)U(r|Rvst|)U(R+vstr).
σp(r,vst)=2π(vst)2(1cosθ)=2π(vst)2[1rvst+rr2e2[r2+b2(vst)2](vst)e2],
p(r,t)|ra={0,vst<rap02{1vstr2e2[r2+b2(vst)2]}|vstr|a0,vst>r+a.
p(r,t)|c2ara={p0,vst<arp02{1vstr2e2[r2+b2(vst)2]},|vsta|r0,vst>r+a,
p(r,t)|0rc2a={p0,vst<bcc2r2p0{1vstr2e2[r2+b2(vst)2]},bcc2r2vstarp02{1vstr2e2[r2+b2(vst)2]},ar<vst<r+a0,vsta+r.
σp(r,vst)=2π(vst)2[(1cosθ1)+(1cosθ2)]=4π(vst)2[1r2e2[r2+b2(vst)2](vst)e2].
p(r,t)=p0U(arvst)+p02[1vstr2e2[r2+b2(vst)2]]U(r|avst|)U(ar+vst)p0vstr2e2[r2+b2(vst)2]U(arvst)U(vstbcc2r2)U(c2ar).
vst=bcc2r2.
r0=(vst)2+c2,
σo(r,vst)=2π(vst)2(1cosθ)=2π(vst)2{1re2b2+[r2e2(vst)2](1e2)(vst)e2},
p(r,t)|r>b={0,vst<rbp02{1(vst)(1e2)e2b2+[r2e2(vst)2](1e2)},|vstr|b0,vst>r+b.
p(r,t)|c2/b<rb={p0,vst<brp02{1(vst)(1e2)e2b2+[r2e2(vst)2](1e2)},|vstb|r0,vst>r+b,
p(r,t)|0rc2b={p0,vst<brp02{1(vst)(1e2)e2b2+[r2e2(vst)2](1e2)},|vstb|rp0{(vst)(1e2)e2b2+[r2e2(vst)2](1e2)},b+r<vstr2e2+a20,vst>r2e2+a2.
σo(r,vst)=2π(vst)2[(1cosθ2)(1cosθ1)]=4πvst{e2b2+[r2e2(vst)2](1e2)e2}.
p(r,t)|rc2b={0,vst<rbp02{1(vst)(1e2)e2b2+[r2e2(vst)2](1e2)}|vstr|b0,vst>r+b,
p(r,t)|rc2b={0,vst<rbp02{1(vst)(1e2)e2b2+[r2e2(vst)2](1e2)},|vstr|bp0{(vst)(1e2)e2b2+[r2e2(vst)2](1e2)},b+r<vstr2e2+a20,vst>r2e2+a2,
p(r,t)|0<r<b={p0,vst<brp02{1(vst)(1e2)e2b2+[r2e2(vst)2](1e2)},|vstb|rp0{(vst)(1e2)e2b2+[r2e2(vst)2](1e2)},b+r<vstr2e2+a20,vst>r2e2+a2.
p(r,t)=p0U(brvst)+p02[1(vst)(1e2)e2b2+[r2e2(vst)2](1e2)]×U(r|bvst|)U(br+vst)p0(vst)(1e2)e2b2+[r2e2(vst)2](1e2)U(vstrb)U(r2e2+a2vst)U(c2br).
vst=r2e2+a2.
r0=(vst)2c2,
p1(r,t)=[p02(1vstr)U(vst+Rr)U(r+Rvst)]U(rR),
p2(r,t)=[p0U(Rrvst)+p02(1vstr)U(vstR+r)U(r+Rvst)]U(Rr).
p(r,t)=p1(r,t)+p2(r,t),
p(r,t)=p0U(Rrvst)U(Rr)+p02(1vstr)U(r+Rvst)[U(vstR+r)U(Rr)+U(vst+Rr)U(rR)].
p(r,t)=p0U(Rvstr)+p02(1vstr)U(r|Rvst|)U(R+vstr).
J1=vstr2e2[r2+b2(vst)2].
p1(r,t)=p02(1J1)U(vst+ar)U(r+avst)U(ra),
p2(r,t)=[p0U(arvst)+p02(1J1)U(vsta+r)U(r+avst)]U(ar)U(rc2/a),
p3(r,t)=[p0U(bcc2r2vst)+p0(1J1)U(vstbcc2r2)U(arvst)+p02(1J1)U(vsta+r)U(r+avst)]U(c2/ar).
p(r,t)=p1(r,t)+p2(r,t)+p3(r,t),
p(r,t)=p0[U(arvst)U(ar)U(rc2/a)+U(bcc2r2vst)U(c2/ar)U(vstbcc2r2)U(arvst)U(c2/ar)]+p02(1J1)U(r+avst)×[U(vst+ar)U(ra)+U(vsta+r)U(ar)U(rc2/a)+U(vsta+r)U(c2/ar)]p0J1.
p(r,t)=p0U(arvst)+p02(1J1)U(r|avst|)U(ar+vst)p0J1U(vstbcc2r2)U(arvst)U(c2/ar).
J2=(vst)(1e2)e2b2+[r2e2(vst)2](1e2).
p1e22(r,t)=p02{1J2}U(vstr+b)U(r+bvst)U(rb),
p2e22(r,t)=[p0U(brvst)+p02{1J2}U(vstb+r)U(r+bvst)]U(br)U(rc2b),
p3e22(r,t)=[p0U(brvst)+p02{1J2}U(vstb+r)U(r+bvst)p0J2U(vstbr)U(r2e2+a2vst)]U(c2/br),
p122<e(r,t)=p02{1J2}U(vstr+b)U(r+bvst)U(rc2/b),
p222<e(r,t)=p02{1J2}U(vstr+b)U(r+bvst)U(rb)U(c2br)p0J2U(vstbr)U(r2e2+a2vst)U(rb)U(c2br),
p322<e(r,t)=[p0U(brvst)+p02{1J2}U(vstb+r)U(r+bvst)p0J2U(vstbr)U(r2e2+a2vst)]U(br),
pe22(r,t)=p0U(brvst)[U(br)U(rc2b)+U(c2br)]+p02{1J2}U(r+bvst)×[U(vstr+b)U(rb)+U(vstb+r)U(br)U(c2br)+U(vstb+r)U(c2br)]p0J2U(vstbr)U(r2e2+a2vst)U(c2br).
p22<e(r,t)=p0U(brvst)U(br)+p02{1J2}U(r+bvst)×[U(vstr+b)U(rc2b)+U(vstr+b)U(rb)U(c2br)+U(vstb+r)U(br)]p0J2U(vstbr)U(r2e2+a2vst)[U(rb)U(c2br)+U(br)].
p(r,t)=p0U(brvst)+p02{1J2}U(r|bvst|)U(br+vst)p0J2U(vstbr)U(r2e2+a2vst)U(c2br).

Metrics