Abstract

An optical diode that uses nonlinear ring resonators in 2D photonic crystal is numerically simulated by using the finite-difference time-domain (FDTD) method. Nonlinear polystyrene is used as the Kerr medium forming ring resonators. The operating wavelength of the optical diode is considered to be the coupling wavelength at which light couples efficiently from waveguide to ring resonator, which is also equal to the average of the resonant wavelengths of the two resonators considered in the proposed structure. For both forward and backward propagation, the characteristics of the proposed optical diode are similar to those of an electronic diode. FDTD simulation is done using the MEEP package, which exhibits the desired results.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D.-W. Wang, H.-T. Zhou, M.-J. Guo, J.-X. Zhang, J. Evers, and S.-Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett. 110, 093901 (2013).
    [CrossRef]
  2. C. Lu, X. Hu, Y. Zhang, Z. Li, X. Xu, H. Yang, and Q. Gong, “Ultralow power all-optical diode in photonic crystal hetero structures with broken spatial inversion symmetry,” Appl. Phys. Lett. 99, 051107 (2011).
    [CrossRef]
  3. M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear optical diode,” Appl. Phys. Lett. 66, 2324–2326 (1995).
    [CrossRef]
  4. W. Wang, J. Zou, and W. Xiao, “All optical diode effect of a nonlinear photonic crystal with a defect,” Optoelectron. Lett. 2, 237–239 (2006).
    [CrossRef]
  5. Y.-F. Gao, Y.-T. Fang, and M. Zhou, “Achieving all-optical diode through non-symmetrical nonlinear cavity and the effect of photon tunneling,” PIERS Online 7, 651–655 (2011).
    [CrossRef]
  6. S. F. Mingaleev and Y. S. Kivshar, “Nonlinear transmission and light localization in photonic-crystal waveguides,” J. Opt. Soc. Am. B 19, 2241–2249 (2002).
    [CrossRef]
  7. H. Zhou, K.-F. Zhou, W. Hu, Q. Guo, S. Lan, X.-S. Lin, and A. V. Gopal, “All-optical diodes based on photonic crystal molecules consisting of nonlinear defect pairs,” J. Appl. Phys. 99, 123111 (2006).
    [CrossRef]
  8. L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode” Science 335, 447–450 (2012).
    [CrossRef]
  9. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Jonnopoulos, and S. G. Johnson, “MEEP: a flexible free software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [CrossRef]
  10. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency domain methods for Maxwell’s equations in a plane wave basis,” Opt. Express 8, 173–190 (2001).
    [CrossRef]
  11. Y. Liu, F. Qin, Z.-Y. Wei, Q.-B. Meng, D.-Z. Zang, and Z.-Y. Li, “10  fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95, 131116 (2009).
    [CrossRef]
  12. Z. Qiang and W. Zhou, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15, 1823–1831 (2007).
    [CrossRef]

2013

D.-W. Wang, H.-T. Zhou, M.-J. Guo, J.-X. Zhang, J. Evers, and S.-Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett. 110, 093901 (2013).
[CrossRef]

2012

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode” Science 335, 447–450 (2012).
[CrossRef]

2011

C. Lu, X. Hu, Y. Zhang, Z. Li, X. Xu, H. Yang, and Q. Gong, “Ultralow power all-optical diode in photonic crystal hetero structures with broken spatial inversion symmetry,” Appl. Phys. Lett. 99, 051107 (2011).
[CrossRef]

Y.-F. Gao, Y.-T. Fang, and M. Zhou, “Achieving all-optical diode through non-symmetrical nonlinear cavity and the effect of photon tunneling,” PIERS Online 7, 651–655 (2011).
[CrossRef]

2010

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Jonnopoulos, and S. G. Johnson, “MEEP: a flexible free software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

2009

Y. Liu, F. Qin, Z.-Y. Wei, Q.-B. Meng, D.-Z. Zang, and Z.-Y. Li, “10  fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95, 131116 (2009).
[CrossRef]

2007

2006

W. Wang, J. Zou, and W. Xiao, “All optical diode effect of a nonlinear photonic crystal with a defect,” Optoelectron. Lett. 2, 237–239 (2006).
[CrossRef]

H. Zhou, K.-F. Zhou, W. Hu, Q. Guo, S. Lan, X.-S. Lin, and A. V. Gopal, “All-optical diodes based on photonic crystal molecules consisting of nonlinear defect pairs,” J. Appl. Phys. 99, 123111 (2006).
[CrossRef]

2002

2001

1995

M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear optical diode,” Appl. Phys. Lett. 66, 2324–2326 (1995).
[CrossRef]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Jonnopoulos, and S. G. Johnson, “MEEP: a flexible free software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Bloemer, M. J.

M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear optical diode,” Appl. Phys. Lett. 66, 2324–2326 (1995).
[CrossRef]

Bowden, C. M.

M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear optical diode,” Appl. Phys. Lett. 66, 2324–2326 (1995).
[CrossRef]

Dowling, J. P.

M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear optical diode,” Appl. Phys. Lett. 66, 2324–2326 (1995).
[CrossRef]

Evers, J.

D.-W. Wang, H.-T. Zhou, M.-J. Guo, J.-X. Zhang, J. Evers, and S.-Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett. 110, 093901 (2013).
[CrossRef]

Fan, L.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode” Science 335, 447–450 (2012).
[CrossRef]

Fang, Y.-T.

Y.-F. Gao, Y.-T. Fang, and M. Zhou, “Achieving all-optical diode through non-symmetrical nonlinear cavity and the effect of photon tunneling,” PIERS Online 7, 651–655 (2011).
[CrossRef]

Gao, Y.-F.

Y.-F. Gao, Y.-T. Fang, and M. Zhou, “Achieving all-optical diode through non-symmetrical nonlinear cavity and the effect of photon tunneling,” PIERS Online 7, 651–655 (2011).
[CrossRef]

Gong, Q.

C. Lu, X. Hu, Y. Zhang, Z. Li, X. Xu, H. Yang, and Q. Gong, “Ultralow power all-optical diode in photonic crystal hetero structures with broken spatial inversion symmetry,” Appl. Phys. Lett. 99, 051107 (2011).
[CrossRef]

Gopal, A. V.

H. Zhou, K.-F. Zhou, W. Hu, Q. Guo, S. Lan, X.-S. Lin, and A. V. Gopal, “All-optical diodes based on photonic crystal molecules consisting of nonlinear defect pairs,” J. Appl. Phys. 99, 123111 (2006).
[CrossRef]

Guo, M.-J.

D.-W. Wang, H.-T. Zhou, M.-J. Guo, J.-X. Zhang, J. Evers, and S.-Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett. 110, 093901 (2013).
[CrossRef]

Guo, Q.

H. Zhou, K.-F. Zhou, W. Hu, Q. Guo, S. Lan, X.-S. Lin, and A. V. Gopal, “All-optical diodes based on photonic crystal molecules consisting of nonlinear defect pairs,” J. Appl. Phys. 99, 123111 (2006).
[CrossRef]

Hu, W.

H. Zhou, K.-F. Zhou, W. Hu, Q. Guo, S. Lan, X.-S. Lin, and A. V. Gopal, “All-optical diodes based on photonic crystal molecules consisting of nonlinear defect pairs,” J. Appl. Phys. 99, 123111 (2006).
[CrossRef]

Hu, X.

C. Lu, X. Hu, Y. Zhang, Z. Li, X. Xu, H. Yang, and Q. Gong, “Ultralow power all-optical diode in photonic crystal hetero structures with broken spatial inversion symmetry,” Appl. Phys. Lett. 99, 051107 (2011).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Jonnopoulos, and S. G. Johnson, “MEEP: a flexible free software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Jonnopoulos, and S. G. Johnson, “MEEP: a flexible free software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency domain methods for Maxwell’s equations in a plane wave basis,” Opt. Express 8, 173–190 (2001).
[CrossRef]

Jonnopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Jonnopoulos, and S. G. Johnson, “MEEP: a flexible free software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Kivshar, Y. S.

Lan, S.

H. Zhou, K.-F. Zhou, W. Hu, Q. Guo, S. Lan, X.-S. Lin, and A. V. Gopal, “All-optical diodes based on photonic crystal molecules consisting of nonlinear defect pairs,” J. Appl. Phys. 99, 123111 (2006).
[CrossRef]

Li, Z.

C. Lu, X. Hu, Y. Zhang, Z. Li, X. Xu, H. Yang, and Q. Gong, “Ultralow power all-optical diode in photonic crystal hetero structures with broken spatial inversion symmetry,” Appl. Phys. Lett. 99, 051107 (2011).
[CrossRef]

Li, Z.-Y.

Y. Liu, F. Qin, Z.-Y. Wei, Q.-B. Meng, D.-Z. Zang, and Z.-Y. Li, “10  fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95, 131116 (2009).
[CrossRef]

Lin, X.-S.

H. Zhou, K.-F. Zhou, W. Hu, Q. Guo, S. Lan, X.-S. Lin, and A. V. Gopal, “All-optical diodes based on photonic crystal molecules consisting of nonlinear defect pairs,” J. Appl. Phys. 99, 123111 (2006).
[CrossRef]

Liu, Y.

Y. Liu, F. Qin, Z.-Y. Wei, Q.-B. Meng, D.-Z. Zang, and Z.-Y. Li, “10  fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95, 131116 (2009).
[CrossRef]

Lu, C.

C. Lu, X. Hu, Y. Zhang, Z. Li, X. Xu, H. Yang, and Q. Gong, “Ultralow power all-optical diode in photonic crystal hetero structures with broken spatial inversion symmetry,” Appl. Phys. Lett. 99, 051107 (2011).
[CrossRef]

Meng, Q.-B.

Y. Liu, F. Qin, Z.-Y. Wei, Q.-B. Meng, D.-Z. Zang, and Z.-Y. Li, “10  fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95, 131116 (2009).
[CrossRef]

Mingaleev, S. F.

Niu, B.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode” Science 335, 447–450 (2012).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Jonnopoulos, and S. G. Johnson, “MEEP: a flexible free software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Qi, M.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode” Science 335, 447–450 (2012).
[CrossRef]

Qiang, Z.

Qin, F.

Y. Liu, F. Qin, Z.-Y. Wei, Q.-B. Meng, D.-Z. Zang, and Z.-Y. Li, “10  fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95, 131116 (2009).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Jonnopoulos, and S. G. Johnson, “MEEP: a flexible free software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Scalora, M.

M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear optical diode,” Appl. Phys. Lett. 66, 2324–2326 (1995).
[CrossRef]

Shen, H.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode” Science 335, 447–450 (2012).
[CrossRef]

Tocci, M. D.

M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear optical diode,” Appl. Phys. Lett. 66, 2324–2326 (1995).
[CrossRef]

Varghese, L. T.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode” Science 335, 447–450 (2012).
[CrossRef]

Wang, D.-W.

D.-W. Wang, H.-T. Zhou, M.-J. Guo, J.-X. Zhang, J. Evers, and S.-Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett. 110, 093901 (2013).
[CrossRef]

Wang, J.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode” Science 335, 447–450 (2012).
[CrossRef]

Wang, W.

W. Wang, J. Zou, and W. Xiao, “All optical diode effect of a nonlinear photonic crystal with a defect,” Optoelectron. Lett. 2, 237–239 (2006).
[CrossRef]

Wei, Z.-Y.

Y. Liu, F. Qin, Z.-Y. Wei, Q.-B. Meng, D.-Z. Zang, and Z.-Y. Li, “10  fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95, 131116 (2009).
[CrossRef]

Weiner, A. M.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode” Science 335, 447–450 (2012).
[CrossRef]

Xiao, W.

W. Wang, J. Zou, and W. Xiao, “All optical diode effect of a nonlinear photonic crystal with a defect,” Optoelectron. Lett. 2, 237–239 (2006).
[CrossRef]

Xu, X.

C. Lu, X. Hu, Y. Zhang, Z. Li, X. Xu, H. Yang, and Q. Gong, “Ultralow power all-optical diode in photonic crystal hetero structures with broken spatial inversion symmetry,” Appl. Phys. Lett. 99, 051107 (2011).
[CrossRef]

Xuan, Y.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode” Science 335, 447–450 (2012).
[CrossRef]

Yang, H.

C. Lu, X. Hu, Y. Zhang, Z. Li, X. Xu, H. Yang, and Q. Gong, “Ultralow power all-optical diode in photonic crystal hetero structures with broken spatial inversion symmetry,” Appl. Phys. Lett. 99, 051107 (2011).
[CrossRef]

Zang, D.-Z.

Y. Liu, F. Qin, Z.-Y. Wei, Q.-B. Meng, D.-Z. Zang, and Z.-Y. Li, “10  fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95, 131116 (2009).
[CrossRef]

Zhang, J.-X.

D.-W. Wang, H.-T. Zhou, M.-J. Guo, J.-X. Zhang, J. Evers, and S.-Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett. 110, 093901 (2013).
[CrossRef]

Zhang, Y.

C. Lu, X. Hu, Y. Zhang, Z. Li, X. Xu, H. Yang, and Q. Gong, “Ultralow power all-optical diode in photonic crystal hetero structures with broken spatial inversion symmetry,” Appl. Phys. Lett. 99, 051107 (2011).
[CrossRef]

Zhou, H.

H. Zhou, K.-F. Zhou, W. Hu, Q. Guo, S. Lan, X.-S. Lin, and A. V. Gopal, “All-optical diodes based on photonic crystal molecules consisting of nonlinear defect pairs,” J. Appl. Phys. 99, 123111 (2006).
[CrossRef]

Zhou, H.-T.

D.-W. Wang, H.-T. Zhou, M.-J. Guo, J.-X. Zhang, J. Evers, and S.-Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett. 110, 093901 (2013).
[CrossRef]

Zhou, K.-F.

H. Zhou, K.-F. Zhou, W. Hu, Q. Guo, S. Lan, X.-S. Lin, and A. V. Gopal, “All-optical diodes based on photonic crystal molecules consisting of nonlinear defect pairs,” J. Appl. Phys. 99, 123111 (2006).
[CrossRef]

Zhou, M.

Y.-F. Gao, Y.-T. Fang, and M. Zhou, “Achieving all-optical diode through non-symmetrical nonlinear cavity and the effect of photon tunneling,” PIERS Online 7, 651–655 (2011).
[CrossRef]

Zhou, W.

Zhu, S.-Y.

D.-W. Wang, H.-T. Zhou, M.-J. Guo, J.-X. Zhang, J. Evers, and S.-Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett. 110, 093901 (2013).
[CrossRef]

Zou, J.

W. Wang, J. Zou, and W. Xiao, “All optical diode effect of a nonlinear photonic crystal with a defect,” Optoelectron. Lett. 2, 237–239 (2006).
[CrossRef]

Appl. Phys. Lett.

C. Lu, X. Hu, Y. Zhang, Z. Li, X. Xu, H. Yang, and Q. Gong, “Ultralow power all-optical diode in photonic crystal hetero structures with broken spatial inversion symmetry,” Appl. Phys. Lett. 99, 051107 (2011).
[CrossRef]

M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear optical diode,” Appl. Phys. Lett. 66, 2324–2326 (1995).
[CrossRef]

Y. Liu, F. Qin, Z.-Y. Wei, Q.-B. Meng, D.-Z. Zang, and Z.-Y. Li, “10  fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95, 131116 (2009).
[CrossRef]

Comput. Phys. Commun.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Jonnopoulos, and S. G. Johnson, “MEEP: a flexible free software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

J. Appl. Phys.

H. Zhou, K.-F. Zhou, W. Hu, Q. Guo, S. Lan, X.-S. Lin, and A. V. Gopal, “All-optical diodes based on photonic crystal molecules consisting of nonlinear defect pairs,” J. Appl. Phys. 99, 123111 (2006).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Optoelectron. Lett.

W. Wang, J. Zou, and W. Xiao, “All optical diode effect of a nonlinear photonic crystal with a defect,” Optoelectron. Lett. 2, 237–239 (2006).
[CrossRef]

Phys. Rev. Lett.

D.-W. Wang, H.-T. Zhou, M.-J. Guo, J.-X. Zhang, J. Evers, and S.-Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett. 110, 093901 (2013).
[CrossRef]

PIERS Online

Y.-F. Gao, Y.-T. Fang, and M. Zhou, “Achieving all-optical diode through non-symmetrical nonlinear cavity and the effect of photon tunneling,” PIERS Online 7, 651–655 (2011).
[CrossRef]

Science

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode” Science 335, 447–450 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Band diagram of 2D square lattice (inset) of cylindrical Si rods.

Fig. 2.
Fig. 2.

Optical diode consisting of two PhC ring resonators R1 and R2 and two PhC waveguides. Forward and backward propagation directions are shown by arrows.

Fig. 3.
Fig. 3.

Transmission in the linear case. (a) Forward transmission at A, (b) backward transmission at A, (c) forward transmission at port 2, and (d) backward transmission at port 1. Parts (c) and (d) indicate that transmission in the linear case is independent of the propagation direction, because the dips for both cases are at the same frequency of 0.3211.

Fig. 4.
Fig. 4.

(a)–(c) Field propagation in the forward direction, which shows that (a) a very negligible power reaches port 2 in the linear case, whereas (b), (c) the power at port 2 increases with increasing input power at port 1; (d)–(f) field propagation in the backward direction, showing much less power reaching port 1 with increasing input power at port 2.

Fig. 5.
Fig. 5.

Forward and backward transmission spectra, where the dotted and solid lines correspond to the linear and nonlinear cases, respectively. (a) As intensity increases, the curve shifts toward the left, so the output power at 0.3211 increases as indicated by vertical arrows and (b) there is no shift of the curve with increased intensity, so the dip is always at 0.3211. The thicker solid curves indicate more intense input light.

Fig. 6.
Fig. 6.

Variation of transmittance with input power for forward and backward propagation, which is similar to the characteristics of a diode. The horizontal nature of the curve in the low power region is clearly visible in the magnified image shown in the inset.

Tables (1)

Tables Icon

Table 1. Resonant Frequencies and Q Factors of Resonators

Metrics