Abstract

We have implemented multispectral multiple scattering low coherence interferometry (ms2/LCI) with Fourier domain data collection. The ms2/LCI system is designed to localize features with spectroscopic contrast with millimeter resolution up to 1 cm deep in scattering samples by using photons that have undergone multiple low-angle (forward) scattering events. Fourier domain detection both increases the data acquisition speed of the system and gives access to rich spectroscopic information, compared to the previous single channel, time-domain implementation. Separate delivery and detection angular apertures reduce collection of the diffuse background signal in order to isolate localized spectral features from deeper in scattering samples than would be possible with traditional spectroscopic optical coherence tomography. Light from a supercontinuum source is used to acquire absorption spectra of chromophores in the visible range within a tissue-like scattering phantom. An intensity modulation and digital lock-in detection scheme is implemented to mitigate relative intensity and spectral noise inherent in supercontinuum sources. The technical parameters of the system and comparative analysis are presented.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. L. Smithpeter, A. K. Dunn, A. J. Welch, and R. Richards-Kortum, “Penetration depth limits of in vivo confocal reflectance imaging,” Appl. Opt. 37, 2749–2754 (1998).
    [CrossRef]
  2. M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, and E. A. Swanson, “Femtosecond transillumination optical coherence tomography,” Opt. Lett. 18, 950–952 (1993).
    [CrossRef]
  3. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rept. Progr. Phys. 73, 076701 (2010).
    [CrossRef]
  4. J. A. Moon, R. Mahon, M. D. Duncan, and J. Reintjes, “Resolution limits for imaging through turbid media with diffuse light,” Opt. Lett. 18, 1591–1593 (1993).
    [CrossRef]
  5. X. Cheng and D. Boas, “Systematic diffuse optical image errors resulting from uncertainty in the background optical properties,” Opt. Express 4, 299–307 (1999).
    [CrossRef]
  6. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30, 1354–1356 (2005).
    [CrossRef]
  7. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
    [CrossRef]
  8. X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5, 154–157 (2011).
    [CrossRef]
  9. B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7, 300–305 (2013).
    [CrossRef]
  10. Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
    [CrossRef]
  11. M. G. Giacomelli and A. Wax, “Imaging beyond the ballistic limit in coherence imaging using multiply scattered light,” Opt. Express 19, 4268–4279 (2011).
    [CrossRef]
  12. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]
  13. M. G. Giacomelli and A. Wax, “Imaging contrast and resolution in multiply scattered low coherence interferometry,” IEEE J. Sel. Top. Quantum Electron. 18, 1050–1058 (2012).
    [CrossRef]
  14. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
    [CrossRef]
  15. F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17, 6799–6812 (2009).
    [CrossRef]
  16. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2192 (2003).
    [CrossRef]
  17. R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” American J. Ophthalmol. 146, 496–500 (2008).
    [CrossRef]
  18. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
    [CrossRef]
  19. Y. Zhu, N. G. Terry, J. T. Woosley, N. J. Shaheen, and A. Wax, “Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology,” J. Biomed. Opt. 16, 011003 (2011).
    [CrossRef]
  20. A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24, 1484–1486 (1999).
    [CrossRef]
  21. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
    [CrossRef]
  22. N. Nassif, B. Cense, B. Hyle Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29, 480–482 (2004).
    [CrossRef]
  23. U. Møller, S. T. Sørensen, C. Jakobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express 20, 2851–2857 (2012).
    [CrossRef]
  24. B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Scientific Reports 2, 882 (2012).
    [CrossRef]
  25. R. N. Graf and A. Wax, “Temporal coherence and time-frequency distributions in spectroscopic optical coherence tomography,” J. Opt. Soc. Am. A 24, 2186–2195 (2007).
    [CrossRef]
  26. W.-C. Kuo, C.-M. Lai, Y.-S. Huang, C.-Y. Chang, and Y.-M. Kuo, “Balanced detection for spectral domain optical coherence tomography,” Opt. Express 21, 19280–19291 (2013).
    [CrossRef]
  27. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef]
  28. B. Pogue, M. Testorf, T. McBride, U. Osterberg, and K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Express 1, 391–403 (1997).
    [CrossRef]

2013 (2)

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7, 300–305 (2013).
[CrossRef]

W.-C. Kuo, C.-M. Lai, Y.-S. Huang, C.-Y. Chang, and Y.-M. Kuo, “Balanced detection for spectral domain optical coherence tomography,” Opt. Express 21, 19280–19291 (2013).
[CrossRef]

2012 (4)

U. Møller, S. T. Sørensen, C. Jakobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express 20, 2851–2857 (2012).
[CrossRef]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Scientific Reports 2, 882 (2012).
[CrossRef]

M. G. Giacomelli and A. Wax, “Imaging contrast and resolution in multiply scattered low coherence interferometry,” IEEE J. Sel. Top. Quantum Electron. 18, 1050–1058 (2012).
[CrossRef]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[CrossRef]

2011 (4)

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5, 154–157 (2011).
[CrossRef]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[CrossRef]

M. G. Giacomelli and A. Wax, “Imaging beyond the ballistic limit in coherence imaging using multiply scattered light,” Opt. Express 19, 4268–4279 (2011).
[CrossRef]

Y. Zhu, N. G. Terry, J. T. Woosley, N. J. Shaheen, and A. Wax, “Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology,” J. Biomed. Opt. 16, 011003 (2011).
[CrossRef]

2010 (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rept. Progr. Phys. 73, 076701 (2010).
[CrossRef]

2009 (1)

2008 (1)

R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” American J. Ophthalmol. 146, 496–500 (2008).
[CrossRef]

2007 (1)

2005 (1)

2004 (1)

2003 (3)

2000 (1)

1999 (2)

1998 (1)

1997 (1)

1993 (2)

1990 (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

1989 (1)

Baker, W. B.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rept. Progr. Phys. 73, 076701 (2010).
[CrossRef]

Bang, O.

Bevilacqua, F.

Boas, D.

Bouma, B. E.

Cense, B.

Chance, B.

Chang, C.-Y.

Chen, T. C.

Cheng, X.

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Choe, R.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rept. Progr. Phys. 73, 076701 (2010).
[CrossRef]

Choi, W.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[CrossRef]

Choi, Y.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[CrossRef]

Choma, M.

Cuccia, D. J.

Dasari, R. R.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[CrossRef]

de Boer, J. F.

Dias, F.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Scientific Reports 2, 882 (2012).
[CrossRef]

Drexler, W.

Dudley, J. M.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Scientific Reports 2, 882 (2012).
[CrossRef]

Duncan, M. D.

Dunn, A. K.

Durduran, T.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rept. Progr. Phys. 73, 076701 (2010).
[CrossRef]

Durkin, A. J.

Fang-Yen, C.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[CrossRef]

Feld, M. S.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[CrossRef]

Fercher, A.

Fujimoto, J. G.

Genty, G.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Scientific Reports 2, 882 (2012).
[CrossRef]

Giacomelli, M. G.

M. G. Giacomelli and A. Wax, “Imaging contrast and resolution in multiply scattered low coherence interferometry,” IEEE J. Sel. Top. Quantum Electron. 18, 1050–1058 (2012).
[CrossRef]

M. G. Giacomelli and A. Wax, “Imaging beyond the ballistic limit in coherence imaging using multiply scattered light,” Opt. Express 19, 4268–4279 (2011).
[CrossRef]

Graf, R. N.

Hee, M. R.

Hitzenberger, C.

Horstmeyer, R.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7, 300–305 (2013).
[CrossRef]

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[CrossRef]

Huang, Y.-S.

Hyle Park, B.

Ippen, E. P.

Izatt, J.

Izatt, J. A.

Jacobson, J. M.

Jakobsen, C.

Johansen, J.

Judkewitz, B.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7, 300–305 (2013).
[CrossRef]

Kang, P.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[CrossRef]

Kärtner, F. X.

Koizumi, H.

R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” American J. Ophthalmol. 146, 496–500 (2008).
[CrossRef]

Kudlinski, A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Scientific Reports 2, 882 (2012).
[CrossRef]

Kuo, W.-C.

Kuo, Y.-M.

Lacourt, P. A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Scientific Reports 2, 882 (2012).
[CrossRef]

Lai, C.-M.

Larger, L.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Scientific Reports 2, 882 (2012).
[CrossRef]

Lee, K. J.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[CrossRef]

Leitgeb, R.

Li, X. D.

Liu, H.

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5, 154–157 (2011).
[CrossRef]

Mahon, R.

Mathy, A.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7, 300–305 (2013).
[CrossRef]

McBride, T.

Merolla, J. M.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Scientific Reports 2, 882 (2012).
[CrossRef]

Møller, U.

Moon, J. A.

Morgner, U.

Moselund, P. M.

Mussot, A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Scientific Reports 2, 882 (2012).
[CrossRef]

Nassif, N.

Osterberg, U.

Park, B. H.

Patterson, M. S.

Paulsen, K.

Pierce, M. C.

Pitris, C.

Pogue, B.

Pozonni, M. C.

R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” American J. Ophthalmol. 146, 496–500 (2008).
[CrossRef]

Prahl, S. A.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Reintjes, J.

Richards-Kortum, R.

Robles, F.

Rollins, A. M.

Sarunic, M.

Shaheen, N. J.

Y. Zhu, N. G. Terry, J. T. Woosley, N. J. Shaheen, and A. Wax, “Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology,” J. Biomed. Opt. 16, 011003 (2011).
[CrossRef]

Smithpeter, C. L.

Sørensen, S. T.

Spaide, R. F.

R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” American J. Ophthalmol. 146, 496–500 (2008).
[CrossRef]

Stefani, A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Scientific Reports 2, 882 (2012).
[CrossRef]

Swanson, E. A.

Sylvestre, T.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Scientific Reports 2, 882 (2012).
[CrossRef]

Tearney, G. J.

Terry, N. G.

Y. Zhu, N. G. Terry, J. T. Woosley, N. J. Shaheen, and A. Wax, “Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology,” J. Biomed. Opt. 16, 011003 (2011).
[CrossRef]

Testorf, M.

Thomsen, C. L.

Tromberg, B. J.

Wang, L. V.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[CrossRef]

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5, 154–157 (2011).
[CrossRef]

Wang, Y. M.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7, 300–305 (2013).
[CrossRef]

Wax, A.

M. G. Giacomelli and A. Wax, “Imaging contrast and resolution in multiply scattered low coherence interferometry,” IEEE J. Sel. Top. Quantum Electron. 18, 1050–1058 (2012).
[CrossRef]

M. G. Giacomelli and A. Wax, “Imaging beyond the ballistic limit in coherence imaging using multiply scattered light,” Opt. Express 19, 4268–4279 (2011).
[CrossRef]

Y. Zhu, N. G. Terry, J. T. Woosley, N. J. Shaheen, and A. Wax, “Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology,” J. Biomed. Opt. 16, 011003 (2011).
[CrossRef]

F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17, 6799–6812 (2009).
[CrossRef]

R. N. Graf and A. Wax, “Temporal coherence and time-frequency distributions in spectroscopic optical coherence tomography,” J. Opt. Soc. Am. A 24, 2186–2195 (2007).
[CrossRef]

Welch, A. J.

C. L. Smithpeter, A. K. Dunn, A. J. Welch, and R. Richards-Kortum, “Penetration depth limits of in vivo confocal reflectance imaging,” Appl. Opt. 37, 2749–2754 (1998).
[CrossRef]

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Wetzel, B.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Scientific Reports 2, 882 (2012).
[CrossRef]

Wilson, B. C.

Woosley, J. T.

Y. Zhu, N. G. Terry, J. T. Woosley, N. J. Shaheen, and A. Wax, “Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology,” J. Biomed. Opt. 16, 011003 (2011).
[CrossRef]

Xu, X.

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5, 154–157 (2011).
[CrossRef]

Yang, C.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7, 300–305 (2013).
[CrossRef]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2192 (2003).
[CrossRef]

Yang, T. D.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[CrossRef]

Yodh, A. G.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rept. Progr. Phys. 73, 076701 (2010).
[CrossRef]

Yun, S. H.

Zhu, Y.

Y. Zhu, N. G. Terry, J. T. Woosley, N. J. Shaheen, and A. Wax, “Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology,” J. Biomed. Opt. 16, 011003 (2011).
[CrossRef]

American J. Ophthalmol. (1)

R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” American J. Ophthalmol. 146, 496–500 (2008).
[CrossRef]

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. G. Giacomelli and A. Wax, “Imaging contrast and resolution in multiply scattered low coherence interferometry,” IEEE J. Sel. Top. Quantum Electron. 18, 1050–1058 (2012).
[CrossRef]

J. Biomed. Opt. (1)

Y. Zhu, N. G. Terry, J. T. Woosley, N. J. Shaheen, and A. Wax, “Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology,” J. Biomed. Opt. 16, 011003 (2011).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nat. Photonics (2)

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5, 154–157 (2011).
[CrossRef]

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7, 300–305 (2013).
[CrossRef]

Opt. Express (8)

M. G. Giacomelli and A. Wax, “Imaging beyond the ballistic limit in coherence imaging using multiply scattered light,” Opt. Express 19, 4268–4279 (2011).
[CrossRef]

X. Cheng and D. Boas, “Systematic diffuse optical image errors resulting from uncertainty in the background optical properties,” Opt. Express 4, 299–307 (1999).
[CrossRef]

F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17, 6799–6812 (2009).
[CrossRef]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2192 (2003).
[CrossRef]

W.-C. Kuo, C.-M. Lai, Y.-S. Huang, C.-Y. Chang, and Y.-M. Kuo, “Balanced detection for spectral domain optical coherence tomography,” Opt. Express 21, 19280–19291 (2013).
[CrossRef]

B. Pogue, M. Testorf, T. McBride, U. Osterberg, and K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Express 1, 391–403 (1997).
[CrossRef]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[CrossRef]

U. Møller, S. T. Sørensen, C. Jakobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express 20, 2851–2857 (2012).
[CrossRef]

Opt. Lett. (7)

Phys. Rev. Lett. (1)

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[CrossRef]

Rept. Progr. Phys. (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rept. Progr. Phys. 73, 076701 (2010).
[CrossRef]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[CrossRef]

Scientific Reports (1)

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Scientific Reports 2, 882 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Diagram of system setup. The ms2/LCI instrument consists of a modified Mach–Zehnder interferometer and a custom spectrometer. The inset shows the arrangement of focal volume in the sample and the location of the zero path delay point. (b) Cartoon illustrating an example path of a multiply forward scattered photon used to image a scattering inhomogeneity.

Fig. 2.
Fig. 2.

(a) Reduction of noise, background, and artifacts in an A scan by implementing digital lock-in detection. Solid arrows highlight the zero frequency and autocorrelation artifacts. Scans have been slightly offset laterally for clarity. (b) Relative SNR enhancements measured by averaging increasingly larger numbers of scans. Enhancements near the theoretical prediction occur up to about 1,000 averages, after which noise in the background signal limits further improvement. The NKT source was found to have a lower background signal than the Fianium. Lock-in detection reduced the effect of the background, allowing further gains by averaging larger numbers of spectra. With lock-in detection, the NKT was 8.7dB more sensitive than the Fianium when analyzing a full batch of 24,576 spectra.

Fig. 3.
Fig. 3.

(a) Sample geometry of the resolution target and B scans through no scattering medium and at increasing depths in a 50cm1 bead suspension. The total number of scattering MFPs is indicated at the top of each image, and the physical depth at the base. Multiple scattering broadens the image of the target both laterally and axially. (b) Lateral profiles of the target at various depths. (c) Lateral and (d) axial resolution measured at various depths, calculated from the 10% to 90% signal rise, and error bars based on the standard deviation of the measurement. Lateral resolution broadening apparently saturates after 55 MFPs, but axial resolution broadening continues.

Fig. 4.
Fig. 4.

(a) Cartoon showing spectroscopic sample geometry, with a mirror and dye-filled capillary imaged through 90 MFPs. The mirror is placed at a slight angle to the sample chamber to avoid the specular reflection from the front of the chamber. (b) False-colored B scan of the sample based on the depth-gated spectral reflectivity profiles. The ROI signal is red because the dye superficial to this region preferentially absorbs light below 650 nm. (c) Calculated absorption spectrum of the ms2/LCI signal of the ROI compared to a reference spectrum for the dye, showing good agreement.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P(k)=PR(k)+Ps(k)+nN2PR(k)Psn(k)cos(kΔz)n,
S2=(η2Δt2/Eν2)PRPS.
σshot2=ηρ(PR+PS)Δt/Eν,
S2/σshot2=ηPSΔt/Eν.

Metrics