Abstract

Ion beam sputtering (IBS) is an established deposition process used in the production of optical coatings. In this study, a modification of the IBS process, based on additional electromagnetic fields, is examined in an effort to improve the technology. The reported experiments reveal the underlying effects of electromagnetic fields on the distribution of the coating material sputtered from the target. An increase in local deposition rate is observed and discussed in the context of the interaction between the introduced fields and the species in the target area. First approaches toward an optimization of the observed bunching effect on the deposition material are illustrated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. I. Aksenov, A. N. Belokhvostikov, V. G. Padalka, N. S. Repalov, and V. M. Khoroshikh, “Plasma flux motion in a toroidal plasma guide,” Plasma Phys. Controlled Fusion 28, 761–770 (1986).
    [CrossRef]
  2. S. Malobabic, M. Jupé, and D. Ristau, “Towards an electro-magnetic field separation of deposited material implemented in an ion beam sputter process,” Appl. Phys. Lett. 102, 221604 (2013).
    [CrossRef]
  3. W. F. Van der Weg and P. K. Rol, “On the excited state of sputtered particles,” Nucl. Instrum. Methods 38, 274–276 (1965).
    [CrossRef]
  4. G. Betz and K. Wien, “Energy and angular distributions of sputtered particles,” Int. J. Mass Spectrom. 140, 1–110 (1994).
    [CrossRef]
  5. B. Schroeder, R. Peter, J. Harhausen, and A. Ohl, “Modelling and simulation of the advanced plasma source,” J. Appl. Phys. 110, 043305 (2011).
    [CrossRef]
  6. R. L. Boxman and S. Goldsmith, “Macroparticle contamination in cathodic arc coatings: generation, transport and control,” Surf. Coat. Technol. 52, 39–50 (1992).
    [CrossRef]
  7. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, 1994), p. 132.
  8. D. K. Kwok, P. K. Chu, M. M. M. Bilek, I. G. Brown, and A. Vizir, “Ion mean charge state in a biased vacuum arc plasma duct,” IEEE Trans. Plasma Sci. 28, 2194–2201 (2000).
    [CrossRef]
  9. C. A. Davis and I. J. Donnelly, “Simulation of ion transport through curved‐solenoid macroparticle filters,” J. Appl. Phys. 72, 1740–1747 (1992).
    [CrossRef]
  10. P. J. Martin and A. Bendavid, “Review of the filtered vacuum arc process and materials deposition,” Thin Solid Films 394, 1–14 (2001).
    [CrossRef]
  11. D. B. Boercker, S. Falabella, and D. M. Sanders, “Plasma transport in a new cathodic arc ion source: theory and experiment,” Surf. Coat. Technol. 53, 239–242 (1992).
    [CrossRef]
  12. D. T. K. Kwok, T. Zhang, P. K. Chu, M. M. M. Bilek, A. Vizir, and I. G. Brown, “Experimental investigation of electron oscillation inside the filter of a vacuum arc plasma source,” Appl. Phys. Lett. 78, 422–424 (2001).
    [CrossRef]
  13. M. Dieckmann, “Spectrum, Thin film software,” Laser Zentrum Hannover.

2013

S. Malobabic, M. Jupé, and D. Ristau, “Towards an electro-magnetic field separation of deposited material implemented in an ion beam sputter process,” Appl. Phys. Lett. 102, 221604 (2013).
[CrossRef]

2011

B. Schroeder, R. Peter, J. Harhausen, and A. Ohl, “Modelling and simulation of the advanced plasma source,” J. Appl. Phys. 110, 043305 (2011).
[CrossRef]

2001

P. J. Martin and A. Bendavid, “Review of the filtered vacuum arc process and materials deposition,” Thin Solid Films 394, 1–14 (2001).
[CrossRef]

D. T. K. Kwok, T. Zhang, P. K. Chu, M. M. M. Bilek, A. Vizir, and I. G. Brown, “Experimental investigation of electron oscillation inside the filter of a vacuum arc plasma source,” Appl. Phys. Lett. 78, 422–424 (2001).
[CrossRef]

2000

D. K. Kwok, P. K. Chu, M. M. M. Bilek, I. G. Brown, and A. Vizir, “Ion mean charge state in a biased vacuum arc plasma duct,” IEEE Trans. Plasma Sci. 28, 2194–2201 (2000).
[CrossRef]

1994

G. Betz and K. Wien, “Energy and angular distributions of sputtered particles,” Int. J. Mass Spectrom. 140, 1–110 (1994).
[CrossRef]

1992

C. A. Davis and I. J. Donnelly, “Simulation of ion transport through curved‐solenoid macroparticle filters,” J. Appl. Phys. 72, 1740–1747 (1992).
[CrossRef]

R. L. Boxman and S. Goldsmith, “Macroparticle contamination in cathodic arc coatings: generation, transport and control,” Surf. Coat. Technol. 52, 39–50 (1992).
[CrossRef]

D. B. Boercker, S. Falabella, and D. M. Sanders, “Plasma transport in a new cathodic arc ion source: theory and experiment,” Surf. Coat. Technol. 53, 239–242 (1992).
[CrossRef]

1986

I. I. Aksenov, A. N. Belokhvostikov, V. G. Padalka, N. S. Repalov, and V. M. Khoroshikh, “Plasma flux motion in a toroidal plasma guide,” Plasma Phys. Controlled Fusion 28, 761–770 (1986).
[CrossRef]

1965

W. F. Van der Weg and P. K. Rol, “On the excited state of sputtered particles,” Nucl. Instrum. Methods 38, 274–276 (1965).
[CrossRef]

Aksenov, I. I.

I. I. Aksenov, A. N. Belokhvostikov, V. G. Padalka, N. S. Repalov, and V. M. Khoroshikh, “Plasma flux motion in a toroidal plasma guide,” Plasma Phys. Controlled Fusion 28, 761–770 (1986).
[CrossRef]

Belokhvostikov, A. N.

I. I. Aksenov, A. N. Belokhvostikov, V. G. Padalka, N. S. Repalov, and V. M. Khoroshikh, “Plasma flux motion in a toroidal plasma guide,” Plasma Phys. Controlled Fusion 28, 761–770 (1986).
[CrossRef]

Bendavid, A.

P. J. Martin and A. Bendavid, “Review of the filtered vacuum arc process and materials deposition,” Thin Solid Films 394, 1–14 (2001).
[CrossRef]

Betz, G.

G. Betz and K. Wien, “Energy and angular distributions of sputtered particles,” Int. J. Mass Spectrom. 140, 1–110 (1994).
[CrossRef]

Bilek, M. M. M.

D. T. K. Kwok, T. Zhang, P. K. Chu, M. M. M. Bilek, A. Vizir, and I. G. Brown, “Experimental investigation of electron oscillation inside the filter of a vacuum arc plasma source,” Appl. Phys. Lett. 78, 422–424 (2001).
[CrossRef]

D. K. Kwok, P. K. Chu, M. M. M. Bilek, I. G. Brown, and A. Vizir, “Ion mean charge state in a biased vacuum arc plasma duct,” IEEE Trans. Plasma Sci. 28, 2194–2201 (2000).
[CrossRef]

Boercker, D. B.

D. B. Boercker, S. Falabella, and D. M. Sanders, “Plasma transport in a new cathodic arc ion source: theory and experiment,” Surf. Coat. Technol. 53, 239–242 (1992).
[CrossRef]

Boxman, R. L.

R. L. Boxman and S. Goldsmith, “Macroparticle contamination in cathodic arc coatings: generation, transport and control,” Surf. Coat. Technol. 52, 39–50 (1992).
[CrossRef]

Brown, I. G.

D. T. K. Kwok, T. Zhang, P. K. Chu, M. M. M. Bilek, A. Vizir, and I. G. Brown, “Experimental investigation of electron oscillation inside the filter of a vacuum arc plasma source,” Appl. Phys. Lett. 78, 422–424 (2001).
[CrossRef]

D. K. Kwok, P. K. Chu, M. M. M. Bilek, I. G. Brown, and A. Vizir, “Ion mean charge state in a biased vacuum arc plasma duct,” IEEE Trans. Plasma Sci. 28, 2194–2201 (2000).
[CrossRef]

Chu, P. K.

D. T. K. Kwok, T. Zhang, P. K. Chu, M. M. M. Bilek, A. Vizir, and I. G. Brown, “Experimental investigation of electron oscillation inside the filter of a vacuum arc plasma source,” Appl. Phys. Lett. 78, 422–424 (2001).
[CrossRef]

D. K. Kwok, P. K. Chu, M. M. M. Bilek, I. G. Brown, and A. Vizir, “Ion mean charge state in a biased vacuum arc plasma duct,” IEEE Trans. Plasma Sci. 28, 2194–2201 (2000).
[CrossRef]

Davis, C. A.

C. A. Davis and I. J. Donnelly, “Simulation of ion transport through curved‐solenoid macroparticle filters,” J. Appl. Phys. 72, 1740–1747 (1992).
[CrossRef]

Dieckmann, M.

M. Dieckmann, “Spectrum, Thin film software,” Laser Zentrum Hannover.

Donnelly, I. J.

C. A. Davis and I. J. Donnelly, “Simulation of ion transport through curved‐solenoid macroparticle filters,” J. Appl. Phys. 72, 1740–1747 (1992).
[CrossRef]

Falabella, S.

D. B. Boercker, S. Falabella, and D. M. Sanders, “Plasma transport in a new cathodic arc ion source: theory and experiment,” Surf. Coat. Technol. 53, 239–242 (1992).
[CrossRef]

Goldsmith, S.

R. L. Boxman and S. Goldsmith, “Macroparticle contamination in cathodic arc coatings: generation, transport and control,” Surf. Coat. Technol. 52, 39–50 (1992).
[CrossRef]

Harhausen, J.

B. Schroeder, R. Peter, J. Harhausen, and A. Ohl, “Modelling and simulation of the advanced plasma source,” J. Appl. Phys. 110, 043305 (2011).
[CrossRef]

Jupé, M.

S. Malobabic, M. Jupé, and D. Ristau, “Towards an electro-magnetic field separation of deposited material implemented in an ion beam sputter process,” Appl. Phys. Lett. 102, 221604 (2013).
[CrossRef]

Khoroshikh, V. M.

I. I. Aksenov, A. N. Belokhvostikov, V. G. Padalka, N. S. Repalov, and V. M. Khoroshikh, “Plasma flux motion in a toroidal plasma guide,” Plasma Phys. Controlled Fusion 28, 761–770 (1986).
[CrossRef]

Kwok, D. K.

D. K. Kwok, P. K. Chu, M. M. M. Bilek, I. G. Brown, and A. Vizir, “Ion mean charge state in a biased vacuum arc plasma duct,” IEEE Trans. Plasma Sci. 28, 2194–2201 (2000).
[CrossRef]

Kwok, D. T. K.

D. T. K. Kwok, T. Zhang, P. K. Chu, M. M. M. Bilek, A. Vizir, and I. G. Brown, “Experimental investigation of electron oscillation inside the filter of a vacuum arc plasma source,” Appl. Phys. Lett. 78, 422–424 (2001).
[CrossRef]

Lichtenberg, A. J.

M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, 1994), p. 132.

Lieberman, M. A.

M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, 1994), p. 132.

Malobabic, S.

S. Malobabic, M. Jupé, and D. Ristau, “Towards an electro-magnetic field separation of deposited material implemented in an ion beam sputter process,” Appl. Phys. Lett. 102, 221604 (2013).
[CrossRef]

Martin, P. J.

P. J. Martin and A. Bendavid, “Review of the filtered vacuum arc process and materials deposition,” Thin Solid Films 394, 1–14 (2001).
[CrossRef]

Ohl, A.

B. Schroeder, R. Peter, J. Harhausen, and A. Ohl, “Modelling and simulation of the advanced plasma source,” J. Appl. Phys. 110, 043305 (2011).
[CrossRef]

Padalka, V. G.

I. I. Aksenov, A. N. Belokhvostikov, V. G. Padalka, N. S. Repalov, and V. M. Khoroshikh, “Plasma flux motion in a toroidal plasma guide,” Plasma Phys. Controlled Fusion 28, 761–770 (1986).
[CrossRef]

Peter, R.

B. Schroeder, R. Peter, J. Harhausen, and A. Ohl, “Modelling and simulation of the advanced plasma source,” J. Appl. Phys. 110, 043305 (2011).
[CrossRef]

Repalov, N. S.

I. I. Aksenov, A. N. Belokhvostikov, V. G. Padalka, N. S. Repalov, and V. M. Khoroshikh, “Plasma flux motion in a toroidal plasma guide,” Plasma Phys. Controlled Fusion 28, 761–770 (1986).
[CrossRef]

Ristau, D.

S. Malobabic, M. Jupé, and D. Ristau, “Towards an electro-magnetic field separation of deposited material implemented in an ion beam sputter process,” Appl. Phys. Lett. 102, 221604 (2013).
[CrossRef]

Rol, P. K.

W. F. Van der Weg and P. K. Rol, “On the excited state of sputtered particles,” Nucl. Instrum. Methods 38, 274–276 (1965).
[CrossRef]

Sanders, D. M.

D. B. Boercker, S. Falabella, and D. M. Sanders, “Plasma transport in a new cathodic arc ion source: theory and experiment,” Surf. Coat. Technol. 53, 239–242 (1992).
[CrossRef]

Schroeder, B.

B. Schroeder, R. Peter, J. Harhausen, and A. Ohl, “Modelling and simulation of the advanced plasma source,” J. Appl. Phys. 110, 043305 (2011).
[CrossRef]

Van der Weg, W. F.

W. F. Van der Weg and P. K. Rol, “On the excited state of sputtered particles,” Nucl. Instrum. Methods 38, 274–276 (1965).
[CrossRef]

Vizir, A.

D. T. K. Kwok, T. Zhang, P. K. Chu, M. M. M. Bilek, A. Vizir, and I. G. Brown, “Experimental investigation of electron oscillation inside the filter of a vacuum arc plasma source,” Appl. Phys. Lett. 78, 422–424 (2001).
[CrossRef]

D. K. Kwok, P. K. Chu, M. M. M. Bilek, I. G. Brown, and A. Vizir, “Ion mean charge state in a biased vacuum arc plasma duct,” IEEE Trans. Plasma Sci. 28, 2194–2201 (2000).
[CrossRef]

Wien, K.

G. Betz and K. Wien, “Energy and angular distributions of sputtered particles,” Int. J. Mass Spectrom. 140, 1–110 (1994).
[CrossRef]

Zhang, T.

D. T. K. Kwok, T. Zhang, P. K. Chu, M. M. M. Bilek, A. Vizir, and I. G. Brown, “Experimental investigation of electron oscillation inside the filter of a vacuum arc plasma source,” Appl. Phys. Lett. 78, 422–424 (2001).
[CrossRef]

Appl. Phys. Lett.

S. Malobabic, M. Jupé, and D. Ristau, “Towards an electro-magnetic field separation of deposited material implemented in an ion beam sputter process,” Appl. Phys. Lett. 102, 221604 (2013).
[CrossRef]

D. T. K. Kwok, T. Zhang, P. K. Chu, M. M. M. Bilek, A. Vizir, and I. G. Brown, “Experimental investigation of electron oscillation inside the filter of a vacuum arc plasma source,” Appl. Phys. Lett. 78, 422–424 (2001).
[CrossRef]

IEEE Trans. Plasma Sci.

D. K. Kwok, P. K. Chu, M. M. M. Bilek, I. G. Brown, and A. Vizir, “Ion mean charge state in a biased vacuum arc plasma duct,” IEEE Trans. Plasma Sci. 28, 2194–2201 (2000).
[CrossRef]

Int. J. Mass Spectrom.

G. Betz and K. Wien, “Energy and angular distributions of sputtered particles,” Int. J. Mass Spectrom. 140, 1–110 (1994).
[CrossRef]

J. Appl. Phys.

B. Schroeder, R. Peter, J. Harhausen, and A. Ohl, “Modelling and simulation of the advanced plasma source,” J. Appl. Phys. 110, 043305 (2011).
[CrossRef]

C. A. Davis and I. J. Donnelly, “Simulation of ion transport through curved‐solenoid macroparticle filters,” J. Appl. Phys. 72, 1740–1747 (1992).
[CrossRef]

Nucl. Instrum. Methods

W. F. Van der Weg and P. K. Rol, “On the excited state of sputtered particles,” Nucl. Instrum. Methods 38, 274–276 (1965).
[CrossRef]

Plasma Phys. Controlled Fusion

I. I. Aksenov, A. N. Belokhvostikov, V. G. Padalka, N. S. Repalov, and V. M. Khoroshikh, “Plasma flux motion in a toroidal plasma guide,” Plasma Phys. Controlled Fusion 28, 761–770 (1986).
[CrossRef]

Surf. Coat. Technol.

D. B. Boercker, S. Falabella, and D. M. Sanders, “Plasma transport in a new cathodic arc ion source: theory and experiment,” Surf. Coat. Technol. 53, 239–242 (1992).
[CrossRef]

R. L. Boxman and S. Goldsmith, “Macroparticle contamination in cathodic arc coatings: generation, transport and control,” Surf. Coat. Technol. 52, 39–50 (1992).
[CrossRef]

Thin Solid Films

P. J. Martin and A. Bendavid, “Review of the filtered vacuum arc process and materials deposition,” Thin Solid Films 394, 1–14 (2001).
[CrossRef]

Other

M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, 1994), p. 132.

M. Dieckmann, “Spectrum, Thin film software,” Laser Zentrum Hannover.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Overview of applied setups: (a) solenoid combined of precollimation coil and guiding coil and (b) double-wound coil.

Fig. 2.
Fig. 2.

Dependency of the coating rate with respect to beam voltage and beam current when aluminum is used as the target material.

Fig. 3.
Fig. 3.

Influence of highly energetic electrons emitted from the neutralizer on the lateral coating distribution, using titanium as the target material.

Fig. 4.
Fig. 4.

Influence of oxygen content on the lateral coating distribution, using titanium as the target material.

Fig. 5.
Fig. 5.

Influence of reactive gas inlet positioning on the lateral coating distribution, using titanium as the target material.

Fig. 6.
Fig. 6.

Lateral distribution of deposition rates for different coil currents for alumina.

Fig. 7.
Fig. 7.

Local maxima of deposition rates as a function of coil current using oxides of aluminum (blue square plot) and titanium (red triangle plot) as target materials.

Fig. 8.
Fig. 8.

Lateral distribution of deposition rate in conjunction with the corresponding parameters set on the ion source.

Tables (1)

Tables Icon

Table 1 Summary of Parameters with Clear Influence on the Guiding Efficiency and Achieved Gain Factors

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

B=μNI2πrsolenoid,
H>mvcqerB2mEkinc2μ0/e2rsolenoid2,
relec=mvqB.
relec<rsolenoid<rion,

Metrics