Abstract

Numerical analysis of single and multiple gold nanowires embedded in triple cores arranged in collinear and noncollinear configurations in photonic crystal fibers (PCFs) is reported. A full-vectorial finite element method is used to achieve coupling characteristics of plasmonic PCF couplers for both x and y polarizations. It is demonstrated numerically that the PCF plasmonic couplers exhibit polarization-independent tunable broadband filter characteristics that can be tuned according to the diameter of the embedded gold rod(s).

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny and B. Hecht, Principle of Nano-Optics (Cambridge University, 2006).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2006).
  3. A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 97, 041107 (2010).
    [CrossRef]
  4. F. Bilotti, S. Tricarico, and L. Vegni, “Plasmonic metamaterial cloaking at optical frequencies,” IEEE Trans. Nanotechnol. 9, 55–61 (2010).
    [CrossRef]
  5. A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors,” J. Opt. Soc. Am. B 24, 1423–1429 (2007).
    [CrossRef]
  6. C. H. Chen and K. S. Liao, “1×N plasmonic power splitters based on metal-insulator-metal waveguides,” Opt. Express 21, 4036–4043 (2013).
    [CrossRef]
  7. A. Nagasaki, K. Saitoh, and M. Koshiba, “Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes,” Opt. Express 19, 3799–3808 (2011).
    [CrossRef]
  8. P. J. A. Sazio, A. A. Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
    [CrossRef]
  9. H. Tyagi, M. Schmidt, L. P. Sempere, and P. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16, 17227–17236 (2008).
    [CrossRef]
  10. H. Tyagi, H. Lee, P. Uebel, M. Schmidt, N. Joly, M. Scharrer, and P. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35, 2573–2575 (2010).
    [CrossRef]
  11. G. Ren, P. Shum, X. Yu, J. J. Hu, G. Wang, and Y. Gong, “Polarization dependent guiding in liquid crystal filled photonic crystal fibers,” Opt. Commun. 281, 1598–1606 (2008).
    [CrossRef]
  12. H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nanowires in microstructured fibers,” Opt. Express 19, 12180–12189 (2011).
    [CrossRef]
  13. K. Saitoh, Y. Sato, and M. Koshiba, “Coupling characteristics of dual-core photonic crystal fiber couplers,” Opt. Express 11, 3188–3195 (2003).
    [CrossRef]
  14. K. Saitoh, Y. Sato, and M. Koshiba, “Polarization splitter in three-core photonic crystal fibers,” Opt. Express 12, 3940–3946 (2004).
    [CrossRef]
  15. S. K. Varshney, K. Saitoh, R. K. Sinha, and M. Koshiba, “Coupling characteristics of multicore photonic crystal fiber-based 1×4 power splitters,” J. Lightwave Technol. 27, 2062–2068 (2009).
    [CrossRef]
  16. S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4, 1178–1187 (2012).
    [CrossRef]
  17. P. Li and J. Zhao, “Polarization-dependent coupling in gold-filled dual-core photonic crystal fibers,” Opt. Express 21, 5232–5238 (2013).
    [CrossRef]
  18. B. Sun, M. Y. Chen, J. Zhou, and Y. K. Zhang, “Surface plasmon induced polarization splitting based on dual-core photonic crystal fiber with metal wire,” Plasmonics 8, 1253–1258 (2013).
    [CrossRef]
  19. P. Uebel, M. A. Schmidt, H. W. Lee, and P. St. J. Russell, “Polarization-resolved near-field mapping of a coupled plasmonic waveguide array,” Opt. Express 20, 28409–28417 (2012).
    [CrossRef]
  20. H. W. Lee, M. A. Schmidt, and P. St. J. Russell, “Excitation of a nanowire ‘molecule’ in gold-filled photonic crystal fiber,” Opt. Lett. 37, 2946–2948 (2012).
    [CrossRef]
  21. Y. H. Ja, “Optical vernier filter with fiber grating Fabry–Perot resonators,” Appl. Opt. 34, 6164–6167 (1995).
    [CrossRef]
  22. M. A. Schmidt and P. S. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16, 13617–13623 (2008).
    [CrossRef]
  23. A. Ghatak and K. Thyagarajan, An Introduction to Fiber Optics (Cambridge University, 1988).
  24. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
    [CrossRef]
  25. K. Okamoto, Fundamental of Optical Waveguides, 2nd ed. (Academic, 2006).
  26. N. Kishi and E. Yamashita, “A simple coupled-mode analysis method for multiple-core optical fiber and coupled dielectric waveguide structures,” IEEE Trans. Microwave Theor. Tech. 36, 1861–1868 (1988).
    [CrossRef]

2013

2012

2011

2010

H. Tyagi, H. Lee, P. Uebel, M. Schmidt, N. Joly, M. Scharrer, and P. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35, 2573–2575 (2010).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 97, 041107 (2010).
[CrossRef]

F. Bilotti, S. Tricarico, and L. Vegni, “Plasmonic metamaterial cloaking at optical frequencies,” IEEE Trans. Nanotechnol. 9, 55–61 (2010).
[CrossRef]

2009

2008

2007

2006

P. J. A. Sazio, A. A. Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef]

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[CrossRef]

2004

2003

1995

1988

N. Kishi and E. Yamashita, “A simple coupled-mode analysis method for multiple-core optical fiber and coupled dielectric waveguide structures,” IEEE Trans. Microwave Theor. Tech. 36, 1861–1868 (1988).
[CrossRef]

Badding, J. V.

P. J. A. Sazio, A. A. Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef]

Baril, N. F.

P. J. A. Sazio, A. A. Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef]

Bilotti, F.

F. Bilotti, S. Tricarico, and L. Vegni, “Plasmonic metamaterial cloaking at optical frequencies,” IEEE Trans. Nanotechnol. 9, 55–61 (2010).
[CrossRef]

Chen, C. H.

Chen, M. Y.

B. Sun, M. Y. Chen, J. Zhou, and Y. K. Zhang, “Surface plasmon induced polarization splitting based on dual-core photonic crystal fiber with metal wire,” Plasmonics 8, 1253–1258 (2013).
[CrossRef]

Correa, A. A.

P. J. A. Sazio, A. A. Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef]

Crespi, V. H.

P. J. A. Sazio, A. A. Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef]

Etchegoin, P. G.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[CrossRef]

Finlayson, C. E.

P. J. A. Sazio, A. A. Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef]

Ghatak, A.

A. Ghatak and K. Thyagarajan, An Introduction to Fiber Optics (Cambridge University, 1988).

Gong, Y.

G. Ren, P. Shum, X. Yu, J. J. Hu, G. Wang, and Y. Gong, “Polarization dependent guiding in liquid crystal filled photonic crystal fibers,” Opt. Commun. 281, 1598–1606 (2008).
[CrossRef]

Gopalan, V.

P. J. A. Sazio, A. A. Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef]

Hassani, A.

Hayes, J. R.

P. J. A. Sazio, A. A. Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef]

Hecht, B.

L. Novotny and B. Hecht, Principle of Nano-Optics (Cambridge University, 2006).

Hu, J. J.

G. Ren, P. Shum, X. Yu, J. J. Hu, G. Wang, and Y. Gong, “Polarization dependent guiding in liquid crystal filled photonic crystal fibers,” Opt. Commun. 281, 1598–1606 (2008).
[CrossRef]

Ja, Y. H.

Jackson, B. R.

P. J. A. Sazio, A. A. Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef]

Joly, N.

Joly, N. Y.

Kishi, N.

N. Kishi and E. Yamashita, “A simple coupled-mode analysis method for multiple-core optical fiber and coupled dielectric waveguide structures,” IEEE Trans. Microwave Theor. Tech. 36, 1861–1868 (1988).
[CrossRef]

Koshiba, M.

Krasavin, A. V.

A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 97, 041107 (2010).
[CrossRef]

Le Ru, E. C.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[CrossRef]

Lee, H.

Lee, H. W.

Li, P.

Liao, K. S.

Liu, D.

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4, 1178–1187 (2012).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2006).

Margine, E. R.

P. J. A. Sazio, A. A. Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef]

Meyer, M.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[CrossRef]

Nagasaki, A.

Novotny, L.

L. Novotny and B. Hecht, Principle of Nano-Optics (Cambridge University, 2006).

Okamoto, K.

K. Okamoto, Fundamental of Optical Waveguides, 2nd ed. (Academic, 2006).

Ren, G.

G. Ren, P. Shum, X. Yu, J. J. Hu, G. Wang, and Y. Gong, “Polarization dependent guiding in liquid crystal filled photonic crystal fibers,” Opt. Commun. 281, 1598–1606 (2008).
[CrossRef]

Russell, P.

Russell, P. S. J.

Russell, P. St. J.

Russell, R. F.

Saitoh, K.

Sato, Y.

Sazio, P. J. A.

P. J. A. Sazio, A. A. Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef]

Scharrer, M.

Scheidemantel, T. J.

P. J. A. Sazio, A. A. Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef]

Schmidt, M.

Schmidt, M. A.

Sempere, L. P.

Shum, P.

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4, 1178–1187 (2012).
[CrossRef]

G. Ren, P. Shum, X. Yu, J. J. Hu, G. Wang, and Y. Gong, “Polarization dependent guiding in liquid crystal filled photonic crystal fibers,” Opt. Commun. 281, 1598–1606 (2008).
[CrossRef]

Sinha, R. K.

Skorobogatiy, M.

Sun, B.

B. Sun, M. Y. Chen, J. Zhou, and Y. K. Zhang, “Surface plasmon induced polarization splitting based on dual-core photonic crystal fiber with metal wire,” Plasmonics 8, 1253–1258 (2013).
[CrossRef]

Thyagarajan, K.

A. Ghatak and K. Thyagarajan, An Introduction to Fiber Optics (Cambridge University, 1988).

Tricarico, S.

F. Bilotti, S. Tricarico, and L. Vegni, “Plasmonic metamaterial cloaking at optical frequencies,” IEEE Trans. Nanotechnol. 9, 55–61 (2010).
[CrossRef]

Tyagi, H.

Tyagi, H. K.

Uebel, P.

Varshney, S. K.

Vegni, L.

F. Bilotti, S. Tricarico, and L. Vegni, “Plasmonic metamaterial cloaking at optical frequencies,” IEEE Trans. Nanotechnol. 9, 55–61 (2010).
[CrossRef]

Wang, G.

G. Ren, P. Shum, X. Yu, J. J. Hu, G. Wang, and Y. Gong, “Polarization dependent guiding in liquid crystal filled photonic crystal fibers,” Opt. Commun. 281, 1598–1606 (2008).
[CrossRef]

Won, D.-J.

P. J. A. Sazio, A. A. Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef]

Xia, L.

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4, 1178–1187 (2012).
[CrossRef]

Yamashita, E.

N. Kishi and E. Yamashita, “A simple coupled-mode analysis method for multiple-core optical fiber and coupled dielectric waveguide structures,” IEEE Trans. Microwave Theor. Tech. 36, 1861–1868 (1988).
[CrossRef]

Yu, X.

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4, 1178–1187 (2012).
[CrossRef]

G. Ren, P. Shum, X. Yu, J. J. Hu, G. Wang, and Y. Gong, “Polarization dependent guiding in liquid crystal filled photonic crystal fibers,” Opt. Commun. 281, 1598–1606 (2008).
[CrossRef]

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 97, 041107 (2010).
[CrossRef]

Zhang, F.

P. J. A. Sazio, A. A. Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef]

Zhang, S.

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4, 1178–1187 (2012).
[CrossRef]

Zhang, Y.

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4, 1178–1187 (2012).
[CrossRef]

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4, 1178–1187 (2012).
[CrossRef]

Zhang, Y. K.

B. Sun, M. Y. Chen, J. Zhou, and Y. K. Zhang, “Surface plasmon induced polarization splitting based on dual-core photonic crystal fiber with metal wire,” Plasmonics 8, 1253–1258 (2013).
[CrossRef]

Zhao, J.

Zhou, J.

B. Sun, M. Y. Chen, J. Zhou, and Y. K. Zhang, “Surface plasmon induced polarization splitting based on dual-core photonic crystal fiber with metal wire,” Plasmonics 8, 1253–1258 (2013).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 97, 041107 (2010).
[CrossRef]

IEEE Photon. J.

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4, 1178–1187 (2012).
[CrossRef]

IEEE Trans. Microwave Theor. Tech.

N. Kishi and E. Yamashita, “A simple coupled-mode analysis method for multiple-core optical fiber and coupled dielectric waveguide structures,” IEEE Trans. Microwave Theor. Tech. 36, 1861–1868 (1988).
[CrossRef]

IEEE Trans. Nanotechnol.

F. Bilotti, S. Tricarico, and L. Vegni, “Plasmonic metamaterial cloaking at optical frequencies,” IEEE Trans. Nanotechnol. 9, 55–61 (2010).
[CrossRef]

J. Chem. Phys.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Commun.

G. Ren, P. Shum, X. Yu, J. J. Hu, G. Wang, and Y. Gong, “Polarization dependent guiding in liquid crystal filled photonic crystal fibers,” Opt. Commun. 281, 1598–1606 (2008).
[CrossRef]

Opt. Express

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nanowires in microstructured fibers,” Opt. Express 19, 12180–12189 (2011).
[CrossRef]

K. Saitoh, Y. Sato, and M. Koshiba, “Coupling characteristics of dual-core photonic crystal fiber couplers,” Opt. Express 11, 3188–3195 (2003).
[CrossRef]

K. Saitoh, Y. Sato, and M. Koshiba, “Polarization splitter in three-core photonic crystal fibers,” Opt. Express 12, 3940–3946 (2004).
[CrossRef]

P. Li and J. Zhao, “Polarization-dependent coupling in gold-filled dual-core photonic crystal fibers,” Opt. Express 21, 5232–5238 (2013).
[CrossRef]

P. Uebel, M. A. Schmidt, H. W. Lee, and P. St. J. Russell, “Polarization-resolved near-field mapping of a coupled plasmonic waveguide array,” Opt. Express 20, 28409–28417 (2012).
[CrossRef]

C. H. Chen and K. S. Liao, “1×N plasmonic power splitters based on metal-insulator-metal waveguides,” Opt. Express 21, 4036–4043 (2013).
[CrossRef]

A. Nagasaki, K. Saitoh, and M. Koshiba, “Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes,” Opt. Express 19, 3799–3808 (2011).
[CrossRef]

H. Tyagi, M. Schmidt, L. P. Sempere, and P. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16, 17227–17236 (2008).
[CrossRef]

M. A. Schmidt and P. S. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16, 13617–13623 (2008).
[CrossRef]

Opt. Lett.

Plasmonics

B. Sun, M. Y. Chen, J. Zhou, and Y. K. Zhang, “Surface plasmon induced polarization splitting based on dual-core photonic crystal fiber with metal wire,” Plasmonics 8, 1253–1258 (2013).
[CrossRef]

Science

P. J. A. Sazio, A. A. Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef]

Other

L. Novotny and B. Hecht, Principle of Nano-Optics (Cambridge University, 2006).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2006).

A. Ghatak and K. Thyagarajan, An Introduction to Fiber Optics (Cambridge University, 1988).

K. Okamoto, Fundamental of Optical Waveguides, 2nd ed. (Academic, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Cross-sectional view of single-core PCF geometry with two gold wires of different diameters, d1=0.4μm and d2=1μm, whereas the air-hole diameter d=1μm and pitch constant Λ=2.3μm. (b) Dispersion diagrams and corresponding loss spectra for both x and y polarizations of the PCF filled with two different gold rods. The loss peaks correspond to 693 and 1070 nm. (c) Snapshots of the normalized electric field distribution at the resonance condition as mentioned.

Fig. 2.
Fig. 2.

(a) Cross-sectional view of the three-core collinear PCF configuration with two gold rods and (b) six possible supermodes with different orientation of the electric field polarization.

Fig. 3.
Fig. 3.

Dispersion and loss spectrum for a three-core collinear PCF with two gold rods for the (a) x and (b) y polarizations.

Fig. 4.
Fig. 4.

(a) Snapshots of normalized electric field distribution, (b) transmission loss spectrum of a 0.1 mm long fiber, and (c) the normalized power variation at 760 nm wavelength, a function of z/Lc in a three-collinear core PCF coupler with two gold rods, where Lc is the coupling length.

Fig. 5.
Fig. 5.

Cross-sectional view of a three-noncollinear-core PCF configuration with a single gold rod, d=1μm, Λ=2.3μm.

Fig. 6.
Fig. 6.

Dispersion diagram and loss spectra for a three-noncollinear-core PCF coupler with a single gold rod for the (a) x and (b) y polarizations. The PCF parameters are d=1μm and Λ=2.3μm. The gold rod diameter d1 is the same as the air-hole diameter.

Fig. 7.
Fig. 7.

(a) Snapshots of normalized electric field distribution at resonance wavelengths, showing the SPP modes of the third and second orders. (b) Transmission loss spectrum for x and y polarizations; the device acts as a band rejection filter of 100 nm 3 dB bandwidth. (c) Normalized power variation at 860 nm wavelength in three cores as a function of z/Lc, where Lc is the coupling length.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

2πakt=2π(m1),
kt2=kSPP2β2,
β=k0nSPP,k0=2π/λ,
kSPP=k0εdεmεd+εm.
nSPP=εdεmεd+εm(λ(m1)2πa)2,
εAu(λ)=ε1λp2(1λ2+iλγp)+j=1,2Ajλj(eiϕj1λj1λiγj+eiϕj1λj+1λ+iγj),
a1z=jβa1jκa2,a2z=jβa2jκ(a1+a3),a3z=jβa3jκa2,
κpq=ωε0(N2Nq2)Ep*×Eqdxdyuz×(Ep*×Hp+Ep×Hp*)dxdy,
a1z=jβa1jκ(a2+a3),a2z=jβa2jκ(a1+a3),a3z=jβa3jκ(a1+a2),

Metrics