Abstract

A compact fiber Fabry–Perot interferometer (FPI) sensor for high temperature measurements is proposed and demonstrated. The FPI consists of a small core microstructured fiber and single mode fiber, and it is enabled by partial Fresnel reflection at the interface of the two fibers and the end surface Fresnel reflection of the microstructured fiber. Simple splicing and cleaving techniques are used to construct such an interferometer, and the fringe contrast can reach 20 dB. Response to high temperature up to 1000°C is tested and a sensitivity of 17.7pm/°C at 1570 nm is obtained. This proposed sensor is compact, and fabricated only with splicing and cleaving techniques, which shows a great potential for space-limited high temperature sensing applications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Kersey, D. A. Jackson, and M. Corke, “A simple fibre Fabry–Perot sensor,” Opt. Commun. 45, 71–74 (1983).
    [CrossRef]
  2. Y. Gong, Y. Guo, Y. J. Rao, T. Zhao, and Y. Wu, “Fiber-optic Fabry–Perot sensor based on periodic focusing effect of graded-index multimode fibers,” IEEE Photon. Technol. Lett. 22, 1708–1710 (2010).
    [CrossRef]
  3. C. Wu, H. Y. Fu, K. K. Qureshi, B. O. Guan, and H. Y. Tam, “High-pressure and high-temperature characteristics of a Fabry–Perot interferometer based on photonic crystal fiber,” Opt. Lett. 36, 412–414 (2011).
    [CrossRef]
  4. Q. Shi, F. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
    [CrossRef]
  5. Y. J. Rao, T. Zhao, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett. 32, 2662–2664 (2007).
    [CrossRef]
  6. J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry–Perot interferometer,” Opt. Lett. 34, 2441–2443 (2009).
    [CrossRef]
  7. T. Wang, M. Wang, and H. Ni, “Micro-Fabry–Perot interferometer with high contrast based on an in-fiber ellipsoidal cavity,” IEEE Photon. Technol. Lett. 24, 948–950 (2012).
    [CrossRef]
  8. X. Chen, F. Shen, Z. Wang, Z. Huang, and A. Wang, “Micro-air-gap based intrinsic Fabry–Perot interferometric fiber-optic sensor,” Appl. Opt. 45, 7760–7766 (2006).
    [CrossRef]
  9. Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, “Micro Fabry–Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15, 14123–14128 (2007).
    [CrossRef]
  10. W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: optical fiber milled by focused ion beam and its application for Fabry–Pérot refractive index sensor,” Rev. Sci. Instrum. 82, 076103 (2011).
    [CrossRef]
  11. S. Takahashi and S. Shibata, “Thermal variation of attenuation for optical fibers,” J. Non-Cryst. Solids 30, 359–370 (1979).
    [CrossRef]

2012 (1)

T. Wang, M. Wang, and H. Ni, “Micro-Fabry–Perot interferometer with high contrast based on an in-fiber ellipsoidal cavity,” IEEE Photon. Technol. Lett. 24, 948–950 (2012).
[CrossRef]

2011 (2)

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: optical fiber milled by focused ion beam and its application for Fabry–Pérot refractive index sensor,” Rev. Sci. Instrum. 82, 076103 (2011).
[CrossRef]

C. Wu, H. Y. Fu, K. K. Qureshi, B. O. Guan, and H. Y. Tam, “High-pressure and high-temperature characteristics of a Fabry–Perot interferometer based on photonic crystal fiber,” Opt. Lett. 36, 412–414 (2011).
[CrossRef]

2010 (1)

Y. Gong, Y. Guo, Y. J. Rao, T. Zhao, and Y. Wu, “Fiber-optic Fabry–Perot sensor based on periodic focusing effect of graded-index multimode fibers,” IEEE Photon. Technol. Lett. 22, 1708–1710 (2010).
[CrossRef]

2009 (1)

2008 (1)

Q. Shi, F. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

2007 (2)

2006 (1)

1983 (1)

D. Kersey, D. A. Jackson, and M. Corke, “A simple fibre Fabry–Perot sensor,” Opt. Commun. 45, 71–74 (1983).
[CrossRef]

1979 (1)

S. Takahashi and S. Shibata, “Thermal variation of attenuation for optical fibers,” J. Non-Cryst. Solids 30, 359–370 (1979).
[CrossRef]

Bang, O.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: optical fiber milled by focused ion beam and its application for Fabry–Pérot refractive index sensor,” Rev. Sci. Instrum. 82, 076103 (2011).
[CrossRef]

Chen, X.

Cheng, G. H.

Corke, M.

D. Kersey, D. A. Jackson, and M. Corke, “A simple fibre Fabry–Perot sensor,” Opt. Commun. 45, 71–74 (1983).
[CrossRef]

Coviello, G.

Deng, M.

Dong, X.

Q. Shi, F. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

Duan, D. W.

Finazzi, V.

Fu, H. Y.

Gong, Y.

Y. Gong, Y. Guo, Y. J. Rao, T. Zhao, and Y. Wu, “Fiber-optic Fabry–Perot sensor based on periodic focusing effect of graded-index multimode fibers,” IEEE Photon. Technol. Lett. 22, 1708–1710 (2010).
[CrossRef]

Guan, B. O.

Guo, Y.

Y. Gong, Y. Guo, Y. J. Rao, T. Zhao, and Y. Wu, “Fiber-optic Fabry–Perot sensor based on periodic focusing effect of graded-index multimode fibers,” IEEE Photon. Technol. Lett. 22, 1708–1710 (2010).
[CrossRef]

Hu, J. J.

Q. Shi, F. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

Huang, Z.

Jackson, D. A.

D. Kersey, D. A. Jackson, and M. Corke, “A simple fibre Fabry–Perot sensor,” Opt. Commun. 45, 71–74 (1983).
[CrossRef]

Jin, L.

Q. Shi, F. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

Kai, G.

Q. Shi, F. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

Kersey, D.

D. Kersey, D. A. Jackson, and M. Corke, “A simple fibre Fabry–Perot sensor,” Opt. Commun. 45, 71–74 (1983).
[CrossRef]

Liu, Z.

Q. Shi, F. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

Lv, F.

Q. Shi, F. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

Ni, H.

T. Wang, M. Wang, and H. Ni, “Micro-Fabry–Perot interferometer with high contrast based on an in-fiber ellipsoidal cavity,” IEEE Photon. Technol. Lett. 24, 948–950 (2012).
[CrossRef]

Petersen, D. H.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: optical fiber milled by focused ion beam and its application for Fabry–Pérot refractive index sensor,” Rev. Sci. Instrum. 82, 076103 (2011).
[CrossRef]

Pruneri, V.

Qureshi, K. K.

Rao, Y. J.

Savenko, A.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: optical fiber milled by focused ion beam and its application for Fabry–Pérot refractive index sensor,” Rev. Sci. Instrum. 82, 076103 (2011).
[CrossRef]

Shen, F.

Shi, Q.

Q. Shi, F. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

Shibata, S.

S. Takahashi and S. Shibata, “Thermal variation of attenuation for optical fibers,” J. Non-Cryst. Solids 30, 359–370 (1979).
[CrossRef]

Takahashi, S.

S. Takahashi and S. Shibata, “Thermal variation of attenuation for optical fibers,” J. Non-Cryst. Solids 30, 359–370 (1979).
[CrossRef]

Tam, H. Y.

Villatoro, J.

Wang, A.

Wang, F.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: optical fiber milled by focused ion beam and its application for Fabry–Pérot refractive index sensor,” Rev. Sci. Instrum. 82, 076103 (2011).
[CrossRef]

Wang, M.

T. Wang, M. Wang, and H. Ni, “Micro-Fabry–Perot interferometer with high contrast based on an in-fiber ellipsoidal cavity,” IEEE Photon. Technol. Lett. 24, 948–950 (2012).
[CrossRef]

Wang, T.

T. Wang, M. Wang, and H. Ni, “Micro-Fabry–Perot interferometer with high contrast based on an in-fiber ellipsoidal cavity,” IEEE Photon. Technol. Lett. 24, 948–950 (2012).
[CrossRef]

Wang, Z.

Q. Shi, F. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

X. Chen, F. Shen, Z. Wang, Z. Huang, and A. Wang, “Micro-air-gap based intrinsic Fabry–Perot interferometric fiber-optic sensor,” Appl. Opt. 45, 7760–7766 (2006).
[CrossRef]

Wu, C.

Wu, Y.

Y. Gong, Y. Guo, Y. J. Rao, T. Zhao, and Y. Wu, “Fiber-optic Fabry–Perot sensor based on periodic focusing effect of graded-index multimode fibers,” IEEE Photon. Technol. Lett. 22, 1708–1710 (2010).
[CrossRef]

Yang, X. C.

Yuan, W.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: optical fiber milled by focused ion beam and its application for Fabry–Pérot refractive index sensor,” Rev. Sci. Instrum. 82, 076103 (2011).
[CrossRef]

Zhao, T.

Y. Gong, Y. Guo, Y. J. Rao, T. Zhao, and Y. Wu, “Fiber-optic Fabry–Perot sensor based on periodic focusing effect of graded-index multimode fibers,” IEEE Photon. Technol. Lett. 22, 1708–1710 (2010).
[CrossRef]

Y. J. Rao, T. Zhao, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett. 32, 2662–2664 (2007).
[CrossRef]

Zhu, T.

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (3)

Y. Gong, Y. Guo, Y. J. Rao, T. Zhao, and Y. Wu, “Fiber-optic Fabry–Perot sensor based on periodic focusing effect of graded-index multimode fibers,” IEEE Photon. Technol. Lett. 22, 1708–1710 (2010).
[CrossRef]

Q. Shi, F. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

T. Wang, M. Wang, and H. Ni, “Micro-Fabry–Perot interferometer with high contrast based on an in-fiber ellipsoidal cavity,” IEEE Photon. Technol. Lett. 24, 948–950 (2012).
[CrossRef]

J. Non-Cryst. Solids (1)

S. Takahashi and S. Shibata, “Thermal variation of attenuation for optical fibers,” J. Non-Cryst. Solids 30, 359–370 (1979).
[CrossRef]

Opt. Commun. (1)

D. Kersey, D. A. Jackson, and M. Corke, “A simple fibre Fabry–Perot sensor,” Opt. Commun. 45, 71–74 (1983).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: optical fiber milled by focused ion beam and its application for Fabry–Pérot refractive index sensor,” Rev. Sci. Instrum. 82, 076103 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Configuration of our FPI sensor head.

Fig. 2.
Fig. 2.

Reflection spectra of FPI sensors in theory with MF lengths of 110, 79.6, and 45 μm.

Fig. 3.
Fig. 3.

Fringe contrast varying as a function of waist diameter of the fundament mode in the MF.

Fig. 4.
Fig. 4.

(a) Cross section of the MF. (b) Enlarged end facet of the MF. (c) Micrograph of the FPI sensor. (d) Schematic of the experimental setup.

Fig. 5.
Fig. 5.

Experimentally measured reflection spectra of the FPI sensors with MF lengths of 110, 79.6, and 45 μm.

Fig. 6.
Fig. 6.

Fringe spacing of the FPI sensor with different MF lengths at 1570 nm. The dots and solid line are the measured and fitted values, respectively.

Fig. 7.
Fig. 7.

(a) Interference spectra at different temperatures. (b) High temperature responses of the transmission dip at 1570 nm with a MF length of 79.6 μm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I=I1+I2+2I1I2cosφ,
R=(nsilicanair)2(nsilica+nair)2,
α=(2WinWout)2(Win2+Wout2)2.
V=ImaxIminImax+Imin,
Δλ=λmin(ξ+α)ΔT,

Metrics