Abstract

In this paper, a photonic crystal slab waveguide with wideband slow light, large group index (ng), and very low group velocity dispersion (GVD) has been presented. The structure is designed by shifting the first row of the air holes adjacent to the waveguide center in the longitudinal direction, and optofluidic infiltration in the second row. By applying optimized parameters for the two rows, a flexible control of ng(17.5<ng<133) with large bandwidth (2nm<Δλ<23nm) is obtained. The GVD decreased at the range of 1022s2/m. Numerical simulations are performed by the three-dimensional plane-wave expansion method.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. G. Sedgwick, C. J. Chang-Hasnain, P. C. Ku, and R. S. Tucker, “Storage-bit-rate product in slow-light optical buffers,” Electron. Lett. 41, 1347–1348 (2005).
    [CrossRef]
  2. F. Long, H. Tian, and Y. Ji, “A study of dynamic modulation and buffer capability in low dispersion photonic crystal waveguides,” J. Lightwave Technol. 28, 1139–1143 (2010).
    [CrossRef]
  3. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News 17(4), 18–23 (2006).
    [CrossRef]
  4. M. D. Lukin and A. Imamoğlu, “Nonlinear optics and quantum entanglement of ultraslow single photons,” Phys. Rev. Lett. 84, 1419–1422 (2000).
    [CrossRef]
  5. Y. Okawachi, M. Foster, J. Sharping, A. Gaeta, Q. Xu, and M. Lipson, “All-optical slow light on a photonic chip,” Opt. Express 14, 2317–2322 (2006).
    [CrossRef]
  6. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
    [CrossRef]
  7. Y. Zhao, H. M. Zhao, X. Y. Zhang, B. Yuan, and S. Zhang, “New mechanisms of slow light and their applications,” Opt. Laser Technol. 41, 517–525 (2009).
    [CrossRef]
  8. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
    [CrossRef]
  9. M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1402–1411 (2000).
    [CrossRef]
  10. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulkst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14, 1658–1672 (2006).
    [CrossRef]
  11. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
    [CrossRef]
  12. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
    [CrossRef]
  13. F. Long, H. Tian, and Y. Ji, “Buffering capability and limitations in low dispersion photonic crystal waveguides with elliptical airholes,” Appl. Opt. 49, 4808–4813 (2010).
    [CrossRef]
  14. A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15, 8323–8328 (2007).
    [CrossRef]
  15. Y. Xu, L. Xiang, E. Cassan, D. Gao, and X. Zhang, “Slow light in an alternative row of ellipse-hole photonic crystal waveguide,” Appl. Opt. 52, 1155–1160 (2013).
    [CrossRef]
  16. B. Meng, L. L. Wang, W. Q. Huang, X. F. Li, X. Zhai, and H. Zhang, “Wideband and low dispersion slow-light waveguide based on a photonic crystal with crescent-shaped air holes,” Appl. Opt. 51, 5735–5742 (2012).
    [CrossRef]
  17. S. Kubo, D. Mori, and T. Baba, “Low-group-velocity and low-dispersion slow light in photonic crystal waveguides,” Opt. Lett. 32, 2981–2983 (2007).
    [CrossRef]
  18. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).
    [CrossRef]
  19. J. T. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
    [CrossRef]
  20. M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009).
    [CrossRef]
  21. Y. Zhao, Y. N. Zhang, D. Wu, and Q. Wang, “Wideband slow light with large group index and low dispersion in slotted photonic crystal waveguide,” J. Lightwave Technol. 30, 2812–2817 (2012).
    [CrossRef]
  22. J. Wu, Y. P. Li, C. Peng, and Z. Y. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
    [CrossRef]
  23. D. Psaltis, S. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
    [CrossRef]
  24. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
    [CrossRef]
  25. S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
    [CrossRef]
  26. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
    [CrossRef]
  27. H. J. Shen and Q. L. Zhang, “Dispersionless slow light by photonic crystal slab waveguide with innermost elliptical air holes,” Optik 122, 1174–1178 (2011).
    [CrossRef]
  28. C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884–1897 (2003).
    [CrossRef]
  29. O. Khayam and H. Benisty, “General recipe for flatbands in photonic crystal waveguides,” Opt. Express 17, 14634–14648 (2009).
    [CrossRef]
  30. “Introduction to Optical Liquids” (2011), http://www.cargille.com/opticalintro.shtml .
  31. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34, 1072–1074 (2009).
    [CrossRef]

2013

2012

2011

H. J. Shen and Q. L. Zhang, “Dispersionless slow light by photonic crystal slab waveguide with innermost elliptical air holes,” Optik 122, 1174–1178 (2011).
[CrossRef]

2010

J. Wu, Y. P. Li, C. Peng, and Z. Y. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
[CrossRef]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

F. Long, H. Tian, and Y. Ji, “Buffering capability and limitations in low dispersion photonic crystal waveguides with elliptical airholes,” Appl. Opt. 49, 4808–4813 (2010).
[CrossRef]

F. Long, H. Tian, and Y. Ji, “A study of dynamic modulation and buffer capability in low dispersion photonic crystal waveguides,” J. Lightwave Technol. 28, 1139–1143 (2010).
[CrossRef]

2009

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[CrossRef]

Y. Zhao, H. M. Zhao, X. Y. Zhang, B. Yuan, and S. Zhang, “New mechanisms of slow light and their applications,” Opt. Laser Technol. 41, 517–525 (2009).
[CrossRef]

M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009).
[CrossRef]

O. Khayam and H. Benisty, “General recipe for flatbands in photonic crystal waveguides,” Opt. Express 17, 14634–14648 (2009).
[CrossRef]

Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34, 1072–1074 (2009).
[CrossRef]

2008

2007

2006

2005

F. G. Sedgwick, C. J. Chang-Hasnain, P. C. Ku, and R. S. Tucker, “Storage-bit-rate product in slow-light optical buffers,” Electron. Lett. 41, 1347–1348 (2005).
[CrossRef]

2004

Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

2003

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884–1897 (2003).
[CrossRef]

2001

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

2000

M. D. Lukin and A. Imamoğlu, “Nonlinear optics and quantum entanglement of ultraslow single photons,” Phys. Rev. Lett. 84, 1419–1422 (2000).
[CrossRef]

M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1402–1411 (2000).
[CrossRef]

Ahopelto, J.

Asakawa, K.

Baba, T.

Beggs, D. M.

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

Benisty, H.

Borel, P. I.

Boyd, R. W.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News 17(4), 18–23 (2006).
[CrossRef]

Cassan, E.

Chang-Hasnain, C. J.

F. G. Sedgwick, C. J. Chang-Hasnain, P. C. Ku, and R. S. Tucker, “Storage-bit-rate product in slow-light optical buffers,” Electron. Lett. 41, 1347–1348 (2005).
[CrossRef]

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884–1897 (2003).
[CrossRef]

Chuang, S. L.

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884–1897 (2003).
[CrossRef]

Corcoran, B.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[CrossRef]

Doll, T.

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
[CrossRef]

Ebnali-Heidari, M.

Eggleton, B. J.

M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[CrossRef]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
[CrossRef]

Eich, M.

Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

Engelen, R. J. P.

Fage-Pedersen, J.

Foster, M.

Frandsen, L. H.

Gaeta, A.

Gaeta, A. L.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News 17(4), 18–23 (2006).
[CrossRef]

Gao, D.

Gauthier, D. J.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News 17(4), 18–23 (2006).
[CrossRef]

Gomez-Iglesias, A.

Grillet, C.

M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[CrossRef]

Hamachi, Y.

Huang, W. Q.

Ikeda, N.

Imamoglu, A.

M. D. Lukin and A. Imamoğlu, “Nonlinear optics and quantum entanglement of ultraslow single photons,” Phys. Rev. Lett. 84, 1419–1422 (2000).
[CrossRef]

Ji, Y.

Khayam, O.

Kim, J.

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884–1897 (2003).
[CrossRef]

Korterik, J. P.

Krauss, T. F.

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[CrossRef]

J. T. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef]

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
[CrossRef]

Ku, P. C.

F. G. Sedgwick, C. J. Chang-Hasnain, P. C. Ku, and R. S. Tucker, “Storage-bit-rate product in slow-light optical buffers,” Electron. Lett. 41, 1347–1348 (2005).
[CrossRef]

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884–1897 (2003).
[CrossRef]

Kubo, S.

Kuipers, L.

Lavrinenko, A. V.

Li, J. T.

Li, X. F.

Li, Y. P.

J. Wu, Y. P. Li, C. Peng, and Z. Y. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
[CrossRef]

Lipsanen, H.

Lipson, M.

Loncar, M.

Long, F.

Lukin, M. D.

M. D. Lukin and A. Imamoğlu, “Nonlinear optics and quantum entanglement of ultraslow single photons,” Phys. Rev. Lett. 84, 1419–1422 (2000).
[CrossRef]

Melloni, A.

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

Meng, B.

Monat, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[CrossRef]

M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009).
[CrossRef]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
[CrossRef]

Mori, D.

Moss, D. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[CrossRef]

Mulot, M.

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

O’Faolain, L.

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[CrossRef]

J. T. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef]

Okawachi, Y.

Peng, C.

J. Wu, Y. P. Li, C. Peng, and Z. Y. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
[CrossRef]

Petrov, Y.

Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

Psaltis, D.

D. Psaltis, S. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

Quake, S.

D. Psaltis, S. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

Säynätjoki, A.

Scherer, A.

Schulz, S. A.

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

Sedgwick, F. G.

F. G. Sedgwick, C. J. Chang-Hasnain, P. C. Ku, and R. S. Tucker, “Storage-bit-rate product in slow-light optical buffers,” Electron. Lett. 41, 1347–1348 (2005).
[CrossRef]

Sharping, J.

Shen, H. J.

H. J. Shen and Q. L. Zhang, “Dispersionless slow light by photonic crystal slab waveguide with innermost elliptical air holes,” Optik 122, 1174–1178 (2011).
[CrossRef]

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Sugimoto, Y.

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Tian, H.

Tucker, R. S.

F. G. Sedgwick, C. J. Chang-Hasnain, P. C. Ku, and R. S. Tucker, “Storage-bit-rate product in slow-light optical buffers,” Electron. Lett. 41, 1347–1348 (2005).
[CrossRef]

van Hulkst, N. F.

Vuckovic, J.

Wang, L. L.

Wang, Q.

Wang, Z. Y.

J. Wu, Y. P. Li, C. Peng, and Z. Y. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
[CrossRef]

Watanabe, Y.

White, T. P.

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[CrossRef]

J. T. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef]

Wu, D.

Wu, J.

J. Wu, Y. P. Li, C. Peng, and Z. Y. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
[CrossRef]

Xiang, L.

Xu, Q.

Xu, Y.

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Yang, C. H.

D. Psaltis, S. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Yuan, B.

Y. Zhao, H. M. Zhao, X. Y. Zhang, B. Yuan, and S. Zhang, “New mechanisms of slow light and their applications,” Opt. Laser Technol. 41, 517–525 (2009).
[CrossRef]

Zhai, X.

Zhang, H.

Zhang, Q. L.

H. J. Shen and Q. L. Zhang, “Dispersionless slow light by photonic crystal slab waveguide with innermost elliptical air holes,” Optik 122, 1174–1178 (2011).
[CrossRef]

Zhang, S.

Y. Zhao, H. M. Zhao, X. Y. Zhang, B. Yuan, and S. Zhang, “New mechanisms of slow light and their applications,” Opt. Laser Technol. 41, 517–525 (2009).
[CrossRef]

Zhang, X.

Zhang, X. Y.

Y. Zhao, H. M. Zhao, X. Y. Zhang, B. Yuan, and S. Zhang, “New mechanisms of slow light and their applications,” Opt. Laser Technol. 41, 517–525 (2009).
[CrossRef]

Zhang, Y. N.

Zhao, H. M.

Y. Zhao, H. M. Zhao, X. Y. Zhang, B. Yuan, and S. Zhang, “New mechanisms of slow light and their applications,” Opt. Laser Technol. 41, 517–525 (2009).
[CrossRef]

Zhao, Y.

Y. Zhao, Y. N. Zhang, D. Wu, and Q. Wang, “Wideband slow light with large group index and low dispersion in slotted photonic crystal waveguide,” J. Lightwave Technol. 30, 2812–2817 (2012).
[CrossRef]

Y. Zhao, H. M. Zhao, X. Y. Zhang, B. Yuan, and S. Zhang, “New mechanisms of slow light and their applications,” Opt. Laser Technol. 41, 517–525 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

Electron. Lett.

F. G. Sedgwick, C. J. Chang-Hasnain, P. C. Ku, and R. S. Tucker, “Storage-bit-rate product in slow-light optical buffers,” Electron. Lett. 41, 1347–1348 (2005).
[CrossRef]

J. Lightwave Technol.

J. Opt.

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

J. Phys. D

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
[CrossRef]

Nat. Photonics

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[CrossRef]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[CrossRef]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
[CrossRef]

Nature

D. Psaltis, S. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

Opt. Commun.

J. Wu, Y. P. Li, C. Peng, and Z. Y. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
[CrossRef]

Opt. Express

Opt. Laser Technol.

Y. Zhao, H. M. Zhao, X. Y. Zhang, B. Yuan, and S. Zhang, “New mechanisms of slow light and their applications,” Opt. Laser Technol. 41, 517–525 (2009).
[CrossRef]

Opt. Lett.

Opt. Photon. News

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News 17(4), 18–23 (2006).
[CrossRef]

Optik

H. J. Shen and Q. L. Zhang, “Dispersionless slow light by photonic crystal slab waveguide with innermost elliptical air holes,” Optik 122, 1174–1178 (2011).
[CrossRef]

Phys. Rev. Lett.

M. D. Lukin and A. Imamoğlu, “Nonlinear optics and quantum entanglement of ultraslow single photons,” Phys. Rev. Lett. 84, 1419–1422 (2000).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Proc. IEEE

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884–1897 (2003).
[CrossRef]

Other

“Introduction to Optical Liquids” (2011), http://www.cargille.com/opticalintro.shtml .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Three-dimensional geometry of suggested waveguide. The first row of holes adjacent to the waveguide row 1 is longitude shifted in the x direction. The magnitude of shifting is Δx. The second row of holes adjacent to the waveguide row 2 (shown with red circles) is infiltrated with optical fluid.

Fig. 2.
Fig. 2.

(a) Dispersion and (b) group index (ng) curves for various magnitudes of Δx.

Fig. 3.
Fig. 3.

(a) Dispersion and (b) group index (ng) curves for Δx=0.285a filled with optofluidics of different refractive indices (nf).

Fig. 4.
Fig. 4.

Modal field distribution for four structures, wherein Δx=0.285a, and the second row of air holes filled by optofluidics with different refractive indices (nf).

Fig. 5.
Fig. 5.

GVD curve for Δx=0.285a and optofluidics of (a) different refractive indices (nf) and (b) nf=2.1, 2.3.

Fig. 6.
Fig. 6.

(a) Dispersion and (b) group index (ng) curves for various thicknesses of slab (Tslab) changing for 10 nm steps from 210 to 230 nm.

Tables (2)

Tables Icon

Table 1. Group Index (ng), Bandwidth (Δλ), and NDBP for Various Structures and Comparing Results with Different References

Tables Icon

Table 2. GVD for Various Optical Fluids with Different nf

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

vg=(dkdω)1=c0ng,
NDBP=ng·Δωω,
β2=d2kdω2=1c0dngdω.

Metrics