Abstract

Holography is known to be a prospective tool for storing large amounts of digital information, providing long lasting safety and high speed data access. In this paper, we present a new approach to holographic memory system design. Our method is based on an application of discrete Fourier-transform calculations to encode two-dimensional binary data pages as computer-generated amplitude Fourier holograms (CGFHs). These CGFHs, represented as grayscale raster images, can be displayed with the use of a high resolution amplitude spatial light modulator (SLM) in an optical projection system and exposed on holographic medium with multiple reduction. The optical scheme required for the technical realization of this method appears significantly simpler compared with known holographic memory recording devices; moreover, it can be built using either coherent or incoherent light sources. Coding of data pages by precise pseudorandom phase masks during CGFH synthesis allows us to achieve about 3% of the recorded microholograms diffraction efficiency. The experimental results of CGFH projection recorded with a 20× reduction on photosensitive holographic medium and its reconstruction are presented.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. Mikaelyan, V. I. Bobrinev, A. A. Aksel’rod, S. M. Naumov, M. M. Koblova, E. A. Zasovin, K. I. Kushtanin, and V. V. Kharitonov, “Holographic memory devices with bulk recording of information,” Quantum Electron. 1, 55–59 (1971).
    [CrossRef]
  2. H. Coufal, D. Psaltis, and G. Sincebox, Holographic Data Storage (Springer, 2000).
  3. K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).
  4. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902–4914 (2004).
    [CrossRef]
  5. H. Horimai and X. Tan, “Collinear technology for a holographic versatile disk,” Appl. Opt. 45, 910–914 (2006).
    [CrossRef]
  6. B. Brown and A. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Dev. 13,160–168 (1969).
    [CrossRef]
  7. W.-J. Dallas, Computer-generated Holograms (Springer-Verlag, 1980).
  8. S. B. Odinokov, A. Y. Betin, V. I. Bobrinev, N. N. Evtikhiev, A. Y. Zherdev, E. Y. Zlokazov, D. S. Lushnikov, V. V. Markin, R. S. Starikov, and S. N. Starikov, “Method of computer generation and projection recording of microholograms for holographic memory systems: mathematical modelling and experimental implementation,” Quantum Electron. 43, 87–89 (2013).
    [CrossRef]
  9. “Information interchange on holographic versatile disc (HVD) recordable cartridges capacity: 200 Gbytes per cartridge,” , 1st ed., (Ecma International, 2007).

2013 (1)

S. B. Odinokov, A. Y. Betin, V. I. Bobrinev, N. N. Evtikhiev, A. Y. Zherdev, E. Y. Zlokazov, D. S. Lushnikov, V. V. Markin, R. S. Starikov, and S. N. Starikov, “Method of computer generation and projection recording of microholograms for holographic memory systems: mathematical modelling and experimental implementation,” Quantum Electron. 43, 87–89 (2013).
[CrossRef]

2006 (1)

2004 (1)

1971 (1)

A. L. Mikaelyan, V. I. Bobrinev, A. A. Aksel’rod, S. M. Naumov, M. M. Koblova, E. A. Zasovin, K. I. Kushtanin, and V. V. Kharitonov, “Holographic memory devices with bulk recording of information,” Quantum Electron. 1, 55–59 (1971).
[CrossRef]

1969 (1)

B. Brown and A. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Dev. 13,160–168 (1969).
[CrossRef]

Aksel’rod, A. A.

A. L. Mikaelyan, V. I. Bobrinev, A. A. Aksel’rod, S. M. Naumov, M. M. Koblova, E. A. Zasovin, K. I. Kushtanin, and V. V. Kharitonov, “Holographic memory devices with bulk recording of information,” Quantum Electron. 1, 55–59 (1971).
[CrossRef]

Ayres, M.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Betin, A. Y.

S. B. Odinokov, A. Y. Betin, V. I. Bobrinev, N. N. Evtikhiev, A. Y. Zherdev, E. Y. Zlokazov, D. S. Lushnikov, V. V. Markin, R. S. Starikov, and S. N. Starikov, “Method of computer generation and projection recording of microholograms for holographic memory systems: mathematical modelling and experimental implementation,” Quantum Electron. 43, 87–89 (2013).
[CrossRef]

Bjornson, E.

Bobrinev, V. I.

S. B. Odinokov, A. Y. Betin, V. I. Bobrinev, N. N. Evtikhiev, A. Y. Zherdev, E. Y. Zlokazov, D. S. Lushnikov, V. V. Markin, R. S. Starikov, and S. N. Starikov, “Method of computer generation and projection recording of microholograms for holographic memory systems: mathematical modelling and experimental implementation,” Quantum Electron. 43, 87–89 (2013).
[CrossRef]

A. L. Mikaelyan, V. I. Bobrinev, A. A. Aksel’rod, S. M. Naumov, M. M. Koblova, E. A. Zasovin, K. I. Kushtanin, and V. V. Kharitonov, “Holographic memory devices with bulk recording of information,” Quantum Electron. 1, 55–59 (1971).
[CrossRef]

Brown, B.

B. Brown and A. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Dev. 13,160–168 (1969).
[CrossRef]

Coufal, H.

H. Coufal, D. Psaltis, and G. Sincebox, Holographic Data Storage (Springer, 2000).

Curtis, K.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Dallas, W.-J.

W.-J. Dallas, Computer-generated Holograms (Springer-Verlag, 1980).

Dhar, L.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Evtikhiev, N. N.

S. B. Odinokov, A. Y. Betin, V. I. Bobrinev, N. N. Evtikhiev, A. Y. Zherdev, E. Y. Zlokazov, D. S. Lushnikov, V. V. Markin, R. S. Starikov, and S. N. Starikov, “Method of computer generation and projection recording of microholograms for holographic memory systems: mathematical modelling and experimental implementation,” Quantum Electron. 43, 87–89 (2013).
[CrossRef]

Hesselink, L.

Hill, A.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Horimai, H.

Kharitonov, V. V.

A. L. Mikaelyan, V. I. Bobrinev, A. A. Aksel’rod, S. M. Naumov, M. M. Koblova, E. A. Zasovin, K. I. Kushtanin, and V. V. Kharitonov, “Holographic memory devices with bulk recording of information,” Quantum Electron. 1, 55–59 (1971).
[CrossRef]

Koblova, M. M.

A. L. Mikaelyan, V. I. Bobrinev, A. A. Aksel’rod, S. M. Naumov, M. M. Koblova, E. A. Zasovin, K. I. Kushtanin, and V. V. Kharitonov, “Holographic memory devices with bulk recording of information,” Quantum Electron. 1, 55–59 (1971).
[CrossRef]

Kushtanin, K. I.

A. L. Mikaelyan, V. I. Bobrinev, A. A. Aksel’rod, S. M. Naumov, M. M. Koblova, E. A. Zasovin, K. I. Kushtanin, and V. V. Kharitonov, “Holographic memory devices with bulk recording of information,” Quantum Electron. 1, 55–59 (1971).
[CrossRef]

Kwan, D.

Lohmann, A.

B. Brown and A. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Dev. 13,160–168 (1969).
[CrossRef]

Lushnikov, D. S.

S. B. Odinokov, A. Y. Betin, V. I. Bobrinev, N. N. Evtikhiev, A. Y. Zherdev, E. Y. Zlokazov, D. S. Lushnikov, V. V. Markin, R. S. Starikov, and S. N. Starikov, “Method of computer generation and projection recording of microholograms for holographic memory systems: mathematical modelling and experimental implementation,” Quantum Electron. 43, 87–89 (2013).
[CrossRef]

Markin, V. V.

S. B. Odinokov, A. Y. Betin, V. I. Bobrinev, N. N. Evtikhiev, A. Y. Zherdev, E. Y. Zlokazov, D. S. Lushnikov, V. V. Markin, R. S. Starikov, and S. N. Starikov, “Method of computer generation and projection recording of microholograms for holographic memory systems: mathematical modelling and experimental implementation,” Quantum Electron. 43, 87–89 (2013).
[CrossRef]

Mikaelyan, A. L.

A. L. Mikaelyan, V. I. Bobrinev, A. A. Aksel’rod, S. M. Naumov, M. M. Koblova, E. A. Zasovin, K. I. Kushtanin, and V. V. Kharitonov, “Holographic memory devices with bulk recording of information,” Quantum Electron. 1, 55–59 (1971).
[CrossRef]

Naumov, S. M.

A. L. Mikaelyan, V. I. Bobrinev, A. A. Aksel’rod, S. M. Naumov, M. M. Koblova, E. A. Zasovin, K. I. Kushtanin, and V. V. Kharitonov, “Holographic memory devices with bulk recording of information,” Quantum Electron. 1, 55–59 (1971).
[CrossRef]

Odinokov, S. B.

S. B. Odinokov, A. Y. Betin, V. I. Bobrinev, N. N. Evtikhiev, A. Y. Zherdev, E. Y. Zlokazov, D. S. Lushnikov, V. V. Markin, R. S. Starikov, and S. N. Starikov, “Method of computer generation and projection recording of microholograms for holographic memory systems: mathematical modelling and experimental implementation,” Quantum Electron. 43, 87–89 (2013).
[CrossRef]

Okas, R.

Orlov, S. S.

Phillips, W.

Psaltis, D.

H. Coufal, D. Psaltis, and G. Sincebox, Holographic Data Storage (Springer, 2000).

Sincebox, G.

H. Coufal, D. Psaltis, and G. Sincebox, Holographic Data Storage (Springer, 2000).

Snyder, R.

Starikov, R. S.

S. B. Odinokov, A. Y. Betin, V. I. Bobrinev, N. N. Evtikhiev, A. Y. Zherdev, E. Y. Zlokazov, D. S. Lushnikov, V. V. Markin, R. S. Starikov, and S. N. Starikov, “Method of computer generation and projection recording of microholograms for holographic memory systems: mathematical modelling and experimental implementation,” Quantum Electron. 43, 87–89 (2013).
[CrossRef]

Starikov, S. N.

S. B. Odinokov, A. Y. Betin, V. I. Bobrinev, N. N. Evtikhiev, A. Y. Zherdev, E. Y. Zlokazov, D. S. Lushnikov, V. V. Markin, R. S. Starikov, and S. N. Starikov, “Method of computer generation and projection recording of microholograms for holographic memory systems: mathematical modelling and experimental implementation,” Quantum Electron. 43, 87–89 (2013).
[CrossRef]

Sundaram, P.

Takashima, Y.

Tan, X.

Wilson, W.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Zasovin, E. A.

A. L. Mikaelyan, V. I. Bobrinev, A. A. Aksel’rod, S. M. Naumov, M. M. Koblova, E. A. Zasovin, K. I. Kushtanin, and V. V. Kharitonov, “Holographic memory devices with bulk recording of information,” Quantum Electron. 1, 55–59 (1971).
[CrossRef]

Zherdev, A. Y.

S. B. Odinokov, A. Y. Betin, V. I. Bobrinev, N. N. Evtikhiev, A. Y. Zherdev, E. Y. Zlokazov, D. S. Lushnikov, V. V. Markin, R. S. Starikov, and S. N. Starikov, “Method of computer generation and projection recording of microholograms for holographic memory systems: mathematical modelling and experimental implementation,” Quantum Electron. 43, 87–89 (2013).
[CrossRef]

Zlokazov, E. Y.

S. B. Odinokov, A. Y. Betin, V. I. Bobrinev, N. N. Evtikhiev, A. Y. Zherdev, E. Y. Zlokazov, D. S. Lushnikov, V. V. Markin, R. S. Starikov, and S. N. Starikov, “Method of computer generation and projection recording of microholograms for holographic memory systems: mathematical modelling and experimental implementation,” Quantum Electron. 43, 87–89 (2013).
[CrossRef]

Appl. Opt. (2)

IBM J. Res. Dev. (1)

B. Brown and A. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Dev. 13,160–168 (1969).
[CrossRef]

Quantum Electron. (2)

A. L. Mikaelyan, V. I. Bobrinev, A. A. Aksel’rod, S. M. Naumov, M. M. Koblova, E. A. Zasovin, K. I. Kushtanin, and V. V. Kharitonov, “Holographic memory devices with bulk recording of information,” Quantum Electron. 1, 55–59 (1971).
[CrossRef]

S. B. Odinokov, A. Y. Betin, V. I. Bobrinev, N. N. Evtikhiev, A. Y. Zherdev, E. Y. Zlokazov, D. S. Lushnikov, V. V. Markin, R. S. Starikov, and S. N. Starikov, “Method of computer generation and projection recording of microholograms for holographic memory systems: mathematical modelling and experimental implementation,” Quantum Electron. 43, 87–89 (2013).
[CrossRef]

Other (4)

“Information interchange on holographic versatile disc (HVD) recordable cartridges capacity: 200 Gbytes per cartridge,” , 1st ed., (Ecma International, 2007).

H. Coufal, D. Psaltis, and G. Sincebox, Holographic Data Storage (Springer, 2000).

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

W.-J. Dallas, Computer-generated Holograms (Springer-Verlag, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

ECMA-377 standard binary data representation.

Fig. 2.
Fig. 2.

(a) CGFH equivalent record scheme and (b) CGFH encoded object reconstruction scheme.

Fig. 3.
Fig. 3.

Images reconstructed from CGFH realized using SLM for different data object phase coding algorithms: (a) no phase mask coding; (b) random phase mask coding; and (c) specialized pseudorandom phase mask coding.

Fig. 4.
Fig. 4.

Optical scheme of CGFH reduction and projection onto a holographic disc.

Fig. 5.
Fig. 5.

Data pages reconstructed from microholograms recorded in different experimental conditions: (a) in coherent scheme with PFG-01 holographic medium; (b) in coherent scheme with PFG-03 holographic medium; and (c) in incoherent scheme with PFG-01 holographic medium.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

t(xf,yf)I(xf,yf)=|Cr+Gej2πΔxf|2=Cr2+|G|2+Cr*Gej2πΔxf+CrG*ej2πΔxf=|G|2+Cr(Cr+Re[Gej2πΔxf]),
t(xf,yf)=C+Re[F˜[g(x+Δ,y)]],

Metrics