Abstract

We present the miniaturization of self-mixing interferometry (SMI) into a microfluidic circuit using an optical fiber, forming an optofluidic device that can be used as a component in lab on a chip systems. We characterize the performance of the device as a fluid velocity (and hence flow) sensor, showing it to produce good accuracy and correlation with theory over a range of velocities from 0.5 to 60mm/s and almost four decades of scatterer concentration. SMI in an optofluidic system has the advantage that only a single path to the optical inspection point is needed, as the laser source is also the receiver of light. In addition, the same system that is used for measuring fluid velocity can be used to measure other quantities such as particle size. The configuration presented is inherently easy to optically align due to the self-aligned property of SMI and divergent nature of light exiting the embedded optical fiber, providing for low-cost manufacturing.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442, 368–373 (2006).
    [Crossref]
  2. J. Godin, C.-H. Chen, S. H. Cho, W. Qiao, F. Tsai, and Y.-H. Lo, “Microfluidics and photonics for bio-system-on-a-chip: a review of advancements in technology towards a microfluidic flow cytometry chip,” J. Biophotonics 1, 355–376 (2008).
    [Crossref]
  3. D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
    [Crossref]
  4. J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25, 316–319 (1998).
    [Crossref]
  5. R. Lindken, M. Rossi, S. Grosse, and J. Westerweel, “Micro-particle image velocimetry (μPIV): recent developments, applications, and guidelines,” Lab Chip 9, 2551–2567 (2009).
    [Crossref]
  6. T. Bosch, N. Servagent, and S. Donati, “Optical feedback interferometry for sensing application,” Opt. Eng. 40, 20–27 (2001).
    [Crossref]
  7. G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A 4, S283–S294 (2002).
    [Crossref]
  8. F. F. M. de Mul, J. van Spijker, D. van der Plas, J. Greve, J. G. Aarnoudse, and T. M. Smits, “Mini laser-Doppler (blood) flow monitor with diode laser source and detection integrated in the probe,” Appl. Opt. 23, 2970–2973 (1984).
    [Crossref]
  9. M. H. Koelink, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, “Fiber-coupled self-mixing diode-laser Doppler velocimeter: technical aspects and flow velocity profile disturbances in water and blood flows,” Appl. Opt. 33, 5628–5641 (1994).
    [Crossref]
  10. C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A 7, S445–S452 (2005).
    [Crossref]
  11. S. K. Ozdemir, S. Shinohara, S. Takamiya, and H. Yoshida, “Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: in vitro and in vivo experiments,” Opt. Eng. 39, 2574–2580 (2000).
    [Crossref]
  12. M. Norgia, A. Pesatori, and L. Rovati, “Self-mixing laser Doppler spectra of extracorporeal blood flow: a theoretical and experimental study,” IEEE Sens. J. 12, 552–557 (2012).
    [Crossref]
  13. L. Campagnolo, M. Nikolic, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiére, L. Prat, A. D. Rakic, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).
  14. J. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22, R35–R66 (2001).
    [Crossref]
  15. G. Giuliani and S. Donati, “Laser interferometry,” in Unlocking Dynamical Diversity, D. M. Kane and K. A. Shore, eds. (Wiley, 2005), pp. 217–256.
  16. J. Perchoux, L. Campagnolo, Y. L. Lim, and A. D. Rakic, “Lens-free self-mixing sensor for velocity and vibrations measurements,” in Proceedings of COMMAD 2010 (IEEE, 2010), pp. 43–44.
  17. Y. L. Lim, R. Kliese, K. Bertling, K. Tanimizu, P. A. Jacobs, and A. D. Rakic, “Self-mixing flow sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 18, 11720–11727 (2010).
    [Crossref]
  18. Y. L. Lim, M. Nikolic, K. Bertling, R. Kliese, and A. D. Rakic, “Self-mixing imaging sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 17, 5517–5525 (2009).
    [Crossref]
  19. P. de Groot and G. Gallatin, “Backscatter-modulation velocimetry with an external-cavity laser diode,” Opt. Lett. 14, 165–167 (1989).
    [Crossref]
  20. H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer, 2003).
  21. G. Keiser, Optical Fiber Communications3rd ed. (McGraw-Hill, 2000).
  22. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  23. J. E. Mark, Polymer Data Handbook (Oxford University, 1999).
  24. V. V. Tuchin, Handbook of Optical Biomedical Diagnostics (SPIE, 2002).
  25. I. V. Yaroslavsky, A. N. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Inverse hybrid technique for determining the optical properties of turbid media from integrating-sphere measurements,” Appl. Opt. 35, 6797–6809 (1996).
    [Crossref]
  26. M. J. Shensa, “The discrete wavelet transform—wedding the a Trous and Mallat algorithms,” IEEE Trans. Acoust. Speech Signal Process. 40, 2464–2482 (1992).
    [Crossref]
  27. C. Riva, B. Ross, and G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11, 936–944 (1972).
  28. J. Albert, M. C. Soriano, I. Veretennicoff, K. Panajotov, J. Danckaert, P. A. Porta, D. P. Curtin, and J. G. McInerney, “Laser Doppler velocimetry with polarization-bistable VCSELs,” IEEE J. Sel. Topics Quantum Electron. 10, 1006–1012 (2004).
  29. M. Sciamanna, K. Panajotov, H. Thienpont, I. Veretennicoff, P. Megret, and M. Blondel, “Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers,” Opt. Lett. 28, 1543–1545 (2003).
    [Crossref]
  30. P. Walstra, J. T. M. Wouters, and T. J. Geurts, Dairy Science and Technology, 2nd ed. (CRC Press, 2006).

2013 (1)

L. Campagnolo, M. Nikolic, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiére, L. Prat, A. D. Rakic, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).

2012 (1)

M. Norgia, A. Pesatori, and L. Rovati, “Self-mixing laser Doppler spectra of extracorporeal blood flow: a theoretical and experimental study,” IEEE Sens. J. 12, 552–557 (2012).
[Crossref]

2010 (1)

2009 (2)

Y. L. Lim, M. Nikolic, K. Bertling, R. Kliese, and A. D. Rakic, “Self-mixing imaging sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 17, 5517–5525 (2009).
[Crossref]

R. Lindken, M. Rossi, S. Grosse, and J. Westerweel, “Micro-particle image velocimetry (μPIV): recent developments, applications, and guidelines,” Lab Chip 9, 2551–2567 (2009).
[Crossref]

2008 (1)

J. Godin, C.-H. Chen, S. H. Cho, W. Qiao, F. Tsai, and Y.-H. Lo, “Microfluidics and photonics for bio-system-on-a-chip: a review of advancements in technology towards a microfluidic flow cytometry chip,” J. Biophotonics 1, 355–376 (2008).
[Crossref]

2006 (2)

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442, 368–373 (2006).
[Crossref]

2005 (1)

C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A 7, S445–S452 (2005).
[Crossref]

2004 (1)

J. Albert, M. C. Soriano, I. Veretennicoff, K. Panajotov, J. Danckaert, P. A. Porta, D. P. Curtin, and J. G. McInerney, “Laser Doppler velocimetry with polarization-bistable VCSELs,” IEEE J. Sel. Topics Quantum Electron. 10, 1006–1012 (2004).

2003 (1)

2002 (1)

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A 4, S283–S294 (2002).
[Crossref]

2001 (2)

T. Bosch, N. Servagent, and S. Donati, “Optical feedback interferometry for sensing application,” Opt. Eng. 40, 20–27 (2001).
[Crossref]

J. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22, R35–R66 (2001).
[Crossref]

2000 (1)

S. K. Ozdemir, S. Shinohara, S. Takamiya, and H. Yoshida, “Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: in vitro and in vivo experiments,” Opt. Eng. 39, 2574–2580 (2000).
[Crossref]

1998 (1)

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25, 316–319 (1998).
[Crossref]

1996 (1)

1994 (1)

1992 (1)

M. J. Shensa, “The discrete wavelet transform—wedding the a Trous and Mallat algorithms,” IEEE Trans. Acoust. Speech Signal Process. 40, 2464–2482 (1992).
[Crossref]

1989 (1)

1984 (1)

1972 (1)

C. Riva, B. Ross, and G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11, 936–944 (1972).

Aarnoudse, J. G.

Adrian, R. J.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25, 316–319 (1998).
[Crossref]

Albert, J.

J. Albert, M. C. Soriano, I. Veretennicoff, K. Panajotov, J. Danckaert, P. A. Porta, D. P. Curtin, and J. G. McInerney, “Laser Doppler velocimetry with polarization-bistable VCSELs,” IEEE J. Sel. Topics Quantum Electron. 10, 1006–1012 (2004).

Albrecht, H.-E.

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer, 2003).

Beebe, D. J.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25, 316–319 (1998).
[Crossref]

Benedek, G. B.

C. Riva, B. Ross, and G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11, 936–944 (1972).

Bertling, K.

Blondel, M.

Borys, M.

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer, 2003).

Bosch, T.

L. Campagnolo, M. Nikolic, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiére, L. Prat, A. D. Rakic, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A 4, S283–S294 (2002).
[Crossref]

T. Bosch, N. Servagent, and S. Donati, “Optical feedback interferometry for sensing application,” Opt. Eng. 40, 20–27 (2001).
[Crossref]

Briers, J.

J. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22, R35–R66 (2001).
[Crossref]

Campagnolo, L.

L. Campagnolo, M. Nikolic, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiére, L. Prat, A. D. Rakic, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).

J. Perchoux, L. Campagnolo, Y. L. Lim, and A. D. Rakic, “Lens-free self-mixing sensor for velocity and vibrations measurements,” in Proceedings of COMMAD 2010 (IEEE, 2010), pp. 43–44.

Chen, C.-H.

J. Godin, C.-H. Chen, S. H. Cho, W. Qiao, F. Tsai, and Y.-H. Lo, “Microfluidics and photonics for bio-system-on-a-chip: a review of advancements in technology towards a microfluidic flow cytometry chip,” J. Biophotonics 1, 355–376 (2008).
[Crossref]

Cho, S. H.

J. Godin, C.-H. Chen, S. H. Cho, W. Qiao, F. Tsai, and Y.-H. Lo, “Microfluidics and photonics for bio-system-on-a-chip: a review of advancements in technology towards a microfluidic flow cytometry chip,” J. Biophotonics 1, 355–376 (2008).
[Crossref]

Curtin, D. P.

J. Albert, M. C. Soriano, I. Veretennicoff, K. Panajotov, J. Danckaert, P. A. Porta, D. P. Curtin, and J. G. McInerney, “Laser Doppler velocimetry with polarization-bistable VCSELs,” IEEE J. Sel. Topics Quantum Electron. 10, 1006–1012 (2004).

Damaschke, N.

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer, 2003).

Danckaert, J.

J. Albert, M. C. Soriano, I. Veretennicoff, K. Panajotov, J. Danckaert, P. A. Porta, D. P. Curtin, and J. G. McInerney, “Laser Doppler velocimetry with polarization-bistable VCSELs,” IEEE J. Sel. Topics Quantum Electron. 10, 1006–1012 (2004).

Dassel, A. C. M.

de Groot, P.

de Mul, F. F. M.

Dickinson, M.

C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A 7, S445–S452 (2005).
[Crossref]

Donati, S.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A 4, S283–S294 (2002).
[Crossref]

T. Bosch, N. Servagent, and S. Donati, “Optical feedback interferometry for sensing application,” Opt. Eng. 40, 20–27 (2001).
[Crossref]

G. Giuliani and S. Donati, “Laser interferometry,” in Unlocking Dynamical Diversity, D. M. Kane and K. A. Shore, eds. (Wiley, 2005), pp. 217–256.

Gallatin, G.

Geurts, T. J.

P. Walstra, J. T. M. Wouters, and T. J. Geurts, Dairy Science and Technology, 2nd ed. (CRC Press, 2006).

Giuliani, G.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A 4, S283–S294 (2002).
[Crossref]

G. Giuliani and S. Donati, “Laser interferometry,” in Unlocking Dynamical Diversity, D. M. Kane and K. A. Shore, eds. (Wiley, 2005), pp. 217–256.

Godin, J.

J. Godin, C.-H. Chen, S. H. Cho, W. Qiao, F. Tsai, and Y.-H. Lo, “Microfluidics and photonics for bio-system-on-a-chip: a review of advancements in technology towards a microfluidic flow cytometry chip,” J. Biophotonics 1, 355–376 (2008).
[Crossref]

Goldbach, T.

Graaff, R.

Greve, J.

Grosse, S.

R. Lindken, M. Rossi, S. Grosse, and J. Westerweel, “Micro-particle image velocimetry (μPIV): recent developments, applications, and guidelines,” Lab Chip 9, 2551–2567 (2009).
[Crossref]

Jacobs, P. A.

Keiser, G.

G. Keiser, Optical Fiber Communications3rd ed. (McGraw-Hill, 2000).

King, T.

C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A 7, S445–S452 (2005).
[Crossref]

Kliese, R.

Koelink, M. H.

Lim, Y. L.

L. Campagnolo, M. Nikolic, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiére, L. Prat, A. D. Rakic, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).

Y. L. Lim, R. Kliese, K. Bertling, K. Tanimizu, P. A. Jacobs, and A. D. Rakic, “Self-mixing flow sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 18, 11720–11727 (2010).
[Crossref]

Y. L. Lim, M. Nikolic, K. Bertling, R. Kliese, and A. D. Rakic, “Self-mixing imaging sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 17, 5517–5525 (2009).
[Crossref]

J. Perchoux, L. Campagnolo, Y. L. Lim, and A. D. Rakic, “Lens-free self-mixing sensor for velocity and vibrations measurements,” in Proceedings of COMMAD 2010 (IEEE, 2010), pp. 43–44.

Lindken, R.

R. Lindken, M. Rossi, S. Grosse, and J. Westerweel, “Micro-particle image velocimetry (μPIV): recent developments, applications, and guidelines,” Lab Chip 9, 2551–2567 (2009).
[Crossref]

Lo, Y.-H.

J. Godin, C.-H. Chen, S. H. Cho, W. Qiao, F. Tsai, and Y.-H. Lo, “Microfluidics and photonics for bio-system-on-a-chip: a review of advancements in technology towards a microfluidic flow cytometry chip,” J. Biophotonics 1, 355–376 (2008).
[Crossref]

Loubiére, K.

L. Campagnolo, M. Nikolic, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiére, L. Prat, A. D. Rakic, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Mark, J. E.

J. E. Mark, Polymer Data Handbook (Oxford University, 1999).

McInerney, J. G.

J. Albert, M. C. Soriano, I. Veretennicoff, K. Panajotov, J. Danckaert, P. A. Porta, D. P. Curtin, and J. G. McInerney, “Laser Doppler velocimetry with polarization-bistable VCSELs,” IEEE J. Sel. Topics Quantum Electron. 10, 1006–1012 (2004).

Megret, P.

Meinhart, C. D.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25, 316–319 (1998).
[Crossref]

Nikolic, M.

L. Campagnolo, M. Nikolic, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiére, L. Prat, A. D. Rakic, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).

Y. L. Lim, M. Nikolic, K. Bertling, R. Kliese, and A. D. Rakic, “Self-mixing imaging sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 17, 5517–5525 (2009).
[Crossref]

Norgia, M.

M. Norgia, A. Pesatori, and L. Rovati, “Self-mixing laser Doppler spectra of extracorporeal blood flow: a theoretical and experimental study,” IEEE Sens. J. 12, 552–557 (2012).
[Crossref]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A 4, S283–S294 (2002).
[Crossref]

Ozdemir, S. K.

S. K. Ozdemir, S. Shinohara, S. Takamiya, and H. Yoshida, “Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: in vitro and in vivo experiments,” Opt. Eng. 39, 2574–2580 (2000).
[Crossref]

Panajotov, K.

J. Albert, M. C. Soriano, I. Veretennicoff, K. Panajotov, J. Danckaert, P. A. Porta, D. P. Curtin, and J. G. McInerney, “Laser Doppler velocimetry with polarization-bistable VCSELs,” IEEE J. Sel. Topics Quantum Electron. 10, 1006–1012 (2004).

M. Sciamanna, K. Panajotov, H. Thienpont, I. Veretennicoff, P. Megret, and M. Blondel, “Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers,” Opt. Lett. 28, 1543–1545 (2003).
[Crossref]

Perchoux, J.

L. Campagnolo, M. Nikolic, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiére, L. Prat, A. D. Rakic, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).

J. Perchoux, L. Campagnolo, Y. L. Lim, and A. D. Rakic, “Lens-free self-mixing sensor for velocity and vibrations measurements,” in Proceedings of COMMAD 2010 (IEEE, 2010), pp. 43–44.

Pesatori, A.

M. Norgia, A. Pesatori, and L. Rovati, “Self-mixing laser Doppler spectra of extracorporeal blood flow: a theoretical and experimental study,” IEEE Sens. J. 12, 552–557 (2012).
[Crossref]

Porta, P. A.

J. Albert, M. C. Soriano, I. Veretennicoff, K. Panajotov, J. Danckaert, P. A. Porta, D. P. Curtin, and J. G. McInerney, “Laser Doppler velocimetry with polarization-bistable VCSELs,” IEEE J. Sel. Topics Quantum Electron. 10, 1006–1012 (2004).

Prat, L.

L. Campagnolo, M. Nikolic, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiére, L. Prat, A. D. Rakic, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).

Psaltis, D.

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]

Qiao, W.

J. Godin, C.-H. Chen, S. H. Cho, W. Qiao, F. Tsai, and Y.-H. Lo, “Microfluidics and photonics for bio-system-on-a-chip: a review of advancements in technology towards a microfluidic flow cytometry chip,” J. Biophotonics 1, 355–376 (2008).
[Crossref]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]

Rakic, A. D.

L. Campagnolo, M. Nikolic, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiére, L. Prat, A. D. Rakic, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).

Y. L. Lim, R. Kliese, K. Bertling, K. Tanimizu, P. A. Jacobs, and A. D. Rakic, “Self-mixing flow sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 18, 11720–11727 (2010).
[Crossref]

Y. L. Lim, M. Nikolic, K. Bertling, R. Kliese, and A. D. Rakic, “Self-mixing imaging sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 17, 5517–5525 (2009).
[Crossref]

J. Perchoux, L. Campagnolo, Y. L. Lim, and A. D. Rakic, “Lens-free self-mixing sensor for velocity and vibrations measurements,” in Proceedings of COMMAD 2010 (IEEE, 2010), pp. 43–44.

Riva, C.

C. Riva, B. Ross, and G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11, 936–944 (1972).

Ross, B.

C. Riva, B. Ross, and G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11, 936–944 (1972).

Rossi, M.

R. Lindken, M. Rossi, S. Grosse, and J. Westerweel, “Micro-particle image velocimetry (μPIV): recent developments, applications, and guidelines,” Lab Chip 9, 2551–2567 (2009).
[Crossref]

Rovati, L.

M. Norgia, A. Pesatori, and L. Rovati, “Self-mixing laser Doppler spectra of extracorporeal blood flow: a theoretical and experimental study,” IEEE Sens. J. 12, 552–557 (2012).
[Crossref]

Santiago, J. G.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25, 316–319 (1998).
[Crossref]

Schwarzmaier, H.-J.

Sciamanna, M.

Servagent, N.

T. Bosch, N. Servagent, and S. Donati, “Optical feedback interferometry for sensing application,” Opt. Eng. 40, 20–27 (2001).
[Crossref]

Shensa, M. J.

M. J. Shensa, “The discrete wavelet transform—wedding the a Trous and Mallat algorithms,” IEEE Trans. Acoust. Speech Signal Process. 40, 2464–2482 (1992).
[Crossref]

Shinohara, S.

S. K. Ozdemir, S. Shinohara, S. Takamiya, and H. Yoshida, “Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: in vitro and in vivo experiments,” Opt. Eng. 39, 2574–2580 (2000).
[Crossref]

Smits, T. M.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Soriano, M. C.

J. Albert, M. C. Soriano, I. Veretennicoff, K. Panajotov, J. Danckaert, P. A. Porta, D. P. Curtin, and J. G. McInerney, “Laser Doppler velocimetry with polarization-bistable VCSELs,” IEEE J. Sel. Topics Quantum Electron. 10, 1006–1012 (2004).

Takamiya, S.

S. K. Ozdemir, S. Shinohara, S. Takamiya, and H. Yoshida, “Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: in vitro and in vivo experiments,” Opt. Eng. 39, 2574–2580 (2000).
[Crossref]

Tanimizu, K.

Thienpont, H.

Tropea, C.

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer, 2003).

Tsai, F.

J. Godin, C.-H. Chen, S. H. Cho, W. Qiao, F. Tsai, and Y.-H. Lo, “Microfluidics and photonics for bio-system-on-a-chip: a review of advancements in technology towards a microfluidic flow cytometry chip,” J. Biophotonics 1, 355–376 (2008).
[Crossref]

Tuchin, V. V.

V. V. Tuchin, Handbook of Optical Biomedical Diagnostics (SPIE, 2002).

van der Plas, D.

van Spijker, J.

Veretennicoff, I.

J. Albert, M. C. Soriano, I. Veretennicoff, K. Panajotov, J. Danckaert, P. A. Porta, D. P. Curtin, and J. G. McInerney, “Laser Doppler velocimetry with polarization-bistable VCSELs,” IEEE J. Sel. Topics Quantum Electron. 10, 1006–1012 (2004).

M. Sciamanna, K. Panajotov, H. Thienpont, I. Veretennicoff, P. Megret, and M. Blondel, “Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers,” Opt. Lett. 28, 1543–1545 (2003).
[Crossref]

Walstra, P.

P. Walstra, J. T. M. Wouters, and T. J. Geurts, Dairy Science and Technology, 2nd ed. (CRC Press, 2006).

Weijers, A. L.

Wereley, S. T.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25, 316–319 (1998).
[Crossref]

Westerweel, J.

R. Lindken, M. Rossi, S. Grosse, and J. Westerweel, “Micro-particle image velocimetry (μPIV): recent developments, applications, and guidelines,” Lab Chip 9, 2551–2567 (2009).
[Crossref]

Whitesides, G. M.

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442, 368–373 (2006).
[Crossref]

Wouters, J. T. M.

P. Walstra, J. T. M. Wouters, and T. J. Geurts, Dairy Science and Technology, 2nd ed. (CRC Press, 2006).

Yang, C. H.

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]

Yaroslavsky, A. N.

Yaroslavsky, I. V.

Yoshida, H.

S. K. Ozdemir, S. Shinohara, S. Takamiya, and H. Yoshida, “Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: in vitro and in vivo experiments,” Opt. Eng. 39, 2574–2580 (2000).
[Crossref]

Zakian, C.

C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A 7, S445–S452 (2005).
[Crossref]

Appl. Opt. (3)

Exp. Fluids (1)

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25, 316–319 (1998).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (1)

J. Albert, M. C. Soriano, I. Veretennicoff, K. Panajotov, J. Danckaert, P. A. Porta, D. P. Curtin, and J. G. McInerney, “Laser Doppler velocimetry with polarization-bistable VCSELs,” IEEE J. Sel. Topics Quantum Electron. 10, 1006–1012 (2004).

IEEE Sens. J. (1)

M. Norgia, A. Pesatori, and L. Rovati, “Self-mixing laser Doppler spectra of extracorporeal blood flow: a theoretical and experimental study,” IEEE Sens. J. 12, 552–557 (2012).
[Crossref]

IEEE Trans. Acoust. Speech Signal Process. (1)

M. J. Shensa, “The discrete wavelet transform—wedding the a Trous and Mallat algorithms,” IEEE Trans. Acoust. Speech Signal Process. 40, 2464–2482 (1992).
[Crossref]

Invest. Ophthalmol. (1)

C. Riva, B. Ross, and G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11, 936–944 (1972).

J. Biophotonics (1)

J. Godin, C.-H. Chen, S. H. Cho, W. Qiao, F. Tsai, and Y.-H. Lo, “Microfluidics and photonics for bio-system-on-a-chip: a review of advancements in technology towards a microfluidic flow cytometry chip,” J. Biophotonics 1, 355–376 (2008).
[Crossref]

J. Opt. A (2)

C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A 7, S445–S452 (2005).
[Crossref]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A 4, S283–S294 (2002).
[Crossref]

Lab Chip (1)

R. Lindken, M. Rossi, S. Grosse, and J. Westerweel, “Micro-particle image velocimetry (μPIV): recent developments, applications, and guidelines,” Lab Chip 9, 2551–2567 (2009).
[Crossref]

Microfluid. Nanofluid. (1)

L. Campagnolo, M. Nikolic, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiére, L. Prat, A. D. Rakic, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).

Nature (2)

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442, 368–373 (2006).
[Crossref]

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]

Opt. Eng. (2)

T. Bosch, N. Servagent, and S. Donati, “Optical feedback interferometry for sensing application,” Opt. Eng. 40, 20–27 (2001).
[Crossref]

S. K. Ozdemir, S. Shinohara, S. Takamiya, and H. Yoshida, “Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: in vitro and in vivo experiments,” Opt. Eng. 39, 2574–2580 (2000).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Physiol. Meas. (1)

J. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22, R35–R66 (2001).
[Crossref]

Other (8)

G. Giuliani and S. Donati, “Laser interferometry,” in Unlocking Dynamical Diversity, D. M. Kane and K. A. Shore, eds. (Wiley, 2005), pp. 217–256.

J. Perchoux, L. Campagnolo, Y. L. Lim, and A. D. Rakic, “Lens-free self-mixing sensor for velocity and vibrations measurements,” in Proceedings of COMMAD 2010 (IEEE, 2010), pp. 43–44.

P. Walstra, J. T. M. Wouters, and T. J. Geurts, Dairy Science and Technology, 2nd ed. (CRC Press, 2006).

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer, 2003).

G. Keiser, Optical Fiber Communications3rd ed. (McGraw-Hill, 2000).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

J. E. Mark, Polymer Data Handbook (Oxford University, 1999).

V. V. Tuchin, Handbook of Optical Biomedical Diagnostics (SPIE, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Device manufacture showing (a) top view with inset showing photograph of the finished device and (b) front view. An optical fiber was stripped and cleaved at one end and glued into a 25G dispensing needle tip for rigidity. This needle tip and a 22G tip were arranged in a Petri dish with standoffs and PDMS was poured to cover both needles. After PDMS curing, the hatched section of PDMS was removed and the 22G tip was pulled out, leaving a microchannel. The angle between the fiber and the channel, θ, was approximately 74°.

Fig. 2.
Fig. 2.

Comparison of FFT spectra for a maximum fluid velocity of 1.6mm/s produced by undiluted milk (bold solid line), 10%w/w milk (broken line), 1%w/w milk (thin solid line), and 0.2%w/w milk (dotted line).

Fig. 3.
Fig. 3.

Mean extracted Doppler frequencies (circles with error bars denoting standard deviation for eight measurements) versus maximum fluid velocity for (a) undiluted milk, (b) 10%w/w milk, (c) 1%w/w milk, and (d) 0.2%w/w milk. The straight solid line in each plot is the theoretical relationship given by Eq. (1). The shaded areas indicate the approximate velocity range (for each concentration) where the Doppler frequency is a linear function of velocity.

Fig. 4.
Fig. 4.

Smoothed FFT spectra from a single 125 ms acquisition for fluid velocities at the start (bold solid line), middle (dotted line), and end (thin solid line) of the linear range of fluid velocities (the shaded region in Fig. 3) for (a) undiluted milk, (b) 10%w/w milk, (c) 1%w/w milk, and (d) 0.2%w/w milk. The diamonds mark the rolloff point for each spectrum and correspond to the extracted Doppler frequency.

Fig. 5.
Fig. 5.

Mean SNR versus maximum fluid velocity for undiluted milk (bold solid line), 10%w/w milk (broken line), 1%w/w milk (solid line with square markers), and 0.2%w/w milk (broken line with diamond markers).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

fD=2vncos(θ)λ,
V=2πaλNA,

Metrics