Abstract

Pushing synchrotron x-ray radiography to increasingly higher image-acquisition rates (currently up to 100,000 fps) while maintaining spatial resolutions in the micrometer range implies drastically reduced fields of view. As a consequence, either imaging a small subregion of the sample with high spatial resolution or only the complete specimen with moderate resolution is applicable. We introduce a concept to overcome this limitation by making use of a semi-transparent x-ray detector positioned close to the investigated sample. The hard x-rays that pass through the sample either create an image on the first detector or keep on propagating until they are captured by a second x-ray detector located further downstream. In this way, a process can be imaged simultaneously in a hierarchical manner within a single exposure and a projection of the complete object with moderate resolution as well as a subregion with high resolution are obtained. As a proof-of-concept experiment, image sequences of an evolving liquid-metal foam are shown, employing frame rates of 1000images/s (1.2 μm pixel size) and 15,000images/s (18.1 μm pixel size) for the first and second detector, respectively.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Hartmann, G. Markewitz, U. Rettenmaier, and H. J. Queisser, “High-resolution direct-display x-ray topography,” Appl. Phys. Lett. 27, 308–309 (1975).
    [CrossRef]
  2. A. Koch, “Lens coupled scintillating screen-CCD x-ray area detector with a high quantum efficiency,” Nucl. Instrum. Methods Phys. Res., Sect. A 348, 654–658 (1994).
    [CrossRef]
  3. U. Bonse and F. Busch, “X-ray computed microtomography (μCT) using synchrotron radiation (SR),” Prog. Biophys. Molec. Biol. 65, 133–169 (1996).
    [CrossRef]
  4. A. Koch, C. Raven, P. Spanne, and A. Snigirev, “X-ray imaging with submicrometer resolution employing transparent luminescent screens,” J. Opt. Soc. Am. A 15, 1940–1951 (1998).
    [CrossRef]
  5. P. Douissard, A. Cecilia, X. Rochet, X. Chapel, T. Martin, T. van de Kamp, L. Helfen, T. Baumbach, L. Luquot, X. Xiao, J. Meinhardt, and A. Rack, “A versatile indirect detector design for hard x-ray microimaging,” JINST 7, P09016 (2012).
    [CrossRef]
  6. A. N. Danilewsky, A. Rack, J. Wittge, T. Weitkamp, R. Simon, H. Riesemeier, and T. Baumbach, “White beam synchrotron topography using a high resolution digital x-ray imaging detector,” Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2035–2040 (2008).
    [CrossRef]
  7. A. Rack, S. Zabler, B. R. Müller, H. Riesemeier, G. Weidemann, A. Lange, J. Goebbels, M. Hentschel, and W. Görner, “High-resolution synchrotron-based radiography and tomography using hard x-rays at the BAMline (BESSY II),” Nucl. Instrum. Methods Phys. Res., Sect. A 586, 327–344 (2008).
    [CrossRef]
  8. M. Di Michiel, J. M. Merino, D. Fernandez-Carreiras, T. Buslaps, V. Honkimäki, P. Falus, T. Martins, and O. Svensson, “Fast microtomography using high-energy synchrotron radiation,” Rev. Sci. Instrum. 76, 043702 (2005).
    [CrossRef]
  9. F. García-Moreno, A. Rack, L. Helfen, T. Baumbach, S. Zabler, N. Babcsán, J. Banhart, T. Martin, C. Ponchut, and M. Di Michiel, “Fast processes in liquid metal foams investigated by high-speed synchrotron x-ray microradioscopy,” Appl. Phys. Lett. 92, 134104 (2008).
    [CrossRef]
  10. J. Wang, “Ultrafast x-ray imaging of fuel sprays,” in AIP Conference Proceedings (SRI06), J.-Y. Choi and S. Rah, eds. (2007), vol. 879, pp. 1535–1538.
  11. Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast x-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4, 305–309 (2008).
    [CrossRef]
  12. A. Rack, F. García-Moreno, T. Baumbach, and J. Banhart, “Synchrotron-based radioscopy employing spatio-temporal micro-resolution for studying fast phenomena in liquid metal foams,” J. Synchrotron Radiat. 16, 432–434 (2009).
    [CrossRef]
  13. A. Rack, F. García-Moreno, C. Schmitt, O. Betz, A. Cecilia, A. Ershov, T. Rack, J. Banhart, and S. Zabler, “On the possibilities of hard x-ray imaging with high spatio-temporal resolution using polychromatic synchrotron radiation,” J. X-Ray Sci. Technol. 18, 429–441 (2010).
  14. K.-C. Lin, C. Rajnicek, J. McCall, C. Carter, and K. Fezzaa, “Investigation of pure- and aerated-liquid jets using ultra-fast x-ray phase contrast imaging,” Nucl. Instrum. Methods Phys. Res., Sect. A 649, 194–196 (2011).
    [CrossRef]
  15. A. Snigirev, I. Snigireva, V. Kohn, and S. Kuznetsov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
    [CrossRef]
  16. P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
  17. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384, 335–338 (1996).
    [CrossRef]
  18. K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard X rays,” Phys. Rev. Lett. 77, 2961–2964 (1996).
    [CrossRef]
  19. A. Momose, W. Yashiro, H. Maikusa, and Y. Takeda, “High-speed x-ray phase imaging and x-ray phase tomography with Talbot interferometer and white synchrotron radiation,” Opt. Express 17, 12540–12545 (2009).
    [CrossRef]
  20. D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
    [CrossRef]
  21. S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, “Optimization of phase contrast imaging using hard X rays,” Rev. Sci. Instrum. 76, 073705 (2005).
    [CrossRef]
  22. V. G. Kohn, T. S. Argunova, and J. H. Je, “Far-field x-ray phase contrast imaging has no detailed information on the object,” J. Phys. D 43, 442002 (2010).
  23. Photron USA, Inc., FASTCAM SA5 Data Sheet, http://www.photron.com (accessed August 2013).
  24. F. Garcia-Moreno, M. Mukherjee, C. Jimenez, A. Rack, and J. Banhart, “Metal foaming investigated by x-ray radioscopy,” Metals 2, 10–21 (2012).
    [CrossRef]
  25. H. Stanzick, M. Wichmann, J. Weise, L. Helfen, T. Baumbach, and J. Banhart, “Real-time x-ray investigation of aluminum foam sandwich production,” Adv. Eng. Mater. 3, 407 (2001).
    [CrossRef]
  26. H. Stanzick, M. Wichmann, J. Weise, L. Helfen, T. Baumbach, and J. Banhart, “Process control in aluminum foam production using real-time x-ray radioscopy,” Adv. Eng. Mater. 4, 814–823 (2002).
    [CrossRef]
  27. R. Verdejo, F. J. Tapiador, L. Helfen, M. M. Bernal, N. Bitinis, and M. A. Lopez-Manchado, “Fluid dynamics of evolving foams,” Phys. Chem. Chem. Phys. 11, 10860–10866 (2009).
    [CrossRef]
  28. A. Myagotin, L. Helfen, and T. Baumbach, “Quantitative coalescence measurements for foaming metals by in situ radiography,” Scr. Mater. 67, 775–778 (2012).
    [CrossRef]
  29. L. Helfen, H. Stanzick, J. Ohser, K. Schladitz, P. Pernot, J. Banhart, and T. Baumbach, “Investigation of the foaming process of metals by synchrotron-radiation imaging,” in Proceedings of SPIE, N. Meyendorf, G. Baaklini, and B. Michel, eds. (2003), vol. 5045, pp. 254–265.
  30. T. Weitkamp, P. Tafforeau, E. Boller, P. Cloetens, J.-P. Valade, P. Bernard, F. Peyrin, W. Ludwig, L. Helfen, and J. Baruchel, “Status and evolution of the ESRF beamline ID19,” in AIP Conference Proceedings (ICXOM20), M. Denecke and C. T. Walker, eds. (2010), vol. 1221, pp. 33–38.
  31. F. Garcia-Moreno, N. Babcsan, and J. Banhart, “X-ray radioscopy of liquid metalfoams: influence of heating profile, atmosphere and pressure,” Colloids Surf. A 263, 290–294 (2005).
    [CrossRef]
  32. M. S. del Río and R. J. Dejus, “Xop 2.1—a new version of the x-ray optics software toolkit,” AIP Conf. Proc. 705, 784–787 (2004).
    [CrossRef]
  33. T. Martin and A. Koch, “Recent developments in x-ray imaging with micrometer spatial resolution,” J. Synchrotron Radiat. 13, 180–194 (2006).
    [CrossRef]
  34. PCO AG, pco.dimax Data Sheet, http://www.pco.de (accessed August 2013).
  35. A. Myagotin, A. Ershov, L. Helfen, R. Verdejo, A. Belyaev, and T. Baumbach, “Coalescence analysis for evolving foams via optical flow computation on projection image sequences,” J. Synchrotron Radiat. 19, 483–491 (2012).
    [CrossRef]
  36. CRYTUR, spol. s r.o., http://www.crytur.cz (accessed August 2013).
  37. P. Cloetens, W. Ludwig, J. Baruchel, D. V. Dyck, J. Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation x-rays,” Appl. Phys. Lett. 75, 2912–2914 (1999).
    [CrossRef]
  38. G. Martínez-Criado, R. Tucoulou, P. Cloetens, P. Bleuet, S. Bohic, J. Cauzid, I. Kieffer, E. Kosior, S. Labouré, S. Petitgirard, A. Rack, J. A. Sans, J. Segura-Ruiz, H. Suhonen, J. Susini, and J. Villanova, “Status of the hard x-ray microprobe beamline ID22 of the European Synchrotron Radiation Facility,” J. Synchrotron Radiat. 19, 10–18 (2012).
    [CrossRef]
  39. R. Mokso, F. Marone, S. Irvine, M. Nyvlt, D. Schwyn, K. Mader, G. K. Taylor, H. G. Krapp, M. Skeren, and M. Stampanoni, “Advantages of phase retrieval for fast x-ray tomographic microscopy,” J. Phys. D46 (2013), to be published.

2012

P. Douissard, A. Cecilia, X. Rochet, X. Chapel, T. Martin, T. van de Kamp, L. Helfen, T. Baumbach, L. Luquot, X. Xiao, J. Meinhardt, and A. Rack, “A versatile indirect detector design for hard x-ray microimaging,” JINST 7, P09016 (2012).
[CrossRef]

F. Garcia-Moreno, M. Mukherjee, C. Jimenez, A. Rack, and J. Banhart, “Metal foaming investigated by x-ray radioscopy,” Metals 2, 10–21 (2012).
[CrossRef]

A. Myagotin, L. Helfen, and T. Baumbach, “Quantitative coalescence measurements for foaming metals by in situ radiography,” Scr. Mater. 67, 775–778 (2012).
[CrossRef]

A. Myagotin, A. Ershov, L. Helfen, R. Verdejo, A. Belyaev, and T. Baumbach, “Coalescence analysis for evolving foams via optical flow computation on projection image sequences,” J. Synchrotron Radiat. 19, 483–491 (2012).
[CrossRef]

G. Martínez-Criado, R. Tucoulou, P. Cloetens, P. Bleuet, S. Bohic, J. Cauzid, I. Kieffer, E. Kosior, S. Labouré, S. Petitgirard, A. Rack, J. A. Sans, J. Segura-Ruiz, H. Suhonen, J. Susini, and J. Villanova, “Status of the hard x-ray microprobe beamline ID22 of the European Synchrotron Radiation Facility,” J. Synchrotron Radiat. 19, 10–18 (2012).
[CrossRef]

2011

K.-C. Lin, C. Rajnicek, J. McCall, C. Carter, and K. Fezzaa, “Investigation of pure- and aerated-liquid jets using ultra-fast x-ray phase contrast imaging,” Nucl. Instrum. Methods Phys. Res., Sect. A 649, 194–196 (2011).
[CrossRef]

2010

A. Rack, F. García-Moreno, C. Schmitt, O. Betz, A. Cecilia, A. Ershov, T. Rack, J. Banhart, and S. Zabler, “On the possibilities of hard x-ray imaging with high spatio-temporal resolution using polychromatic synchrotron radiation,” J. X-Ray Sci. Technol. 18, 429–441 (2010).

V. G. Kohn, T. S. Argunova, and J. H. Je, “Far-field x-ray phase contrast imaging has no detailed information on the object,” J. Phys. D 43, 442002 (2010).

2009

A. Momose, W. Yashiro, H. Maikusa, and Y. Takeda, “High-speed x-ray phase imaging and x-ray phase tomography with Talbot interferometer and white synchrotron radiation,” Opt. Express 17, 12540–12545 (2009).
[CrossRef]

R. Verdejo, F. J. Tapiador, L. Helfen, M. M. Bernal, N. Bitinis, and M. A. Lopez-Manchado, “Fluid dynamics of evolving foams,” Phys. Chem. Chem. Phys. 11, 10860–10866 (2009).
[CrossRef]

A. Rack, F. García-Moreno, T. Baumbach, and J. Banhart, “Synchrotron-based radioscopy employing spatio-temporal micro-resolution for studying fast phenomena in liquid metal foams,” J. Synchrotron Radiat. 16, 432–434 (2009).
[CrossRef]

2008

F. García-Moreno, A. Rack, L. Helfen, T. Baumbach, S. Zabler, N. Babcsán, J. Banhart, T. Martin, C. Ponchut, and M. Di Michiel, “Fast processes in liquid metal foams investigated by high-speed synchrotron x-ray microradioscopy,” Appl. Phys. Lett. 92, 134104 (2008).
[CrossRef]

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast x-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4, 305–309 (2008).
[CrossRef]

A. N. Danilewsky, A. Rack, J. Wittge, T. Weitkamp, R. Simon, H. Riesemeier, and T. Baumbach, “White beam synchrotron topography using a high resolution digital x-ray imaging detector,” Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2035–2040 (2008).
[CrossRef]

A. Rack, S. Zabler, B. R. Müller, H. Riesemeier, G. Weidemann, A. Lange, J. Goebbels, M. Hentschel, and W. Görner, “High-resolution synchrotron-based radiography and tomography using hard x-rays at the BAMline (BESSY II),” Nucl. Instrum. Methods Phys. Res., Sect. A 586, 327–344 (2008).
[CrossRef]

2006

T. Martin and A. Koch, “Recent developments in x-ray imaging with micrometer spatial resolution,” J. Synchrotron Radiat. 13, 180–194 (2006).
[CrossRef]

2005

F. Garcia-Moreno, N. Babcsan, and J. Banhart, “X-ray radioscopy of liquid metalfoams: influence of heating profile, atmosphere and pressure,” Colloids Surf. A 263, 290–294 (2005).
[CrossRef]

S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, “Optimization of phase contrast imaging using hard X rays,” Rev. Sci. Instrum. 76, 073705 (2005).
[CrossRef]

M. Di Michiel, J. M. Merino, D. Fernandez-Carreiras, T. Buslaps, V. Honkimäki, P. Falus, T. Martins, and O. Svensson, “Fast microtomography using high-energy synchrotron radiation,” Rev. Sci. Instrum. 76, 043702 (2005).
[CrossRef]

2004

M. S. del Río and R. J. Dejus, “Xop 2.1—a new version of the x-ray optics software toolkit,” AIP Conf. Proc. 705, 784–787 (2004).
[CrossRef]

2002

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
[CrossRef]

H. Stanzick, M. Wichmann, J. Weise, L. Helfen, T. Baumbach, and J. Banhart, “Process control in aluminum foam production using real-time x-ray radioscopy,” Adv. Eng. Mater. 4, 814–823 (2002).
[CrossRef]

2001

H. Stanzick, M. Wichmann, J. Weise, L. Helfen, T. Baumbach, and J. Banhart, “Real-time x-ray investigation of aluminum foam sandwich production,” Adv. Eng. Mater. 3, 407 (2001).
[CrossRef]

1999

P. Cloetens, W. Ludwig, J. Baruchel, D. V. Dyck, J. Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation x-rays,” Appl. Phys. Lett. 75, 2912–2914 (1999).
[CrossRef]

1998

1996

U. Bonse and F. Busch, “X-ray computed microtomography (μCT) using synchrotron radiation (SR),” Prog. Biophys. Molec. Biol. 65, 133–169 (1996).
[CrossRef]

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384, 335–338 (1996).
[CrossRef]

K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard X rays,” Phys. Rev. Lett. 77, 2961–2964 (1996).
[CrossRef]

1995

A. Snigirev, I. Snigireva, V. Kohn, and S. Kuznetsov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

1994

A. Koch, “Lens coupled scintillating screen-CCD x-ray area detector with a high quantum efficiency,” Nucl. Instrum. Methods Phys. Res., Sect. A 348, 654–658 (1994).
[CrossRef]

1975

W. Hartmann, G. Markewitz, U. Rettenmaier, and H. J. Queisser, “High-resolution direct-display x-ray topography,” Appl. Phys. Lett. 27, 308–309 (1975).
[CrossRef]

Argunova, T. S.

V. G. Kohn, T. S. Argunova, and J. H. Je, “Far-field x-ray phase contrast imaging has no detailed information on the object,” J. Phys. D 43, 442002 (2010).

Babcsan, N.

F. Garcia-Moreno, N. Babcsan, and J. Banhart, “X-ray radioscopy of liquid metalfoams: influence of heating profile, atmosphere and pressure,” Colloids Surf. A 263, 290–294 (2005).
[CrossRef]

Babcsán, N.

F. García-Moreno, A. Rack, L. Helfen, T. Baumbach, S. Zabler, N. Babcsán, J. Banhart, T. Martin, C. Ponchut, and M. Di Michiel, “Fast processes in liquid metal foams investigated by high-speed synchrotron x-ray microradioscopy,” Appl. Phys. Lett. 92, 134104 (2008).
[CrossRef]

Banhart, J.

F. Garcia-Moreno, M. Mukherjee, C. Jimenez, A. Rack, and J. Banhart, “Metal foaming investigated by x-ray radioscopy,” Metals 2, 10–21 (2012).
[CrossRef]

A. Rack, F. García-Moreno, C. Schmitt, O. Betz, A. Cecilia, A. Ershov, T. Rack, J. Banhart, and S. Zabler, “On the possibilities of hard x-ray imaging with high spatio-temporal resolution using polychromatic synchrotron radiation,” J. X-Ray Sci. Technol. 18, 429–441 (2010).

A. Rack, F. García-Moreno, T. Baumbach, and J. Banhart, “Synchrotron-based radioscopy employing spatio-temporal micro-resolution for studying fast phenomena in liquid metal foams,” J. Synchrotron Radiat. 16, 432–434 (2009).
[CrossRef]

F. García-Moreno, A. Rack, L. Helfen, T. Baumbach, S. Zabler, N. Babcsán, J. Banhart, T. Martin, C. Ponchut, and M. Di Michiel, “Fast processes in liquid metal foams investigated by high-speed synchrotron x-ray microradioscopy,” Appl. Phys. Lett. 92, 134104 (2008).
[CrossRef]

F. Garcia-Moreno, N. Babcsan, and J. Banhart, “X-ray radioscopy of liquid metalfoams: influence of heating profile, atmosphere and pressure,” Colloids Surf. A 263, 290–294 (2005).
[CrossRef]

H. Stanzick, M. Wichmann, J. Weise, L. Helfen, T. Baumbach, and J. Banhart, “Process control in aluminum foam production using real-time x-ray radioscopy,” Adv. Eng. Mater. 4, 814–823 (2002).
[CrossRef]

H. Stanzick, M. Wichmann, J. Weise, L. Helfen, T. Baumbach, and J. Banhart, “Real-time x-ray investigation of aluminum foam sandwich production,” Adv. Eng. Mater. 3, 407 (2001).
[CrossRef]

L. Helfen, H. Stanzick, J. Ohser, K. Schladitz, P. Pernot, J. Banhart, and T. Baumbach, “Investigation of the foaming process of metals by synchrotron-radiation imaging,” in Proceedings of SPIE, N. Meyendorf, G. Baaklini, and B. Michel, eds. (2003), vol. 5045, pp. 254–265.

Barnea, Z.

K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard X rays,” Phys. Rev. Lett. 77, 2961–2964 (1996).
[CrossRef]

Barrett, R.

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).

Baruchel, J.

S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, “Optimization of phase contrast imaging using hard X rays,” Rev. Sci. Instrum. 76, 073705 (2005).
[CrossRef]

P. Cloetens, W. Ludwig, J. Baruchel, D. V. Dyck, J. Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation x-rays,” Appl. Phys. Lett. 75, 2912–2914 (1999).
[CrossRef]

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).

T. Weitkamp, P. Tafforeau, E. Boller, P. Cloetens, J.-P. Valade, P. Bernard, F. Peyrin, W. Ludwig, L. Helfen, and J. Baruchel, “Status and evolution of the ESRF beamline ID19,” in AIP Conference Proceedings (ICXOM20), M. Denecke and C. T. Walker, eds. (2010), vol. 1221, pp. 33–38.

Baumbach, T.

A. Myagotin, L. Helfen, and T. Baumbach, “Quantitative coalescence measurements for foaming metals by in situ radiography,” Scr. Mater. 67, 775–778 (2012).
[CrossRef]

A. Myagotin, A. Ershov, L. Helfen, R. Verdejo, A. Belyaev, and T. Baumbach, “Coalescence analysis for evolving foams via optical flow computation on projection image sequences,” J. Synchrotron Radiat. 19, 483–491 (2012).
[CrossRef]

P. Douissard, A. Cecilia, X. Rochet, X. Chapel, T. Martin, T. van de Kamp, L. Helfen, T. Baumbach, L. Luquot, X. Xiao, J. Meinhardt, and A. Rack, “A versatile indirect detector design for hard x-ray microimaging,” JINST 7, P09016 (2012).
[CrossRef]

A. Rack, F. García-Moreno, T. Baumbach, and J. Banhart, “Synchrotron-based radioscopy employing spatio-temporal micro-resolution for studying fast phenomena in liquid metal foams,” J. Synchrotron Radiat. 16, 432–434 (2009).
[CrossRef]

F. García-Moreno, A. Rack, L. Helfen, T. Baumbach, S. Zabler, N. Babcsán, J. Banhart, T. Martin, C. Ponchut, and M. Di Michiel, “Fast processes in liquid metal foams investigated by high-speed synchrotron x-ray microradioscopy,” Appl. Phys. Lett. 92, 134104 (2008).
[CrossRef]

A. N. Danilewsky, A. Rack, J. Wittge, T. Weitkamp, R. Simon, H. Riesemeier, and T. Baumbach, “White beam synchrotron topography using a high resolution digital x-ray imaging detector,” Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2035–2040 (2008).
[CrossRef]

H. Stanzick, M. Wichmann, J. Weise, L. Helfen, T. Baumbach, and J. Banhart, “Process control in aluminum foam production using real-time x-ray radioscopy,” Adv. Eng. Mater. 4, 814–823 (2002).
[CrossRef]

H. Stanzick, M. Wichmann, J. Weise, L. Helfen, T. Baumbach, and J. Banhart, “Real-time x-ray investigation of aluminum foam sandwich production,” Adv. Eng. Mater. 3, 407 (2001).
[CrossRef]

L. Helfen, H. Stanzick, J. Ohser, K. Schladitz, P. Pernot, J. Banhart, and T. Baumbach, “Investigation of the foaming process of metals by synchrotron-radiation imaging,” in Proceedings of SPIE, N. Meyendorf, G. Baaklini, and B. Michel, eds. (2003), vol. 5045, pp. 254–265.

Belyaev, A.

A. Myagotin, A. Ershov, L. Helfen, R. Verdejo, A. Belyaev, and T. Baumbach, “Coalescence analysis for evolving foams via optical flow computation on projection image sequences,” J. Synchrotron Radiat. 19, 483–491 (2012).
[CrossRef]

Bernal, M. M.

R. Verdejo, F. J. Tapiador, L. Helfen, M. M. Bernal, N. Bitinis, and M. A. Lopez-Manchado, “Fluid dynamics of evolving foams,” Phys. Chem. Chem. Phys. 11, 10860–10866 (2009).
[CrossRef]

Bernard, P.

T. Weitkamp, P. Tafforeau, E. Boller, P. Cloetens, J.-P. Valade, P. Bernard, F. Peyrin, W. Ludwig, L. Helfen, and J. Baruchel, “Status and evolution of the ESRF beamline ID19,” in AIP Conference Proceedings (ICXOM20), M. Denecke and C. T. Walker, eds. (2010), vol. 1221, pp. 33–38.

Betz, O.

A. Rack, F. García-Moreno, C. Schmitt, O. Betz, A. Cecilia, A. Ershov, T. Rack, J. Banhart, and S. Zabler, “On the possibilities of hard x-ray imaging with high spatio-temporal resolution using polychromatic synchrotron radiation,” J. X-Ray Sci. Technol. 18, 429–441 (2010).

Bitinis, N.

R. Verdejo, F. J. Tapiador, L. Helfen, M. M. Bernal, N. Bitinis, and M. A. Lopez-Manchado, “Fluid dynamics of evolving foams,” Phys. Chem. Chem. Phys. 11, 10860–10866 (2009).
[CrossRef]

Bleuet, P.

G. Martínez-Criado, R. Tucoulou, P. Cloetens, P. Bleuet, S. Bohic, J. Cauzid, I. Kieffer, E. Kosior, S. Labouré, S. Petitgirard, A. Rack, J. A. Sans, J. Segura-Ruiz, H. Suhonen, J. Susini, and J. Villanova, “Status of the hard x-ray microprobe beamline ID22 of the European Synchrotron Radiation Facility,” J. Synchrotron Radiat. 19, 10–18 (2012).
[CrossRef]

Bohic, S.

G. Martínez-Criado, R. Tucoulou, P. Cloetens, P. Bleuet, S. Bohic, J. Cauzid, I. Kieffer, E. Kosior, S. Labouré, S. Petitgirard, A. Rack, J. A. Sans, J. Segura-Ruiz, H. Suhonen, J. Susini, and J. Villanova, “Status of the hard x-ray microprobe beamline ID22 of the European Synchrotron Radiation Facility,” J. Synchrotron Radiat. 19, 10–18 (2012).
[CrossRef]

Boller, E.

T. Weitkamp, P. Tafforeau, E. Boller, P. Cloetens, J.-P. Valade, P. Bernard, F. Peyrin, W. Ludwig, L. Helfen, and J. Baruchel, “Status and evolution of the ESRF beamline ID19,” in AIP Conference Proceedings (ICXOM20), M. Denecke and C. T. Walker, eds. (2010), vol. 1221, pp. 33–38.

Bonse, U.

U. Bonse and F. Busch, “X-ray computed microtomography (μCT) using synchrotron radiation (SR),” Prog. Biophys. Molec. Biol. 65, 133–169 (1996).
[CrossRef]

Busch, F.

U. Bonse and F. Busch, “X-ray computed microtomography (μCT) using synchrotron radiation (SR),” Prog. Biophys. Molec. Biol. 65, 133–169 (1996).
[CrossRef]

Buslaps, T.

M. Di Michiel, J. M. Merino, D. Fernandez-Carreiras, T. Buslaps, V. Honkimäki, P. Falus, T. Martins, and O. Svensson, “Fast microtomography using high-energy synchrotron radiation,” Rev. Sci. Instrum. 76, 043702 (2005).
[CrossRef]

Carter, C.

K.-C. Lin, C. Rajnicek, J. McCall, C. Carter, and K. Fezzaa, “Investigation of pure- and aerated-liquid jets using ultra-fast x-ray phase contrast imaging,” Nucl. Instrum. Methods Phys. Res., Sect. A 649, 194–196 (2011).
[CrossRef]

Cauzid, J.

G. Martínez-Criado, R. Tucoulou, P. Cloetens, P. Bleuet, S. Bohic, J. Cauzid, I. Kieffer, E. Kosior, S. Labouré, S. Petitgirard, A. Rack, J. A. Sans, J. Segura-Ruiz, H. Suhonen, J. Susini, and J. Villanova, “Status of the hard x-ray microprobe beamline ID22 of the European Synchrotron Radiation Facility,” J. Synchrotron Radiat. 19, 10–18 (2012).
[CrossRef]

Cecilia, A.

P. Douissard, A. Cecilia, X. Rochet, X. Chapel, T. Martin, T. van de Kamp, L. Helfen, T. Baumbach, L. Luquot, X. Xiao, J. Meinhardt, and A. Rack, “A versatile indirect detector design for hard x-ray microimaging,” JINST 7, P09016 (2012).
[CrossRef]

A. Rack, F. García-Moreno, C. Schmitt, O. Betz, A. Cecilia, A. Ershov, T. Rack, J. Banhart, and S. Zabler, “On the possibilities of hard x-ray imaging with high spatio-temporal resolution using polychromatic synchrotron radiation,” J. X-Ray Sci. Technol. 18, 429–441 (2010).

Chapel, X.

P. Douissard, A. Cecilia, X. Rochet, X. Chapel, T. Martin, T. van de Kamp, L. Helfen, T. Baumbach, L. Luquot, X. Xiao, J. Meinhardt, and A. Rack, “A versatile indirect detector design for hard x-ray microimaging,” JINST 7, P09016 (2012).
[CrossRef]

Cloetens, P.

G. Martínez-Criado, R. Tucoulou, P. Cloetens, P. Bleuet, S. Bohic, J. Cauzid, I. Kieffer, E. Kosior, S. Labouré, S. Petitgirard, A. Rack, J. A. Sans, J. Segura-Ruiz, H. Suhonen, J. Susini, and J. Villanova, “Status of the hard x-ray microprobe beamline ID22 of the European Synchrotron Radiation Facility,” J. Synchrotron Radiat. 19, 10–18 (2012).
[CrossRef]

S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, “Optimization of phase contrast imaging using hard X rays,” Rev. Sci. Instrum. 76, 073705 (2005).
[CrossRef]

P. Cloetens, W. Ludwig, J. Baruchel, D. V. Dyck, J. Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation x-rays,” Appl. Phys. Lett. 75, 2912–2914 (1999).
[CrossRef]

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).

T. Weitkamp, P. Tafforeau, E. Boller, P. Cloetens, J.-P. Valade, P. Bernard, F. Peyrin, W. Ludwig, L. Helfen, and J. Baruchel, “Status and evolution of the ESRF beamline ID19,” in AIP Conference Proceedings (ICXOM20), M. Denecke and C. T. Walker, eds. (2010), vol. 1221, pp. 33–38.

Cookson, D. F.

K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard X rays,” Phys. Rev. Lett. 77, 2961–2964 (1996).
[CrossRef]

Danilewsky, A. N.

A. N. Danilewsky, A. Rack, J. Wittge, T. Weitkamp, R. Simon, H. Riesemeier, and T. Baumbach, “White beam synchrotron topography using a high resolution digital x-ray imaging detector,” Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2035–2040 (2008).
[CrossRef]

Dejus, R. J.

M. S. del Río and R. J. Dejus, “Xop 2.1—a new version of the x-ray optics software toolkit,” AIP Conf. Proc. 705, 784–787 (2004).
[CrossRef]

del Río, M. S.

M. S. del Río and R. J. Dejus, “Xop 2.1—a new version of the x-ray optics software toolkit,” AIP Conf. Proc. 705, 784–787 (2004).
[CrossRef]

Di Michiel, M.

F. García-Moreno, A. Rack, L. Helfen, T. Baumbach, S. Zabler, N. Babcsán, J. Banhart, T. Martin, C. Ponchut, and M. Di Michiel, “Fast processes in liquid metal foams investigated by high-speed synchrotron x-ray microradioscopy,” Appl. Phys. Lett. 92, 134104 (2008).
[CrossRef]

M. Di Michiel, J. M. Merino, D. Fernandez-Carreiras, T. Buslaps, V. Honkimäki, P. Falus, T. Martins, and O. Svensson, “Fast microtomography using high-energy synchrotron radiation,” Rev. Sci. Instrum. 76, 043702 (2005).
[CrossRef]

Douissard, P.

P. Douissard, A. Cecilia, X. Rochet, X. Chapel, T. Martin, T. van de Kamp, L. Helfen, T. Baumbach, L. Luquot, X. Xiao, J. Meinhardt, and A. Rack, “A versatile indirect detector design for hard x-ray microimaging,” JINST 7, P09016 (2012).
[CrossRef]

Dyck, D. V.

P. Cloetens, W. Ludwig, J. Baruchel, D. V. Dyck, J. Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation x-rays,” Appl. Phys. Lett. 75, 2912–2914 (1999).
[CrossRef]

Ershov, A.

A. Myagotin, A. Ershov, L. Helfen, R. Verdejo, A. Belyaev, and T. Baumbach, “Coalescence analysis for evolving foams via optical flow computation on projection image sequences,” J. Synchrotron Radiat. 19, 483–491 (2012).
[CrossRef]

A. Rack, F. García-Moreno, C. Schmitt, O. Betz, A. Cecilia, A. Ershov, T. Rack, J. Banhart, and S. Zabler, “On the possibilities of hard x-ray imaging with high spatio-temporal resolution using polychromatic synchrotron radiation,” J. X-Ray Sci. Technol. 18, 429–441 (2010).

Falus, P.

M. Di Michiel, J. M. Merino, D. Fernandez-Carreiras, T. Buslaps, V. Honkimäki, P. Falus, T. Martins, and O. Svensson, “Fast microtomography using high-energy synchrotron radiation,” Rev. Sci. Instrum. 76, 043702 (2005).
[CrossRef]

Fernandez-Carreiras, D.

M. Di Michiel, J. M. Merino, D. Fernandez-Carreiras, T. Buslaps, V. Honkimäki, P. Falus, T. Martins, and O. Svensson, “Fast microtomography using high-energy synchrotron radiation,” Rev. Sci. Instrum. 76, 043702 (2005).
[CrossRef]

Fezzaa, K.

K.-C. Lin, C. Rajnicek, J. McCall, C. Carter, and K. Fezzaa, “Investigation of pure- and aerated-liquid jets using ultra-fast x-ray phase contrast imaging,” Nucl. Instrum. Methods Phys. Res., Sect. A 649, 194–196 (2011).
[CrossRef]

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast x-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4, 305–309 (2008).
[CrossRef]

Gao, D.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384, 335–338 (1996).
[CrossRef]

Garcia-Moreno, F.

F. Garcia-Moreno, M. Mukherjee, C. Jimenez, A. Rack, and J. Banhart, “Metal foaming investigated by x-ray radioscopy,” Metals 2, 10–21 (2012).
[CrossRef]

F. Garcia-Moreno, N. Babcsan, and J. Banhart, “X-ray radioscopy of liquid metalfoams: influence of heating profile, atmosphere and pressure,” Colloids Surf. A 263, 290–294 (2005).
[CrossRef]

García-Moreno, F.

A. Rack, F. García-Moreno, C. Schmitt, O. Betz, A. Cecilia, A. Ershov, T. Rack, J. Banhart, and S. Zabler, “On the possibilities of hard x-ray imaging with high spatio-temporal resolution using polychromatic synchrotron radiation,” J. X-Ray Sci. Technol. 18, 429–441 (2010).

A. Rack, F. García-Moreno, T. Baumbach, and J. Banhart, “Synchrotron-based radioscopy employing spatio-temporal micro-resolution for studying fast phenomena in liquid metal foams,” J. Synchrotron Radiat. 16, 432–434 (2009).
[CrossRef]

F. García-Moreno, A. Rack, L. Helfen, T. Baumbach, S. Zabler, N. Babcsán, J. Banhart, T. Martin, C. Ponchut, and M. Di Michiel, “Fast processes in liquid metal foams investigated by high-speed synchrotron x-ray microradioscopy,” Appl. Phys. Lett. 92, 134104 (2008).
[CrossRef]

Goebbels, J.

A. Rack, S. Zabler, B. R. Müller, H. Riesemeier, G. Weidemann, A. Lange, J. Goebbels, M. Hentschel, and W. Görner, “High-resolution synchrotron-based radiography and tomography using hard x-rays at the BAMline (BESSY II),” Nucl. Instrum. Methods Phys. Res., Sect. A 586, 327–344 (2008).
[CrossRef]

Görner, W.

A. Rack, S. Zabler, B. R. Müller, H. Riesemeier, G. Weidemann, A. Lange, J. Goebbels, M. Hentschel, and W. Görner, “High-resolution synchrotron-based radiography and tomography using hard x-rays at the BAMline (BESSY II),” Nucl. Instrum. Methods Phys. Res., Sect. A 586, 327–344 (2008).
[CrossRef]

Guigay, J. P.

P. Cloetens, W. Ludwig, J. Baruchel, D. V. Dyck, J. Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation x-rays,” Appl. Phys. Lett. 75, 2912–2914 (1999).
[CrossRef]

Guigay, J.-P.

S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, “Optimization of phase contrast imaging using hard X rays,” Rev. Sci. Instrum. 76, 073705 (2005).
[CrossRef]

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).

Gureyev, T. E.

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
[CrossRef]

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384, 335–338 (1996).
[CrossRef]

K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard X rays,” Phys. Rev. Lett. 77, 2961–2964 (1996).
[CrossRef]

Hartmann, W.

W. Hartmann, G. Markewitz, U. Rettenmaier, and H. J. Queisser, “High-resolution direct-display x-ray topography,” Appl. Phys. Lett. 27, 308–309 (1975).
[CrossRef]

Helfen, L.

P. Douissard, A. Cecilia, X. Rochet, X. Chapel, T. Martin, T. van de Kamp, L. Helfen, T. Baumbach, L. Luquot, X. Xiao, J. Meinhardt, and A. Rack, “A versatile indirect detector design for hard x-ray microimaging,” JINST 7, P09016 (2012).
[CrossRef]

A. Myagotin, A. Ershov, L. Helfen, R. Verdejo, A. Belyaev, and T. Baumbach, “Coalescence analysis for evolving foams via optical flow computation on projection image sequences,” J. Synchrotron Radiat. 19, 483–491 (2012).
[CrossRef]

A. Myagotin, L. Helfen, and T. Baumbach, “Quantitative coalescence measurements for foaming metals by in situ radiography,” Scr. Mater. 67, 775–778 (2012).
[CrossRef]

R. Verdejo, F. J. Tapiador, L. Helfen, M. M. Bernal, N. Bitinis, and M. A. Lopez-Manchado, “Fluid dynamics of evolving foams,” Phys. Chem. Chem. Phys. 11, 10860–10866 (2009).
[CrossRef]

F. García-Moreno, A. Rack, L. Helfen, T. Baumbach, S. Zabler, N. Babcsán, J. Banhart, T. Martin, C. Ponchut, and M. Di Michiel, “Fast processes in liquid metal foams investigated by high-speed synchrotron x-ray microradioscopy,” Appl. Phys. Lett. 92, 134104 (2008).
[CrossRef]

H. Stanzick, M. Wichmann, J. Weise, L. Helfen, T. Baumbach, and J. Banhart, “Process control in aluminum foam production using real-time x-ray radioscopy,” Adv. Eng. Mater. 4, 814–823 (2002).
[CrossRef]

H. Stanzick, M. Wichmann, J. Weise, L. Helfen, T. Baumbach, and J. Banhart, “Real-time x-ray investigation of aluminum foam sandwich production,” Adv. Eng. Mater. 3, 407 (2001).
[CrossRef]

L. Helfen, H. Stanzick, J. Ohser, K. Schladitz, P. Pernot, J. Banhart, and T. Baumbach, “Investigation of the foaming process of metals by synchrotron-radiation imaging,” in Proceedings of SPIE, N. Meyendorf, G. Baaklini, and B. Michel, eds. (2003), vol. 5045, pp. 254–265.

T. Weitkamp, P. Tafforeau, E. Boller, P. Cloetens, J.-P. Valade, P. Bernard, F. Peyrin, W. Ludwig, L. Helfen, and J. Baruchel, “Status and evolution of the ESRF beamline ID19,” in AIP Conference Proceedings (ICXOM20), M. Denecke and C. T. Walker, eds. (2010), vol. 1221, pp. 33–38.

Hentschel, M.

A. Rack, S. Zabler, B. R. Müller, H. Riesemeier, G. Weidemann, A. Lange, J. Goebbels, M. Hentschel, and W. Görner, “High-resolution synchrotron-based radiography and tomography using hard x-rays at the BAMline (BESSY II),” Nucl. Instrum. Methods Phys. Res., Sect. A 586, 327–344 (2008).
[CrossRef]

Honkimäki, V.

M. Di Michiel, J. M. Merino, D. Fernandez-Carreiras, T. Buslaps, V. Honkimäki, P. Falus, T. Martins, and O. Svensson, “Fast microtomography using high-energy synchrotron radiation,” Rev. Sci. Instrum. 76, 043702 (2005).
[CrossRef]

Hung, D. L. S.

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast x-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4, 305–309 (2008).
[CrossRef]

Im, K.-S.

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast x-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4, 305–309 (2008).
[CrossRef]

Irvine, S.

R. Mokso, F. Marone, S. Irvine, M. Nyvlt, D. Schwyn, K. Mader, G. K. Taylor, H. G. Krapp, M. Skeren, and M. Stampanoni, “Advantages of phase retrieval for fast x-ray tomographic microscopy,” J. Phys. D46 (2013), to be published.

Je, J. H.

V. G. Kohn, T. S. Argunova, and J. H. Je, “Far-field x-ray phase contrast imaging has no detailed information on the object,” J. Phys. D 43, 442002 (2010).

Jimenez, C.

F. Garcia-Moreno, M. Mukherjee, C. Jimenez, A. Rack, and J. Banhart, “Metal foaming investigated by x-ray radioscopy,” Metals 2, 10–21 (2012).
[CrossRef]

Kieffer, I.

G. Martínez-Criado, R. Tucoulou, P. Cloetens, P. Bleuet, S. Bohic, J. Cauzid, I. Kieffer, E. Kosior, S. Labouré, S. Petitgirard, A. Rack, J. A. Sans, J. Segura-Ruiz, H. Suhonen, J. Susini, and J. Villanova, “Status of the hard x-ray microprobe beamline ID22 of the European Synchrotron Radiation Facility,” J. Synchrotron Radiat. 19, 10–18 (2012).
[CrossRef]

Koch, A.

T. Martin and A. Koch, “Recent developments in x-ray imaging with micrometer spatial resolution,” J. Synchrotron Radiat. 13, 180–194 (2006).
[CrossRef]

A. Koch, C. Raven, P. Spanne, and A. Snigirev, “X-ray imaging with submicrometer resolution employing transparent luminescent screens,” J. Opt. Soc. Am. A 15, 1940–1951 (1998).
[CrossRef]

A. Koch, “Lens coupled scintillating screen-CCD x-ray area detector with a high quantum efficiency,” Nucl. Instrum. Methods Phys. Res., Sect. A 348, 654–658 (1994).
[CrossRef]

Kohn, V.

A. Snigirev, I. Snigireva, V. Kohn, and S. Kuznetsov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Kohn, V. G.

V. G. Kohn, T. S. Argunova, and J. H. Je, “Far-field x-ray phase contrast imaging has no detailed information on the object,” J. Phys. D 43, 442002 (2010).

Kosior, E.

G. Martínez-Criado, R. Tucoulou, P. Cloetens, P. Bleuet, S. Bohic, J. Cauzid, I. Kieffer, E. Kosior, S. Labouré, S. Petitgirard, A. Rack, J. A. Sans, J. Segura-Ruiz, H. Suhonen, J. Susini, and J. Villanova, “Status of the hard x-ray microprobe beamline ID22 of the European Synchrotron Radiation Facility,” J. Synchrotron Radiat. 19, 10–18 (2012).
[CrossRef]

Krapp, H. G.

R. Mokso, F. Marone, S. Irvine, M. Nyvlt, D. Schwyn, K. Mader, G. K. Taylor, H. G. Krapp, M. Skeren, and M. Stampanoni, “Advantages of phase retrieval for fast x-ray tomographic microscopy,” J. Phys. D46 (2013), to be published.

Kuznetsov, S.

A. Snigirev, I. Snigireva, V. Kohn, and S. Kuznetsov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Labouré, S.

G. Martínez-Criado, R. Tucoulou, P. Cloetens, P. Bleuet, S. Bohic, J. Cauzid, I. Kieffer, E. Kosior, S. Labouré, S. Petitgirard, A. Rack, J. A. Sans, J. Segura-Ruiz, H. Suhonen, J. Susini, and J. Villanova, “Status of the hard x-ray microprobe beamline ID22 of the European Synchrotron Radiation Facility,” J. Synchrotron Radiat. 19, 10–18 (2012).
[CrossRef]

Landuyt, J.

P. Cloetens, W. Ludwig, J. Baruchel, D. V. Dyck, J. Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation x-rays,” Appl. Phys. Lett. 75, 2912–2914 (1999).
[CrossRef]

Lange, A.

A. Rack, S. Zabler, B. R. Müller, H. Riesemeier, G. Weidemann, A. Lange, J. Goebbels, M. Hentschel, and W. Görner, “High-resolution synchrotron-based radiography and tomography using hard x-rays at the BAMline (BESSY II),” Nucl. Instrum. Methods Phys. Res., Sect. A 586, 327–344 (2008).
[CrossRef]

Lee, W.-K.

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast x-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4, 305–309 (2008).
[CrossRef]

Lin, K.-C.

K.-C. Lin, C. Rajnicek, J. McCall, C. Carter, and K. Fezzaa, “Investigation of pure- and aerated-liquid jets using ultra-fast x-ray phase contrast imaging,” Nucl. Instrum. Methods Phys. Res., Sect. A 649, 194–196 (2011).
[CrossRef]

Liu, X.

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast x-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4, 305–309 (2008).
[CrossRef]

Lopez-Manchado, M. A.

R. Verdejo, F. J. Tapiador, L. Helfen, M. M. Bernal, N. Bitinis, and M. A. Lopez-Manchado, “Fluid dynamics of evolving foams,” Phys. Chem. Chem. Phys. 11, 10860–10866 (2009).
[CrossRef]

Ludwig, W.

P. Cloetens, W. Ludwig, J. Baruchel, D. V. Dyck, J. Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation x-rays,” Appl. Phys. Lett. 75, 2912–2914 (1999).
[CrossRef]

T. Weitkamp, P. Tafforeau, E. Boller, P. Cloetens, J.-P. Valade, P. Bernard, F. Peyrin, W. Ludwig, L. Helfen, and J. Baruchel, “Status and evolution of the ESRF beamline ID19,” in AIP Conference Proceedings (ICXOM20), M. Denecke and C. T. Walker, eds. (2010), vol. 1221, pp. 33–38.

Luquot, L.

P. Douissard, A. Cecilia, X. Rochet, X. Chapel, T. Martin, T. van de Kamp, L. Helfen, T. Baumbach, L. Luquot, X. Xiao, J. Meinhardt, and A. Rack, “A versatile indirect detector design for hard x-ray microimaging,” JINST 7, P09016 (2012).
[CrossRef]

Mader, K.

R. Mokso, F. Marone, S. Irvine, M. Nyvlt, D. Schwyn, K. Mader, G. K. Taylor, H. G. Krapp, M. Skeren, and M. Stampanoni, “Advantages of phase retrieval for fast x-ray tomographic microscopy,” J. Phys. D46 (2013), to be published.

Maikusa, H.

Markewitz, G.

W. Hartmann, G. Markewitz, U. Rettenmaier, and H. J. Queisser, “High-resolution direct-display x-ray topography,” Appl. Phys. Lett. 27, 308–309 (1975).
[CrossRef]

Marone, F.

R. Mokso, F. Marone, S. Irvine, M. Nyvlt, D. Schwyn, K. Mader, G. K. Taylor, H. G. Krapp, M. Skeren, and M. Stampanoni, “Advantages of phase retrieval for fast x-ray tomographic microscopy,” J. Phys. D46 (2013), to be published.

Martin, T.

P. Douissard, A. Cecilia, X. Rochet, X. Chapel, T. Martin, T. van de Kamp, L. Helfen, T. Baumbach, L. Luquot, X. Xiao, J. Meinhardt, and A. Rack, “A versatile indirect detector design for hard x-ray microimaging,” JINST 7, P09016 (2012).
[CrossRef]

F. García-Moreno, A. Rack, L. Helfen, T. Baumbach, S. Zabler, N. Babcsán, J. Banhart, T. Martin, C. Ponchut, and M. Di Michiel, “Fast processes in liquid metal foams investigated by high-speed synchrotron x-ray microradioscopy,” Appl. Phys. Lett. 92, 134104 (2008).
[CrossRef]

T. Martin and A. Koch, “Recent developments in x-ray imaging with micrometer spatial resolution,” J. Synchrotron Radiat. 13, 180–194 (2006).
[CrossRef]

Martínez-Criado, G.

G. Martínez-Criado, R. Tucoulou, P. Cloetens, P. Bleuet, S. Bohic, J. Cauzid, I. Kieffer, E. Kosior, S. Labouré, S. Petitgirard, A. Rack, J. A. Sans, J. Segura-Ruiz, H. Suhonen, J. Susini, and J. Villanova, “Status of the hard x-ray microprobe beamline ID22 of the European Synchrotron Radiation Facility,” J. Synchrotron Radiat. 19, 10–18 (2012).
[CrossRef]

Martins, T.

M. Di Michiel, J. M. Merino, D. Fernandez-Carreiras, T. Buslaps, V. Honkimäki, P. Falus, T. Martins, and O. Svensson, “Fast microtomography using high-energy synchrotron radiation,” Rev. Sci. Instrum. 76, 043702 (2005).
[CrossRef]

Mayo, S. C.

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
[CrossRef]

McCall, J.

K.-C. Lin, C. Rajnicek, J. McCall, C. Carter, and K. Fezzaa, “Investigation of pure- and aerated-liquid jets using ultra-fast x-ray phase contrast imaging,” Nucl. Instrum. Methods Phys. Res., Sect. A 649, 194–196 (2011).
[CrossRef]

Meinhardt, J.

P. Douissard, A. Cecilia, X. Rochet, X. Chapel, T. Martin, T. van de Kamp, L. Helfen, T. Baumbach, L. Luquot, X. Xiao, J. Meinhardt, and A. Rack, “A versatile indirect detector design for hard x-ray microimaging,” JINST 7, P09016 (2012).
[CrossRef]

Merino, J. M.

M. Di Michiel, J. M. Merino, D. Fernandez-Carreiras, T. Buslaps, V. Honkimäki, P. Falus, T. Martins, and O. Svensson, “Fast microtomography using high-energy synchrotron radiation,” Rev. Sci. Instrum. 76, 043702 (2005).
[CrossRef]

Miller, P. R.

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
[CrossRef]

Mokso, R.

R. Mokso, F. Marone, S. Irvine, M. Nyvlt, D. Schwyn, K. Mader, G. K. Taylor, H. G. Krapp, M. Skeren, and M. Stampanoni, “Advantages of phase retrieval for fast x-ray tomographic microscopy,” J. Phys. D46 (2013), to be published.

Momose, A.

Mukherjee, M.

F. Garcia-Moreno, M. Mukherjee, C. Jimenez, A. Rack, and J. Banhart, “Metal foaming investigated by x-ray radioscopy,” Metals 2, 10–21 (2012).
[CrossRef]

Müller, B. R.

A. Rack, S. Zabler, B. R. Müller, H. Riesemeier, G. Weidemann, A. Lange, J. Goebbels, M. Hentschel, and W. Görner, “High-resolution synchrotron-based radiography and tomography using hard x-rays at the BAMline (BESSY II),” Nucl. Instrum. Methods Phys. Res., Sect. A 586, 327–344 (2008).
[CrossRef]

Myagotin, A.

A. Myagotin, L. Helfen, and T. Baumbach, “Quantitative coalescence measurements for foaming metals by in situ radiography,” Scr. Mater. 67, 775–778 (2012).
[CrossRef]

A. Myagotin, A. Ershov, L. Helfen, R. Verdejo, A. Belyaev, and T. Baumbach, “Coalescence analysis for evolving foams via optical flow computation on projection image sequences,” J. Synchrotron Radiat. 19, 483–491 (2012).
[CrossRef]

Nugent, K. A.

K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard X rays,” Phys. Rev. Lett. 77, 2961–2964 (1996).
[CrossRef]

Nyvlt, M.

R. Mokso, F. Marone, S. Irvine, M. Nyvlt, D. Schwyn, K. Mader, G. K. Taylor, H. G. Krapp, M. Skeren, and M. Stampanoni, “Advantages of phase retrieval for fast x-ray tomographic microscopy,” J. Phys. D46 (2013), to be published.

Ohser, J.

L. Helfen, H. Stanzick, J. Ohser, K. Schladitz, P. Pernot, J. Banhart, and T. Baumbach, “Investigation of the foaming process of metals by synchrotron-radiation imaging,” in Proceedings of SPIE, N. Meyendorf, G. Baaklini, and B. Michel, eds. (2003), vol. 5045, pp. 254–265.

Paganin, D.

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
[CrossRef]

K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard X rays,” Phys. Rev. Lett. 77, 2961–2964 (1996).
[CrossRef]

Pernot, P.

L. Helfen, H. Stanzick, J. Ohser, K. Schladitz, P. Pernot, J. Banhart, and T. Baumbach, “Investigation of the foaming process of metals by synchrotron-radiation imaging,” in Proceedings of SPIE, N. Meyendorf, G. Baaklini, and B. Michel, eds. (2003), vol. 5045, pp. 254–265.

Petitgirard, S.

G. Martínez-Criado, R. Tucoulou, P. Cloetens, P. Bleuet, S. Bohic, J. Cauzid, I. Kieffer, E. Kosior, S. Labouré, S. Petitgirard, A. Rack, J. A. Sans, J. Segura-Ruiz, H. Suhonen, J. Susini, and J. Villanova, “Status of the hard x-ray microprobe beamline ID22 of the European Synchrotron Radiation Facility,” J. Synchrotron Radiat. 19, 10–18 (2012).
[CrossRef]

Peyrin, F.

T. Weitkamp, P. Tafforeau, E. Boller, P. Cloetens, J.-P. Valade, P. Bernard, F. Peyrin, W. Ludwig, L. Helfen, and J. Baruchel, “Status and evolution of the ESRF beamline ID19,” in AIP Conference Proceedings (ICXOM20), M. Denecke and C. T. Walker, eds. (2010), vol. 1221, pp. 33–38.

Pogany, A.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384, 335–338 (1996).
[CrossRef]

Ponchut, C.

F. García-Moreno, A. Rack, L. Helfen, T. Baumbach, S. Zabler, N. Babcsán, J. Banhart, T. Martin, C. Ponchut, and M. Di Michiel, “Fast processes in liquid metal foams investigated by high-speed synchrotron x-ray microradioscopy,” Appl. Phys. Lett. 92, 134104 (2008).
[CrossRef]

Queisser, H. J.

W. Hartmann, G. Markewitz, U. Rettenmaier, and H. J. Queisser, “High-resolution direct-display x-ray topography,” Appl. Phys. Lett. 27, 308–309 (1975).
[CrossRef]

Rack, A.

P. Douissard, A. Cecilia, X. Rochet, X. Chapel, T. Martin, T. van de Kamp, L. Helfen, T. Baumbach, L. Luquot, X. Xiao, J. Meinhardt, and A. Rack, “A versatile indirect detector design for hard x-ray microimaging,” JINST 7, P09016 (2012).
[CrossRef]

F. Garcia-Moreno, M. Mukherjee, C. Jimenez, A. Rack, and J. Banhart, “Metal foaming investigated by x-ray radioscopy,” Metals 2, 10–21 (2012).
[CrossRef]

G. Martínez-Criado, R. Tucoulou, P. Cloetens, P. Bleuet, S. Bohic, J. Cauzid, I. Kieffer, E. Kosior, S. Labouré, S. Petitgirard, A. Rack, J. A. Sans, J. Segura-Ruiz, H. Suhonen, J. Susini, and J. Villanova, “Status of the hard x-ray microprobe beamline ID22 of the European Synchrotron Radiation Facility,” J. Synchrotron Radiat. 19, 10–18 (2012).
[CrossRef]

A. Rack, F. García-Moreno, C. Schmitt, O. Betz, A. Cecilia, A. Ershov, T. Rack, J. Banhart, and S. Zabler, “On the possibilities of hard x-ray imaging with high spatio-temporal resolution using polychromatic synchrotron radiation,” J. X-Ray Sci. Technol. 18, 429–441 (2010).

A. Rack, F. García-Moreno, T. Baumbach, and J. Banhart, “Synchrotron-based radioscopy employing spatio-temporal micro-resolution for studying fast phenomena in liquid metal foams,” J. Synchrotron Radiat. 16, 432–434 (2009).
[CrossRef]

F. García-Moreno, A. Rack, L. Helfen, T. Baumbach, S. Zabler, N. Babcsán, J. Banhart, T. Martin, C. Ponchut, and M. Di Michiel, “Fast processes in liquid metal foams investigated by high-speed synchrotron x-ray microradioscopy,” Appl. Phys. Lett. 92, 134104 (2008).
[CrossRef]

A. N. Danilewsky, A. Rack, J. Wittge, T. Weitkamp, R. Simon, H. Riesemeier, and T. Baumbach, “White beam synchrotron topography using a high resolution digital x-ray imaging detector,” Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2035–2040 (2008).
[CrossRef]

A. Rack, S. Zabler, B. R. Müller, H. Riesemeier, G. Weidemann, A. Lange, J. Goebbels, M. Hentschel, and W. Görner, “High-resolution synchrotron-based radiography and tomography using hard x-rays at the BAMline (BESSY II),” Nucl. Instrum. Methods Phys. Res., Sect. A 586, 327–344 (2008).
[CrossRef]

Rack, T.

A. Rack, F. García-Moreno, C. Schmitt, O. Betz, A. Cecilia, A. Ershov, T. Rack, J. Banhart, and S. Zabler, “On the possibilities of hard x-ray imaging with high spatio-temporal resolution using polychromatic synchrotron radiation,” J. X-Ray Sci. Technol. 18, 429–441 (2010).

Rajnicek, C.

K.-C. Lin, C. Rajnicek, J. McCall, C. Carter, and K. Fezzaa, “Investigation of pure- and aerated-liquid jets using ultra-fast x-ray phase contrast imaging,” Nucl. Instrum. Methods Phys. Res., Sect. A 649, 194–196 (2011).
[CrossRef]

Raven, C.

Rettenmaier, U.

W. Hartmann, G. Markewitz, U. Rettenmaier, and H. J. Queisser, “High-resolution direct-display x-ray topography,” Appl. Phys. Lett. 27, 308–309 (1975).
[CrossRef]

Riesemeier, H.

A. Rack, S. Zabler, B. R. Müller, H. Riesemeier, G. Weidemann, A. Lange, J. Goebbels, M. Hentschel, and W. Görner, “High-resolution synchrotron-based radiography and tomography using hard x-rays at the BAMline (BESSY II),” Nucl. Instrum. Methods Phys. Res., Sect. A 586, 327–344 (2008).
[CrossRef]

A. N. Danilewsky, A. Rack, J. Wittge, T. Weitkamp, R. Simon, H. Riesemeier, and T. Baumbach, “White beam synchrotron topography using a high resolution digital x-ray imaging detector,” Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2035–2040 (2008).
[CrossRef]

Rochet, X.

P. Douissard, A. Cecilia, X. Rochet, X. Chapel, T. Martin, T. van de Kamp, L. Helfen, T. Baumbach, L. Luquot, X. Xiao, J. Meinhardt, and A. Rack, “A versatile indirect detector design for hard x-ray microimaging,” JINST 7, P09016 (2012).
[CrossRef]

Sans, J. A.

G. Martínez-Criado, R. Tucoulou, P. Cloetens, P. Bleuet, S. Bohic, J. Cauzid, I. Kieffer, E. Kosior, S. Labouré, S. Petitgirard, A. Rack, J. A. Sans, J. Segura-Ruiz, H. Suhonen, J. Susini, and J. Villanova, “Status of the hard x-ray microprobe beamline ID22 of the European Synchrotron Radiation Facility,” J. Synchrotron Radiat. 19, 10–18 (2012).
[CrossRef]

Schladitz, K.

L. Helfen, H. Stanzick, J. Ohser, K. Schladitz, P. Pernot, J. Banhart, and T. Baumbach, “Investigation of the foaming process of metals by synchrotron-radiation imaging,” in Proceedings of SPIE, N. Meyendorf, G. Baaklini, and B. Michel, eds. (2003), vol. 5045, pp. 254–265.

Schlenker, M.

S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, “Optimization of phase contrast imaging using hard X rays,” Rev. Sci. Instrum. 76, 073705 (2005).
[CrossRef]

P. Cloetens, W. Ludwig, J. Baruchel, D. V. Dyck, J. Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation x-rays,” Appl. Phys. Lett. 75, 2912–2914 (1999).
[CrossRef]

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).

Schmitt, C.

A. Rack, F. García-Moreno, C. Schmitt, O. Betz, A. Cecilia, A. Ershov, T. Rack, J. Banhart, and S. Zabler, “On the possibilities of hard x-ray imaging with high spatio-temporal resolution using polychromatic synchrotron radiation,” J. X-Ray Sci. Technol. 18, 429–441 (2010).

Schwyn, D.

R. Mokso, F. Marone, S. Irvine, M. Nyvlt, D. Schwyn, K. Mader, G. K. Taylor, H. G. Krapp, M. Skeren, and M. Stampanoni, “Advantages of phase retrieval for fast x-ray tomographic microscopy,” J. Phys. D46 (2013), to be published.

Segura-Ruiz, J.

G. Martínez-Criado, R. Tucoulou, P. Cloetens, P. Bleuet, S. Bohic, J. Cauzid, I. Kieffer, E. Kosior, S. Labouré, S. Petitgirard, A. Rack, J. A. Sans, J. Segura-Ruiz, H. Suhonen, J. Susini, and J. Villanova, “Status of the hard x-ray microprobe beamline ID22 of the European Synchrotron Radiation Facility,” J. Synchrotron Radiat. 19, 10–18 (2012).
[CrossRef]

Simon, R.

A. N. Danilewsky, A. Rack, J. Wittge, T. Weitkamp, R. Simon, H. Riesemeier, and T. Baumbach, “White beam synchrotron topography using a high resolution digital x-ray imaging detector,” Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2035–2040 (2008).
[CrossRef]

Skeren, M.

R. Mokso, F. Marone, S. Irvine, M. Nyvlt, D. Schwyn, K. Mader, G. K. Taylor, H. G. Krapp, M. Skeren, and M. Stampanoni, “Advantages of phase retrieval for fast x-ray tomographic microscopy,” J. Phys. D46 (2013), to be published.

Snigirev, A.

A. Koch, C. Raven, P. Spanne, and A. Snigirev, “X-ray imaging with submicrometer resolution employing transparent luminescent screens,” J. Opt. Soc. Am. A 15, 1940–1951 (1998).
[CrossRef]

A. Snigirev, I. Snigireva, V. Kohn, and S. Kuznetsov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Snigireva, I.

A. Snigirev, I. Snigireva, V. Kohn, and S. Kuznetsov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Spanne, P.

Stampanoni, M.

R. Mokso, F. Marone, S. Irvine, M. Nyvlt, D. Schwyn, K. Mader, G. K. Taylor, H. G. Krapp, M. Skeren, and M. Stampanoni, “Advantages of phase retrieval for fast x-ray tomographic microscopy,” J. Phys. D46 (2013), to be published.

Stanzick, H.

H. Stanzick, M. Wichmann, J. Weise, L. Helfen, T. Baumbach, and J. Banhart, “Process control in aluminum foam production using real-time x-ray radioscopy,” Adv. Eng. Mater. 4, 814–823 (2002).
[CrossRef]

H. Stanzick, M. Wichmann, J. Weise, L. Helfen, T. Baumbach, and J. Banhart, “Real-time x-ray investigation of aluminum foam sandwich production,” Adv. Eng. Mater. 3, 407 (2001).
[CrossRef]

L. Helfen, H. Stanzick, J. Ohser, K. Schladitz, P. Pernot, J. Banhart, and T. Baumbach, “Investigation of the foaming process of metals by synchrotron-radiation imaging,” in Proceedings of SPIE, N. Meyendorf, G. Baaklini, and B. Michel, eds. (2003), vol. 5045, pp. 254–265.

Stevenson, A. W.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384, 335–338 (1996).
[CrossRef]

Suhonen, H.

G. Martínez-Criado, R. Tucoulou, P. Cloetens, P. Bleuet, S. Bohic, J. Cauzid, I. Kieffer, E. Kosior, S. Labouré, S. Petitgirard, A. Rack, J. A. Sans, J. Segura-Ruiz, H. Suhonen, J. Susini, and J. Villanova, “Status of the hard x-ray microprobe beamline ID22 of the European Synchrotron Radiation Facility,” J. Synchrotron Radiat. 19, 10–18 (2012).
[CrossRef]

Susini, J.

G. Martínez-Criado, R. Tucoulou, P. Cloetens, P. Bleuet, S. Bohic, J. Cauzid, I. Kieffer, E. Kosior, S. Labouré, S. Petitgirard, A. Rack, J. A. Sans, J. Segura-Ruiz, H. Suhonen, J. Susini, and J. Villanova, “Status of the hard x-ray microprobe beamline ID22 of the European Synchrotron Radiation Facility,” J. Synchrotron Radiat. 19, 10–18 (2012).
[CrossRef]

Svensson, O.

M. Di Michiel, J. M. Merino, D. Fernandez-Carreiras, T. Buslaps, V. Honkimäki, P. Falus, T. Martins, and O. Svensson, “Fast microtomography using high-energy synchrotron radiation,” Rev. Sci. Instrum. 76, 043702 (2005).
[CrossRef]

Tafforeau, P.

T. Weitkamp, P. Tafforeau, E. Boller, P. Cloetens, J.-P. Valade, P. Bernard, F. Peyrin, W. Ludwig, L. Helfen, and J. Baruchel, “Status and evolution of the ESRF beamline ID19,” in AIP Conference Proceedings (ICXOM20), M. Denecke and C. T. Walker, eds. (2010), vol. 1221, pp. 33–38.

Takeda, Y.

Tapiador, F. J.

R. Verdejo, F. J. Tapiador, L. Helfen, M. M. Bernal, N. Bitinis, and M. A. Lopez-Manchado, “Fluid dynamics of evolving foams,” Phys. Chem. Chem. Phys. 11, 10860–10866 (2009).
[CrossRef]

Taylor, G. K.

R. Mokso, F. Marone, S. Irvine, M. Nyvlt, D. Schwyn, K. Mader, G. K. Taylor, H. G. Krapp, M. Skeren, and M. Stampanoni, “Advantages of phase retrieval for fast x-ray tomographic microscopy,” J. Phys. D46 (2013), to be published.

Tucoulou, R.

G. Martínez-Criado, R. Tucoulou, P. Cloetens, P. Bleuet, S. Bohic, J. Cauzid, I. Kieffer, E. Kosior, S. Labouré, S. Petitgirard, A. Rack, J. A. Sans, J. Segura-Ruiz, H. Suhonen, J. Susini, and J. Villanova, “Status of the hard x-ray microprobe beamline ID22 of the European Synchrotron Radiation Facility,” J. Synchrotron Radiat. 19, 10–18 (2012).
[CrossRef]

Valade, J.-P.

T. Weitkamp, P. Tafforeau, E. Boller, P. Cloetens, J.-P. Valade, P. Bernard, F. Peyrin, W. Ludwig, L. Helfen, and J. Baruchel, “Status and evolution of the ESRF beamline ID19,” in AIP Conference Proceedings (ICXOM20), M. Denecke and C. T. Walker, eds. (2010), vol. 1221, pp. 33–38.

van de Kamp, T.

P. Douissard, A. Cecilia, X. Rochet, X. Chapel, T. Martin, T. van de Kamp, L. Helfen, T. Baumbach, L. Luquot, X. Xiao, J. Meinhardt, and A. Rack, “A versatile indirect detector design for hard x-ray microimaging,” JINST 7, P09016 (2012).
[CrossRef]

Verdejo, R.

A. Myagotin, A. Ershov, L. Helfen, R. Verdejo, A. Belyaev, and T. Baumbach, “Coalescence analysis for evolving foams via optical flow computation on projection image sequences,” J. Synchrotron Radiat. 19, 483–491 (2012).
[CrossRef]

R. Verdejo, F. J. Tapiador, L. Helfen, M. M. Bernal, N. Bitinis, and M. A. Lopez-Manchado, “Fluid dynamics of evolving foams,” Phys. Chem. Chem. Phys. 11, 10860–10866 (2009).
[CrossRef]

Villanova, J.

G. Martínez-Criado, R. Tucoulou, P. Cloetens, P. Bleuet, S. Bohic, J. Cauzid, I. Kieffer, E. Kosior, S. Labouré, S. Petitgirard, A. Rack, J. A. Sans, J. Segura-Ruiz, H. Suhonen, J. Susini, and J. Villanova, “Status of the hard x-ray microprobe beamline ID22 of the European Synchrotron Radiation Facility,” J. Synchrotron Radiat. 19, 10–18 (2012).
[CrossRef]

Wang, J.

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast x-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4, 305–309 (2008).
[CrossRef]

J. Wang, “Ultrafast x-ray imaging of fuel sprays,” in AIP Conference Proceedings (SRI06), J.-Y. Choi and S. Rah, eds. (2007), vol. 879, pp. 1535–1538.

Wang, Y.

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast x-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4, 305–309 (2008).
[CrossRef]

Weidemann, G.

A. Rack, S. Zabler, B. R. Müller, H. Riesemeier, G. Weidemann, A. Lange, J. Goebbels, M. Hentschel, and W. Görner, “High-resolution synchrotron-based radiography and tomography using hard x-rays at the BAMline (BESSY II),” Nucl. Instrum. Methods Phys. Res., Sect. A 586, 327–344 (2008).
[CrossRef]

Weise, J.

H. Stanzick, M. Wichmann, J. Weise, L. Helfen, T. Baumbach, and J. Banhart, “Process control in aluminum foam production using real-time x-ray radioscopy,” Adv. Eng. Mater. 4, 814–823 (2002).
[CrossRef]

H. Stanzick, M. Wichmann, J. Weise, L. Helfen, T. Baumbach, and J. Banhart, “Real-time x-ray investigation of aluminum foam sandwich production,” Adv. Eng. Mater. 3, 407 (2001).
[CrossRef]

Weitkamp, T.

A. N. Danilewsky, A. Rack, J. Wittge, T. Weitkamp, R. Simon, H. Riesemeier, and T. Baumbach, “White beam synchrotron topography using a high resolution digital x-ray imaging detector,” Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2035–2040 (2008).
[CrossRef]

T. Weitkamp, P. Tafforeau, E. Boller, P. Cloetens, J.-P. Valade, P. Bernard, F. Peyrin, W. Ludwig, L. Helfen, and J. Baruchel, “Status and evolution of the ESRF beamline ID19,” in AIP Conference Proceedings (ICXOM20), M. Denecke and C. T. Walker, eds. (2010), vol. 1221, pp. 33–38.

Wichmann, M.

H. Stanzick, M. Wichmann, J. Weise, L. Helfen, T. Baumbach, and J. Banhart, “Process control in aluminum foam production using real-time x-ray radioscopy,” Adv. Eng. Mater. 4, 814–823 (2002).
[CrossRef]

H. Stanzick, M. Wichmann, J. Weise, L. Helfen, T. Baumbach, and J. Banhart, “Real-time x-ray investigation of aluminum foam sandwich production,” Adv. Eng. Mater. 3, 407 (2001).
[CrossRef]

Wilkins, S. W.

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
[CrossRef]

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384, 335–338 (1996).
[CrossRef]

Winkelman, J. R.

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast x-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4, 305–309 (2008).
[CrossRef]

Wittge, J.

A. N. Danilewsky, A. Rack, J. Wittge, T. Weitkamp, R. Simon, H. Riesemeier, and T. Baumbach, “White beam synchrotron topography using a high resolution digital x-ray imaging detector,” Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2035–2040 (2008).
[CrossRef]

Xiao, X.

P. Douissard, A. Cecilia, X. Rochet, X. Chapel, T. Martin, T. van de Kamp, L. Helfen, T. Baumbach, L. Luquot, X. Xiao, J. Meinhardt, and A. Rack, “A versatile indirect detector design for hard x-ray microimaging,” JINST 7, P09016 (2012).
[CrossRef]

Yashiro, W.

Zabler, S.

A. Rack, F. García-Moreno, C. Schmitt, O. Betz, A. Cecilia, A. Ershov, T. Rack, J. Banhart, and S. Zabler, “On the possibilities of hard x-ray imaging with high spatio-temporal resolution using polychromatic synchrotron radiation,” J. X-Ray Sci. Technol. 18, 429–441 (2010).

A. Rack, S. Zabler, B. R. Müller, H. Riesemeier, G. Weidemann, A. Lange, J. Goebbels, M. Hentschel, and W. Görner, “High-resolution synchrotron-based radiography and tomography using hard x-rays at the BAMline (BESSY II),” Nucl. Instrum. Methods Phys. Res., Sect. A 586, 327–344 (2008).
[CrossRef]

F. García-Moreno, A. Rack, L. Helfen, T. Baumbach, S. Zabler, N. Babcsán, J. Banhart, T. Martin, C. Ponchut, and M. Di Michiel, “Fast processes in liquid metal foams investigated by high-speed synchrotron x-ray microradioscopy,” Appl. Phys. Lett. 92, 134104 (2008).
[CrossRef]

S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, “Optimization of phase contrast imaging using hard X rays,” Rev. Sci. Instrum. 76, 073705 (2005).
[CrossRef]

Adv. Eng. Mater.

H. Stanzick, M. Wichmann, J. Weise, L. Helfen, T. Baumbach, and J. Banhart, “Real-time x-ray investigation of aluminum foam sandwich production,” Adv. Eng. Mater. 3, 407 (2001).
[CrossRef]

H. Stanzick, M. Wichmann, J. Weise, L. Helfen, T. Baumbach, and J. Banhart, “Process control in aluminum foam production using real-time x-ray radioscopy,” Adv. Eng. Mater. 4, 814–823 (2002).
[CrossRef]

AIP Conf. Proc.

M. S. del Río and R. J. Dejus, “Xop 2.1—a new version of the x-ray optics software toolkit,” AIP Conf. Proc. 705, 784–787 (2004).
[CrossRef]

Appl. Phys. Lett.

P. Cloetens, W. Ludwig, J. Baruchel, D. V. Dyck, J. Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation x-rays,” Appl. Phys. Lett. 75, 2912–2914 (1999).
[CrossRef]

W. Hartmann, G. Markewitz, U. Rettenmaier, and H. J. Queisser, “High-resolution direct-display x-ray topography,” Appl. Phys. Lett. 27, 308–309 (1975).
[CrossRef]

F. García-Moreno, A. Rack, L. Helfen, T. Baumbach, S. Zabler, N. Babcsán, J. Banhart, T. Martin, C. Ponchut, and M. Di Michiel, “Fast processes in liquid metal foams investigated by high-speed synchrotron x-ray microradioscopy,” Appl. Phys. Lett. 92, 134104 (2008).
[CrossRef]

Colloids Surf. A

F. Garcia-Moreno, N. Babcsan, and J. Banhart, “X-ray radioscopy of liquid metalfoams: influence of heating profile, atmosphere and pressure,” Colloids Surf. A 263, 290–294 (2005).
[CrossRef]

J. Microsc.

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. D

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).

V. G. Kohn, T. S. Argunova, and J. H. Je, “Far-field x-ray phase contrast imaging has no detailed information on the object,” J. Phys. D 43, 442002 (2010).

J. Synchrotron Radiat.

T. Martin and A. Koch, “Recent developments in x-ray imaging with micrometer spatial resolution,” J. Synchrotron Radiat. 13, 180–194 (2006).
[CrossRef]

G. Martínez-Criado, R. Tucoulou, P. Cloetens, P. Bleuet, S. Bohic, J. Cauzid, I. Kieffer, E. Kosior, S. Labouré, S. Petitgirard, A. Rack, J. A. Sans, J. Segura-Ruiz, H. Suhonen, J. Susini, and J. Villanova, “Status of the hard x-ray microprobe beamline ID22 of the European Synchrotron Radiation Facility,” J. Synchrotron Radiat. 19, 10–18 (2012).
[CrossRef]

A. Myagotin, A. Ershov, L. Helfen, R. Verdejo, A. Belyaev, and T. Baumbach, “Coalescence analysis for evolving foams via optical flow computation on projection image sequences,” J. Synchrotron Radiat. 19, 483–491 (2012).
[CrossRef]

A. Rack, F. García-Moreno, T. Baumbach, and J. Banhart, “Synchrotron-based radioscopy employing spatio-temporal micro-resolution for studying fast phenomena in liquid metal foams,” J. Synchrotron Radiat. 16, 432–434 (2009).
[CrossRef]

J. X-Ray Sci. Technol.

A. Rack, F. García-Moreno, C. Schmitt, O. Betz, A. Cecilia, A. Ershov, T. Rack, J. Banhart, and S. Zabler, “On the possibilities of hard x-ray imaging with high spatio-temporal resolution using polychromatic synchrotron radiation,” J. X-Ray Sci. Technol. 18, 429–441 (2010).

JINST

P. Douissard, A. Cecilia, X. Rochet, X. Chapel, T. Martin, T. van de Kamp, L. Helfen, T. Baumbach, L. Luquot, X. Xiao, J. Meinhardt, and A. Rack, “A versatile indirect detector design for hard x-ray microimaging,” JINST 7, P09016 (2012).
[CrossRef]

Metals

F. Garcia-Moreno, M. Mukherjee, C. Jimenez, A. Rack, and J. Banhart, “Metal foaming investigated by x-ray radioscopy,” Metals 2, 10–21 (2012).
[CrossRef]

Nat. Phys.

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast x-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4, 305–309 (2008).
[CrossRef]

Nature

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384, 335–338 (1996).
[CrossRef]

Nucl. Instrum. Methods Phys. Res., Sect. A

K.-C. Lin, C. Rajnicek, J. McCall, C. Carter, and K. Fezzaa, “Investigation of pure- and aerated-liquid jets using ultra-fast x-ray phase contrast imaging,” Nucl. Instrum. Methods Phys. Res., Sect. A 649, 194–196 (2011).
[CrossRef]

A. Koch, “Lens coupled scintillating screen-CCD x-ray area detector with a high quantum efficiency,” Nucl. Instrum. Methods Phys. Res., Sect. A 348, 654–658 (1994).
[CrossRef]

A. Rack, S. Zabler, B. R. Müller, H. Riesemeier, G. Weidemann, A. Lange, J. Goebbels, M. Hentschel, and W. Görner, “High-resolution synchrotron-based radiography and tomography using hard x-rays at the BAMline (BESSY II),” Nucl. Instrum. Methods Phys. Res., Sect. A 586, 327–344 (2008).
[CrossRef]

Nucl. Instrum. Methods Phys. Res., Sect. B

A. N. Danilewsky, A. Rack, J. Wittge, T. Weitkamp, R. Simon, H. Riesemeier, and T. Baumbach, “White beam synchrotron topography using a high resolution digital x-ray imaging detector,” Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2035–2040 (2008).
[CrossRef]

Opt. Express

Phys. Chem. Chem. Phys.

R. Verdejo, F. J. Tapiador, L. Helfen, M. M. Bernal, N. Bitinis, and M. A. Lopez-Manchado, “Fluid dynamics of evolving foams,” Phys. Chem. Chem. Phys. 11, 10860–10866 (2009).
[CrossRef]

Phys. Rev. Lett.

K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard X rays,” Phys. Rev. Lett. 77, 2961–2964 (1996).
[CrossRef]

Prog. Biophys. Molec. Biol.

U. Bonse and F. Busch, “X-ray computed microtomography (μCT) using synchrotron radiation (SR),” Prog. Biophys. Molec. Biol. 65, 133–169 (1996).
[CrossRef]

Rev. Sci. Instrum.

M. Di Michiel, J. M. Merino, D. Fernandez-Carreiras, T. Buslaps, V. Honkimäki, P. Falus, T. Martins, and O. Svensson, “Fast microtomography using high-energy synchrotron radiation,” Rev. Sci. Instrum. 76, 043702 (2005).
[CrossRef]

A. Snigirev, I. Snigireva, V. Kohn, and S. Kuznetsov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, “Optimization of phase contrast imaging using hard X rays,” Rev. Sci. Instrum. 76, 073705 (2005).
[CrossRef]

Scr. Mater.

A. Myagotin, L. Helfen, and T. Baumbach, “Quantitative coalescence measurements for foaming metals by in situ radiography,” Scr. Mater. 67, 775–778 (2012).
[CrossRef]

Other

L. Helfen, H. Stanzick, J. Ohser, K. Schladitz, P. Pernot, J. Banhart, and T. Baumbach, “Investigation of the foaming process of metals by synchrotron-radiation imaging,” in Proceedings of SPIE, N. Meyendorf, G. Baaklini, and B. Michel, eds. (2003), vol. 5045, pp. 254–265.

T. Weitkamp, P. Tafforeau, E. Boller, P. Cloetens, J.-P. Valade, P. Bernard, F. Peyrin, W. Ludwig, L. Helfen, and J. Baruchel, “Status and evolution of the ESRF beamline ID19,” in AIP Conference Proceedings (ICXOM20), M. Denecke and C. T. Walker, eds. (2010), vol. 1221, pp. 33–38.

Photron USA, Inc., FASTCAM SA5 Data Sheet, http://www.photron.com (accessed August 2013).

PCO AG, pco.dimax Data Sheet, http://www.pco.de (accessed August 2013).

CRYTUR, spol. s r.o., http://www.crytur.cz (accessed August 2013).

R. Mokso, F. Marone, S. Irvine, M. Nyvlt, D. Schwyn, K. Mader, G. K. Taylor, H. G. Krapp, M. Skeren, and M. Stampanoni, “Advantages of phase retrieval for fast x-ray tomographic microscopy,” J. Phys. D46 (2013), to be published.

J. Wang, “Ultrafast x-ray imaging of fuel sprays,” in AIP Conference Proceedings (SRI06), J.-Y. Choi and S. Rah, eds. (2007), vol. 879, pp. 1535–1538.

Supplementary Material (2)

» Media 1: AVI (4636 KB)     
» Media 2: AVI (11911 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Outline of the experiment: the wiggler insertion device emits a broad energy spectrum filtered by absorbers; 150 m downstream the experiment is placed. At a distance of 5.2 m from the experiment, a semi-transparent high-resolution detector is positioned (10× Mitutoyo objective with NA=0.28, 1.2 μm effective pixel size), approximately 3.6 m further downstream a macroscope detector with 18.1 μm effective pixel size. Both systems are equipped with fast CMOS cameras for high data-acquisition rates (the common lead shielding required to protect the camera electronics from scattered radiation has been removed for the photos). The inset shows the common design of a radiation resistant indirect x-ray image detector.

Fig. 2.
Fig. 2.

Coalescence event in a liquid aluminum foam (AlSi6Cu4 with 0.6 wt. % TiH2 at a temperature of 640°C) captured with an acquisition rate of 105,000images/s (9.5 μs temporal sampling/6 μs exposure time, 8 m propagation distance, 18.1 μm effective pixel size, approximately 4.2mm×3.0mm FOV) [24]. Times given refer to the first frame.

Fig. 3.
Fig. 3.

Plot of the different effective photon energy spectra as (1) transmitted by the sample; (2) absorbed by the 20 μm thick active layer GGG:Eu of the first, semi-transparent detector; (3) transmitted by the first detector; (4) absorbed by the 300 μm thick YAG:Ce single-crystal scintillator of the second detector (calculated with Xop [32]). The second detector is not transparent, i.e., its transmission is zero.

Fig. 4.
Fig. 4.

Overview images acquired with the medium-resolution detector 8.8 m downstream of the experiment. Left: the coalescence of two cells is captured with an image-acquisition rate of 15,000 fps (artifacts from imperfect flat-field correction remain). Right: the silhouette of the event. The picture at the bottom is the difference between the first and the last frame. In order to fully exploit the dynamics of the event captured, see (Media 1). See furthermore Fig. 5.

Fig. 5.
Fig. 5.

Hierarchical radiography performed in a single shot: the left column shows the same time series as Fig. 4; the red box marks the region one can zoom in with the pictures taken with the semi-transparent high-resolution detector, 5.2 m downstream of the experiment (depicted on the right, contrast inverted for better visibility). The arrows mark a part of the event barely resolved in the overview images. The high-resolution images acquired with 1000 fps allow one to have a detailed view of the rearrangements taking place during coalescence. See (Media 2).

Metrics