Abstract

A dark-field imaging technique taking advantage of the active polymer slab waveguide (APSW) is experimentally investigated. The dye molecules (Rhodamine 6G, Rh6G) are doped in the polymer film for the launching of surface waves on the APSW, such as the surface plasmon polaritons on the Ag–polymer–air interface, evanescent fields at the polymer–air interface by the total internal reflection, or the guided modes. The localized surface waves will not radiate into the far-field space directly. When the specimens are placed on the surface of the APSW, these surface waves will be scattered to the far-field region, which forms the dark-field image of the specimen. Experimental results show that usage of APSW leads to high-contrast dark-field images with the conventional optical microscope system. The polymer film involved in the proposed dark-field microscopy brings about the merits of reduced roughness, good stability, bio-compatibility, and shorter wavelength of the illumination light source.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19, 3771–3782 (2007).
    [CrossRef]
  2. J. Ye, F. F. Wen, S. Heidar, J. Britt-Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).
  3. J. A. Fan, K. Bao, J. Britt Lassiter, J. M. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy,” Nano Lett. 12, 2817–2821 (2012).
  4. S. M. Prince and W. G. McGuigan, “Alignment and tolerancing of a cardioid condenser,” Proc. SPIE 6676, 66760K (2007).
  5. http://en.wikipedia.org/wiki/Dark_field_microscopy .
  6. H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96, 113107 (2010).
    [CrossRef]
  7. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
  8. A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
    [CrossRef]
  9. K. Hassan, A. Bouhelier, T. Bernardin, G. Colas-des-Francs, J.-C. Weeber, and A. Dereux, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B 87, 195428 (2013).
  10. S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J. 1, 153–162 (2009).
  11. D. Zhang, X. Yuan, and A. Bouhelier, “Direct image of surface-plasmon-coupled emission by leakage radiation microscopy,” Appl. Opt. 49, 875–879 (2010).
    [CrossRef]
  12. N. Hartmann, G. Piredda, J. Berthelot, G. Colas des Francs, A. Bouhelier, and A. Hartschuh, “Launching propagating surface plasmon polaritons by a single carbon nanotube dipolar emitter,” Nano Lett. 12, 177–181 (2012).
    [CrossRef]
  13. S. P. Frisbie, C. Chesnutt, J. Ajimo, A. A. Bernussi, and L. Grave de Peralta, “Characterization of polarization states of surface plasmon polaritons modes by Fourier-plane leakage microscopy,” Opt. Commun. 283, 5255–5260 (2010).
    [CrossRef]
  14. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
    [CrossRef]
  15. J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307, 435–439 (2003).
  16. D. Zhang, Q. Fu, M. Yi, X. Wang, Y. Chen, P. Wang, Y. Lu, P. Yao, and H. Ming, “Excitation of broadband surface plasmons with dye molecules,” Plasmonics 7, 309–312 (2012).
    [CrossRef]
  17. Q. Q. Cheng, T. Li, R. Y. Guo, L. Li, S. M. Wang, and S. N. Zhu, “Direct observation of guided-mode interference in polymer-loaded plasmonic waveguide,” Appl. Phys. Lett. 101, 171116 (2012).
    [CrossRef]
  18. D. G. Zhang, X.-C. Yuan, G. H. Yuan, P. Wang, and H. Ming, “Directional fluorescence emission characterized with leakage radiation microscopy,” J. Opt. 12, 035002 (2010).
    [CrossRef]
  19. C. J. Regan, D. Dominguez, L. Grave de Peralta, and A. A. Bernussi, “Far-field optical superlens without metal,” J. Appl. Phys. 113, 183105 (2013).
    [CrossRef]
  20. F. Chasles, B. Dubertret, and A. C. Boccara, “Optimization and characterization of a structured illumination microscope,” Opt. Express 15, 16130–16140 (2007).
    [CrossRef]
  21. L. H. Schaefer, D. Schuster, and J. Schaffer, “Structured illumination microscopy: artifact analysis and reduction utilizing a parameter optimization approach,” J. Microsc. 216,165–174 (2004).
    [CrossRef]

2013 (2)

K. Hassan, A. Bouhelier, T. Bernardin, G. Colas-des-Francs, J.-C. Weeber, and A. Dereux, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B 87, 195428 (2013).

C. J. Regan, D. Dominguez, L. Grave de Peralta, and A. A. Bernussi, “Far-field optical superlens without metal,” J. Appl. Phys. 113, 183105 (2013).
[CrossRef]

2012 (5)

D. Zhang, Q. Fu, M. Yi, X. Wang, Y. Chen, P. Wang, Y. Lu, P. Yao, and H. Ming, “Excitation of broadband surface plasmons with dye molecules,” Plasmonics 7, 309–312 (2012).
[CrossRef]

Q. Q. Cheng, T. Li, R. Y. Guo, L. Li, S. M. Wang, and S. N. Zhu, “Direct observation of guided-mode interference in polymer-loaded plasmonic waveguide,” Appl. Phys. Lett. 101, 171116 (2012).
[CrossRef]

N. Hartmann, G. Piredda, J. Berthelot, G. Colas des Francs, A. Bouhelier, and A. Hartschuh, “Launching propagating surface plasmon polaritons by a single carbon nanotube dipolar emitter,” Nano Lett. 12, 177–181 (2012).
[CrossRef]

J. Ye, F. F. Wen, S. Heidar, J. Britt-Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).

J. A. Fan, K. Bao, J. Britt Lassiter, J. M. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy,” Nano Lett. 12, 2817–2821 (2012).

2010 (4)

H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96, 113107 (2010).
[CrossRef]

D. Zhang, X. Yuan, and A. Bouhelier, “Direct image of surface-plasmon-coupled emission by leakage radiation microscopy,” Appl. Opt. 49, 875–879 (2010).
[CrossRef]

S. P. Frisbie, C. Chesnutt, J. Ajimo, A. A. Bernussi, and L. Grave de Peralta, “Characterization of polarization states of surface plasmon polaritons modes by Fourier-plane leakage microscopy,” Opt. Commun. 283, 5255–5260 (2010).
[CrossRef]

D. G. Zhang, X.-C. Yuan, G. H. Yuan, P. Wang, and H. Ming, “Directional fluorescence emission characterized with leakage radiation microscopy,” J. Opt. 12, 035002 (2010).
[CrossRef]

2009 (1)

S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J. 1, 153–162 (2009).

2008 (1)

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

2007 (4)

F. Chasles, B. Dubertret, and A. C. Boccara, “Optimization and characterization of a structured illumination microscope,” Opt. Express 15, 16130–16140 (2007).
[CrossRef]

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19, 3771–3782 (2007).
[CrossRef]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).

S. M. Prince and W. G. McGuigan, “Alignment and tolerancing of a cardioid condenser,” Proc. SPIE 6676, 66760K (2007).

2005 (1)

2004 (1)

L. H. Schaefer, D. Schuster, and J. Schaffer, “Structured illumination microscopy: artifact analysis and reduction utilizing a parameter optimization approach,” J. Microsc. 216,165–174 (2004).
[CrossRef]

2003 (1)

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307, 435–439 (2003).

Ajimo, J.

S. P. Frisbie, C. Chesnutt, J. Ajimo, A. A. Bernussi, and L. Grave de Peralta, “Characterization of polarization states of surface plasmon polaritons modes by Fourier-plane leakage microscopy,” Opt. Commun. 283, 5255–5260 (2010).
[CrossRef]

Aussenegg, F. R.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[CrossRef]

Bao, J. M.

J. A. Fan, K. Bao, J. Britt Lassiter, J. M. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy,” Nano Lett. 12, 2817–2821 (2012).

Bao, K.

J. A. Fan, K. Bao, J. Britt Lassiter, J. M. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy,” Nano Lett. 12, 2817–2821 (2012).

Barnes, W. L.

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19, 3771–3782 (2007).
[CrossRef]

Bernardin, T.

K. Hassan, A. Bouhelier, T. Bernardin, G. Colas-des-Francs, J.-C. Weeber, and A. Dereux, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B 87, 195428 (2013).

Bernussi, A. A.

C. J. Regan, D. Dominguez, L. Grave de Peralta, and A. A. Bernussi, “Far-field optical superlens without metal,” J. Appl. Phys. 113, 183105 (2013).
[CrossRef]

S. P. Frisbie, C. Chesnutt, J. Ajimo, A. A. Bernussi, and L. Grave de Peralta, “Characterization of polarization states of surface plasmon polaritons modes by Fourier-plane leakage microscopy,” Opt. Commun. 283, 5255–5260 (2010).
[CrossRef]

S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J. 1, 153–162 (2009).

Berthelot, J.

N. Hartmann, G. Piredda, J. Berthelot, G. Colas des Francs, A. Bouhelier, and A. Hartschuh, “Launching propagating surface plasmon polaritons by a single carbon nanotube dipolar emitter,” Nano Lett. 12, 177–181 (2012).
[CrossRef]

Boccara, A. C.

Bouhelier, A.

K. Hassan, A. Bouhelier, T. Bernardin, G. Colas-des-Francs, J.-C. Weeber, and A. Dereux, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B 87, 195428 (2013).

N. Hartmann, G. Piredda, J. Berthelot, G. Colas des Francs, A. Bouhelier, and A. Hartschuh, “Launching propagating surface plasmon polaritons by a single carbon nanotube dipolar emitter,” Nano Lett. 12, 177–181 (2012).
[CrossRef]

D. Zhang, X. Yuan, and A. Bouhelier, “Direct image of surface-plasmon-coupled emission by leakage radiation microscopy,” Appl. Opt. 49, 875–879 (2010).
[CrossRef]

Bozhevolnyi, S. I.

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).

Britt Lassiter, J.

J. A. Fan, K. Bao, J. Britt Lassiter, J. M. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy,” Nano Lett. 12, 2817–2821 (2012).

Britt-Lassiter, J.

J. Ye, F. F. Wen, S. Heidar, J. Britt-Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).

Capasso, F.

J. A. Fan, K. Bao, J. Britt Lassiter, J. M. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy,” Nano Lett. 12, 2817–2821 (2012).

Chasles, F.

Chen, Y.

D. Zhang, Q. Fu, M. Yi, X. Wang, Y. Chen, P. Wang, Y. Lu, P. Yao, and H. Ming, “Excitation of broadband surface plasmons with dye molecules,” Plasmonics 7, 309–312 (2012).
[CrossRef]

Cheng, Q. Q.

Q. Q. Cheng, T. Li, R. Y. Guo, L. Li, S. M. Wang, and S. N. Zhu, “Direct observation of guided-mode interference in polymer-loaded plasmonic waveguide,” Appl. Phys. Lett. 101, 171116 (2012).
[CrossRef]

Chesnutt, C.

S. P. Frisbie, C. Chesnutt, J. Ajimo, A. A. Bernussi, and L. Grave de Peralta, “Characterization of polarization states of surface plasmon polaritons modes by Fourier-plane leakage microscopy,” Opt. Commun. 283, 5255–5260 (2010).
[CrossRef]

S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J. 1, 153–162 (2009).

Colas des Francs, G.

N. Hartmann, G. Piredda, J. Berthelot, G. Colas des Francs, A. Bouhelier, and A. Hartschuh, “Launching propagating surface plasmon polaritons by a single carbon nanotube dipolar emitter,” Nano Lett. 12, 177–181 (2012).
[CrossRef]

Colas-des-Francs, G.

K. Hassan, A. Bouhelier, T. Bernardin, G. Colas-des-Francs, J.-C. Weeber, and A. Dereux, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B 87, 195428 (2013).

Dereux, A.

K. Hassan, A. Bouhelier, T. Bernardin, G. Colas-des-Francs, J.-C. Weeber, and A. Dereux, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B 87, 195428 (2013).

Ditlbacher, H.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[CrossRef]

Dominguez, D.

C. J. Regan, D. Dominguez, L. Grave de Peralta, and A. A. Bernussi, “Far-field optical superlens without metal,” J. Appl. Phys. 113, 183105 (2013).
[CrossRef]

Drezet, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[CrossRef]

Dubertret, B.

Fan, J. A.

J. A. Fan, K. Bao, J. Britt Lassiter, J. M. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy,” Nano Lett. 12, 2817–2821 (2012).

Frisbie, S. P.

S. P. Frisbie, C. Chesnutt, J. Ajimo, A. A. Bernussi, and L. Grave de Peralta, “Characterization of polarization states of surface plasmon polaritons modes by Fourier-plane leakage microscopy,” Opt. Commun. 283, 5255–5260 (2010).
[CrossRef]

S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J. 1, 153–162 (2009).

Fu, Q.

D. Zhang, Q. Fu, M. Yi, X. Wang, Y. Chen, P. Wang, Y. Lu, P. Yao, and H. Ming, “Excitation of broadband surface plasmons with dye molecules,” Plasmonics 7, 309–312 (2012).
[CrossRef]

Grave de Peralta, L.

C. J. Regan, D. Dominguez, L. Grave de Peralta, and A. A. Bernussi, “Far-field optical superlens without metal,” J. Appl. Phys. 113, 183105 (2013).
[CrossRef]

S. P. Frisbie, C. Chesnutt, J. Ajimo, A. A. Bernussi, and L. Grave de Peralta, “Characterization of polarization states of surface plasmon polaritons modes by Fourier-plane leakage microscopy,” Opt. Commun. 283, 5255–5260 (2010).
[CrossRef]

S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J. 1, 153–162 (2009).

Gryczynski, I.

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307, 435–439 (2003).

Gryczynski, Z.

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307, 435–439 (2003).

Guo, R. Y.

Q. Q. Cheng, T. Li, R. Y. Guo, L. Li, S. M. Wang, and S. N. Zhu, “Direct observation of guided-mode interference in polymer-loaded plasmonic waveguide,” Appl. Phys. Lett. 101, 171116 (2012).
[CrossRef]

Halas, N. J.

J. Ye, F. F. Wen, S. Heidar, J. Britt-Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).

J. A. Fan, K. Bao, J. Britt Lassiter, J. M. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy,” Nano Lett. 12, 2817–2821 (2012).

Hartmann, N.

N. Hartmann, G. Piredda, J. Berthelot, G. Colas des Francs, A. Bouhelier, and A. Hartschuh, “Launching propagating surface plasmon polaritons by a single carbon nanotube dipolar emitter,” Nano Lett. 12, 177–181 (2012).
[CrossRef]

Hartschuh, A.

N. Hartmann, G. Piredda, J. Berthelot, G. Colas des Francs, A. Bouhelier, and A. Hartschuh, “Launching propagating surface plasmon polaritons by a single carbon nanotube dipolar emitter,” Nano Lett. 12, 177–181 (2012).
[CrossRef]

Hassan, K.

K. Hassan, A. Bouhelier, T. Bernardin, G. Colas-des-Francs, J.-C. Weeber, and A. Dereux, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B 87, 195428 (2013).

Heidar, S.

J. Ye, F. F. Wen, S. Heidar, J. Britt-Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).

Hohenau, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[CrossRef]

Holmgaard, T.

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).

Holtz, M. E.

S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J. 1, 153–162 (2009).

Hu, H.

H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96, 113107 (2010).
[CrossRef]

Koller, D.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

Krenn, J. R.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[CrossRef]

Krishnan, A.

S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J. 1, 153–162 (2009).

Lakowicz, J. R.

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307, 435–439 (2003).

Leitner, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[CrossRef]

Li, L.

Q. Q. Cheng, T. Li, R. Y. Guo, L. Li, S. M. Wang, and S. N. Zhu, “Direct observation of guided-mode interference in polymer-loaded plasmonic waveguide,” Appl. Phys. Lett. 101, 171116 (2012).
[CrossRef]

Li, T.

Q. Q. Cheng, T. Li, R. Y. Guo, L. Li, S. M. Wang, and S. N. Zhu, “Direct observation of guided-mode interference in polymer-loaded plasmonic waveguide,” Appl. Phys. Lett. 101, 171116 (2012).
[CrossRef]

Liu, Z.

H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96, 113107 (2010).
[CrossRef]

Lu, Y.

D. Zhang, Q. Fu, M. Yi, X. Wang, Y. Chen, P. Wang, Y. Lu, P. Yao, and H. Ming, “Excitation of broadband surface plasmons with dye molecules,” Plasmonics 7, 309–312 (2012).
[CrossRef]

Ma, C.

H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96, 113107 (2010).
[CrossRef]

Malicka, J.

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307, 435–439 (2003).

McGuigan, W. G.

S. M. Prince and W. G. McGuigan, “Alignment and tolerancing of a cardioid condenser,” Proc. SPIE 6676, 66760K (2007).

Ming, H.

D. Zhang, Q. Fu, M. Yi, X. Wang, Y. Chen, P. Wang, Y. Lu, P. Yao, and H. Ming, “Excitation of broadband surface plasmons with dye molecules,” Plasmonics 7, 309–312 (2012).
[CrossRef]

D. G. Zhang, X.-C. Yuan, G. H. Yuan, P. Wang, and H. Ming, “Directional fluorescence emission characterized with leakage radiation microscopy,” J. Opt. 12, 035002 (2010).
[CrossRef]

Murray, W. A.

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19, 3771–3782 (2007).
[CrossRef]

Nordlander, P.

J. Ye, F. F. Wen, S. Heidar, J. Britt-Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).

J. A. Fan, K. Bao, J. Britt Lassiter, J. M. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy,” Nano Lett. 12, 2817–2821 (2012).

Piredda, G.

N. Hartmann, G. Piredda, J. Berthelot, G. Colas des Francs, A. Bouhelier, and A. Hartschuh, “Launching propagating surface plasmon polaritons by a single carbon nanotube dipolar emitter,” Nano Lett. 12, 177–181 (2012).
[CrossRef]

Prince, S. M.

S. M. Prince and W. G. McGuigan, “Alignment and tolerancing of a cardioid condenser,” Proc. SPIE 6676, 66760K (2007).

Regan, C. J.

C. J. Regan, D. Dominguez, L. Grave de Peralta, and A. A. Bernussi, “Far-field optical superlens without metal,” J. Appl. Phys. 113, 183105 (2013).
[CrossRef]

Schaefer, L. H.

L. H. Schaefer, D. Schuster, and J. Schaffer, “Structured illumination microscopy: artifact analysis and reduction utilizing a parameter optimization approach,” J. Microsc. 216,165–174 (2004).
[CrossRef]

Schaffer, J.

L. H. Schaefer, D. Schuster, and J. Schaffer, “Structured illumination microscopy: artifact analysis and reduction utilizing a parameter optimization approach,” J. Microsc. 216,165–174 (2004).
[CrossRef]

Schuster, D.

L. H. Schaefer, D. Schuster, and J. Schaffer, “Structured illumination microscopy: artifact analysis and reduction utilizing a parameter optimization approach,” J. Microsc. 216,165–174 (2004).
[CrossRef]

Steinberger, B.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[CrossRef]

Stepanov, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

Stepanov, A. L.

Van Dorpe, P.

J. Ye, F. F. Wen, S. Heidar, J. Britt-Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).

Wang, P.

D. Zhang, Q. Fu, M. Yi, X. Wang, Y. Chen, P. Wang, Y. Lu, P. Yao, and H. Ming, “Excitation of broadband surface plasmons with dye molecules,” Plasmonics 7, 309–312 (2012).
[CrossRef]

D. G. Zhang, X.-C. Yuan, G. H. Yuan, P. Wang, and H. Ming, “Directional fluorescence emission characterized with leakage radiation microscopy,” J. Opt. 12, 035002 (2010).
[CrossRef]

Wang, S. M.

Q. Q. Cheng, T. Li, R. Y. Guo, L. Li, S. M. Wang, and S. N. Zhu, “Direct observation of guided-mode interference in polymer-loaded plasmonic waveguide,” Appl. Phys. Lett. 101, 171116 (2012).
[CrossRef]

Wang, X.

D. Zhang, Q. Fu, M. Yi, X. Wang, Y. Chen, P. Wang, Y. Lu, P. Yao, and H. Ming, “Excitation of broadband surface plasmons with dye molecules,” Plasmonics 7, 309–312 (2012).
[CrossRef]

Weeber, J.-C.

K. Hassan, A. Bouhelier, T. Bernardin, G. Colas-des-Francs, J.-C. Weeber, and A. Dereux, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B 87, 195428 (2013).

Wen, F. F.

J. Ye, F. F. Wen, S. Heidar, J. Britt-Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).

Yao, P.

D. Zhang, Q. Fu, M. Yi, X. Wang, Y. Chen, P. Wang, Y. Lu, P. Yao, and H. Ming, “Excitation of broadband surface plasmons with dye molecules,” Plasmonics 7, 309–312 (2012).
[CrossRef]

Ye, J.

J. Ye, F. F. Wen, S. Heidar, J. Britt-Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).

Yi, M.

D. Zhang, Q. Fu, M. Yi, X. Wang, Y. Chen, P. Wang, Y. Lu, P. Yao, and H. Ming, “Excitation of broadband surface plasmons with dye molecules,” Plasmonics 7, 309–312 (2012).
[CrossRef]

Yuan, G. H.

D. G. Zhang, X.-C. Yuan, G. H. Yuan, P. Wang, and H. Ming, “Directional fluorescence emission characterized with leakage radiation microscopy,” J. Opt. 12, 035002 (2010).
[CrossRef]

Yuan, X.

Yuan, X.-C.

D. G. Zhang, X.-C. Yuan, G. H. Yuan, P. Wang, and H. Ming, “Directional fluorescence emission characterized with leakage radiation microscopy,” J. Opt. 12, 035002 (2010).
[CrossRef]

Zhang, D.

D. Zhang, Q. Fu, M. Yi, X. Wang, Y. Chen, P. Wang, Y. Lu, P. Yao, and H. Ming, “Excitation of broadband surface plasmons with dye molecules,” Plasmonics 7, 309–312 (2012).
[CrossRef]

D. Zhang, X. Yuan, and A. Bouhelier, “Direct image of surface-plasmon-coupled emission by leakage radiation microscopy,” Appl. Opt. 49, 875–879 (2010).
[CrossRef]

Zhang, D. G.

D. G. Zhang, X.-C. Yuan, G. H. Yuan, P. Wang, and H. Ming, “Directional fluorescence emission characterized with leakage radiation microscopy,” J. Opt. 12, 035002 (2010).
[CrossRef]

Zhu, S. N.

Q. Q. Cheng, T. Li, R. Y. Guo, L. Li, S. M. Wang, and S. N. Zhu, “Direct observation of guided-mode interference in polymer-loaded plasmonic waveguide,” Appl. Phys. Lett. 101, 171116 (2012).
[CrossRef]

Adv. Mater. (1)

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19, 3771–3782 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Q. Q. Cheng, T. Li, R. Y. Guo, L. Li, S. M. Wang, and S. N. Zhu, “Direct observation of guided-mode interference in polymer-loaded plasmonic waveguide,” Appl. Phys. Lett. 101, 171116 (2012).
[CrossRef]

H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96, 113107 (2010).
[CrossRef]

Biochem. Biophys. Res. Commun. (1)

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307, 435–439 (2003).

IEEE Photon. J. (1)

S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J. 1, 153–162 (2009).

J. Appl. Phys. (1)

C. J. Regan, D. Dominguez, L. Grave de Peralta, and A. A. Bernussi, “Far-field optical superlens without metal,” J. Appl. Phys. 113, 183105 (2013).
[CrossRef]

J. Microsc. (1)

L. H. Schaefer, D. Schuster, and J. Schaffer, “Structured illumination microscopy: artifact analysis and reduction utilizing a parameter optimization approach,” J. Microsc. 216,165–174 (2004).
[CrossRef]

J. Opt. (1)

D. G. Zhang, X.-C. Yuan, G. H. Yuan, P. Wang, and H. Ming, “Directional fluorescence emission characterized with leakage radiation microscopy,” J. Opt. 12, 035002 (2010).
[CrossRef]

Mater. Sci. Eng. B (1)

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

Nano Lett. (3)

N. Hartmann, G. Piredda, J. Berthelot, G. Colas des Francs, A. Bouhelier, and A. Hartschuh, “Launching propagating surface plasmon polaritons by a single carbon nanotube dipolar emitter,” Nano Lett. 12, 177–181 (2012).
[CrossRef]

J. Ye, F. F. Wen, S. Heidar, J. Britt-Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).

J. A. Fan, K. Bao, J. Britt Lassiter, J. M. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy,” Nano Lett. 12, 2817–2821 (2012).

Opt. Commun. (1)

S. P. Frisbie, C. Chesnutt, J. Ajimo, A. A. Bernussi, and L. Grave de Peralta, “Characterization of polarization states of surface plasmon polaritons modes by Fourier-plane leakage microscopy,” Opt. Commun. 283, 5255–5260 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (2)

K. Hassan, A. Bouhelier, T. Bernardin, G. Colas-des-Francs, J.-C. Weeber, and A. Dereux, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B 87, 195428 (2013).

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).

Plasmonics (1)

D. Zhang, Q. Fu, M. Yi, X. Wang, Y. Chen, P. Wang, Y. Lu, P. Yao, and H. Ming, “Excitation of broadband surface plasmons with dye molecules,” Plasmonics 7, 309–312 (2012).
[CrossRef]

Proc. SPIE (1)

S. M. Prince and W. G. McGuigan, “Alignment and tolerancing of a cardioid condenser,” Proc. SPIE 6676, 66760K (2007).

Other (1)

http://en.wikipedia.org/wiki/Dark_field_microscopy .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Structural diagram of the active polymer slab waveguide (APSW) with polystyrene spheres (PSs) on its surface and the SEM image. (b) Schematic diagram of the experimental setup.

Fig. 2.
Fig. 2.

(a) Fourier plane fluorescence image of the APSW captured by LRM. (b) Fluorescence spectra from the area with and without the PSs on the APSW. (c) Direct-space fluorescence image of the monolayer PSs. (d) Bright-field transmission image of the PSs (diameter 2μm). (e) Direct-space fluorescence image and (f) bright-field image of the silver nanocubes (Ag–NCs) on the APSW.

Fig. 3.
Fig. 3.

(a) Fourier plane fluorescence image of the APSW with thick PMMA film (450 nm thickness). (b) The corresponding direct-space fluorescence image of the PSs (diameter 2μm). (c) Fourier plane fluorescence image of the Rh6G-doped PMMA film on a glass substrate. (d) The corresponding direct-space fluorescence image of the PSs on the PMMA film.

Fig. 4.
Fig. 4.

Rh6G-doped PMMA film is spin-coated onto a Ag film. (a) Direct-space fluorescence image of an isolated PS on the APSW. (b) Fluorescence image of the same area measured after one week’s exposure to air. The Ag film is evaporated onto the PMMA film. (c) Dark-field image of a single PS measured by plasmonic dark-field (PDF) microscopy. (d) PDF microscopy image of the same PS after exposure to air for one week. The diameter of the PS is about 2 μm. (e) Atomic force microscope (AFM) surface image of the bare Ag film and (f) the APSW.

Metrics