X. Li, W. Cai, F. Li, and L. Ma, “Numerical and experimental validation of a three-dimensional combustion diagnostic based on tomographic chemiluminescence,” Opt. Express 21, 7050–7064 (2013).

[CrossRef]

L. Ma, X. Li, S. T. Sanders, A. W. Caswell, S. Roy, D. H. Plemmons, and J. R. Gord, “50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography,” Opt. Express 21, 1152–1162 (2013).

[CrossRef]

Q. Huang, F. Wang, J. Yan, and Y. Chi, “Simultaneous estimation of the 3-D soot temperature and volume fraction distributions in asymmetric flames using high-speed stereoscopic images,” Appl. Opt. 51, 2968–2978 (2012).

[CrossRef]

M. M. Hossain, G. Lu, and Y. Yan, “Optical fiber imaging based tomographic reconstruction of burner flames,” IEEE Trans. Instrum. Meas. 61, 1417–1425 (2012).

[CrossRef]

G. J. Nathan, P. A. M. Kalt, Z. T. Alwahabi, B. B. Dally, P. R. Medwell, and Q. N. Chan, “Recent advances in the measurement of strongly radiating, turbulent reacting flows,” Prog. Energy Combust. Sci. 38, 41–61 (2012).

[CrossRef]

Y. Zhao, X. Li, and L. Ma, “Multidimensional Monte Carlo model for two-photon laser-induced fluorescence and amplified spontaneous emission,” Comput. Phys. Commun. 183, 1588–1595 (2012).

[CrossRef]

X. Li and L. Ma, “Minimizing binary functions with simulated annealing algorithm with applications to binary tomography,” Comput. Phys. Commun. 183, 309–315 (2012).

[CrossRef]

J. Kitzhofer, T. Nonn, and C. Bruecker, “Generation and visualization of volumetric PIV data fields,” Exp. Fluids 51, 1471–1492 (2011).

[CrossRef]

W. Cai, D. J. Ewing, and L. Ma, “Investigation of temperature parallel simulated annealing for optimizing continuous functions with application to hyperspectral tomography,” Appl. Math. Comput. 217, 5754–5767 (2011).

[CrossRef]

R. Wellander, M. Richter, and M. Alden, “Time resolved, 3D imaging (4D) of two phase flow at a repetition rate of 1 kHz,” Opt. Express 19, 21508–21514 (2011).

[CrossRef]

J. Floyd and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): high resolution and instantaneous 3-D measurements of a matrix burner,” Proc. Combust. Inst. 33, 751–758 (2011).

[CrossRef]

J. Floyd, P. Geipel, and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): instantaneous 3D measurements and phantom studies of a turbulent opposed jet flame,” Combust. Flame 158, 376–391 (2011).

[CrossRef]

X. An, T. Kraetschmer, K. Takami, S. T. Sanders, L. Ma, W. Cai, X. Li, S. Roy, and J. R. Gord, “Validation of temperature imaging by H2O absorption spectroscopy using hyperspectral tomography in controlled experiments,” Appl. Opt. 50, A29–A37 (2011).

[CrossRef]

W. Cai and L. Ma, “Applications of critical temperature in minimizing functions of continuous variables with simulated annealing algorithm,” Comput. Phys. Commun. 181, 11–16 (2010).

[CrossRef]

W. Cai and L. Ma, “Hyperspectral tomography based on proper orthogonal decomposition as motivated by imaging diagnostics of unsteady reactive flows,” Appl. Opt. 49, 601–610 (2010).

[CrossRef]

W. Cai and L. Ma, “Comparison of approaches based on optimization and algebraic iteration for binary tomography,” Comp. Phys. Commun. 181, 1974–1981 (2010).

[CrossRef]

N. Anikin, R. Suntz, and H. Bockhorn, “Tomographic reconstruction of the OH*-chemiluminescence distribution in premixed and diffusion flames,” Appl. Phys. 100, 675–694 (2010).

[CrossRef]

W. Cai, L. Kranendonk, T. Lee, and L. Ma, “Characterization of composite nanoparticles using an improved light scattering program for coated spheres,” Comput. Phys. Commun. 181, 978–984 (2010).

[CrossRef]

A. Seppanen, A. Voutilainen, and J. P. Kaipio, “State estimation in process tomography-reconstruction of velocity fields using EIT,” Inverse Probl. 25, 085009 (2009).

[CrossRef]

L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express 17, 8602–8613 (2009).

[CrossRef]

L. Ma, L. Kranendonk, W. Cai, Y. Zhao, and J. Baba, “Application of simulated annealing for simultaneous retrieval of particle size distribution and refractive index,” J. Aerosol Sci. 40, 588–596 (2009).

[CrossRef]

R. S. Barlow, “Laser diagnostics and their interplay with computations to understand turbulent combustion,” Proc. Combust. Inst. 31, 49–75 (2007).

[CrossRef]

E. Y. Sidky, C. M. Kao, and X. H. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. X-Ray Sci. Technol. 14, 119–139 (2006).

Y. Ishino and N. Ohiwa, “Three-dimensional computerized tomographic reconstruction of instantaneous distribution of chemiluminescence of a turbulent premixed flame,” JSME Int. J. 48, 34–40 (2005).

[CrossRef]

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P. E. Bengtsson, and M. Alden, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33, 265–269 (2002).

[CrossRef]

D. P. Correia, P. Ferrao, and A. Caldeira-Pires, “Advanced 3D emission tomography flame temperature sensor,” Combust. Sci. Technol. 163, 1–24 (2001).

[CrossRef]

H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans. Med. Imaging 13, 601–609 (1994).

[CrossRef]

P. C. Hansen, “Analysis of discrete ill-posed problems by means of the L-Curve,” Siam Rev. 34, 561–580 (1992).

[CrossRef]

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).

[CrossRef]

G. Frieder and G. T. Herman, “Resolution in reconstructing objects from electron micrographs,” J. Theor. Biol. 33, 189–211 (1971).

[CrossRef]

G. T. Herman and S. Rowland, “Resolution in algebraic reconstruction technique: an experimental investigation of the resolving power of an algebraic picture reconstruction technique,” J. Theor. Biol. 33, 213–223 (1971).

[CrossRef]

R. Crowther, D. DeRosier, and A. Klug, “The reconstruction of a three-dimensional structure from projections and its application to electron microscopy,” Proc. R. Soc. London 317, 319–340 (1970).

[CrossRef]

R. Wellander, M. Richter, and M. Alden, “Time resolved, 3D imaging (4D) of two phase flow at a repetition rate of 1 kHz,” Opt. Express 19, 21508–21514 (2011).

[CrossRef]

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P. E. Bengtsson, and M. Alden, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33, 265–269 (2002).

[CrossRef]

G. J. Nathan, P. A. M. Kalt, Z. T. Alwahabi, B. B. Dally, P. R. Medwell, and Q. N. Chan, “Recent advances in the measurement of strongly radiating, turbulent reacting flows,” Prog. Energy Combust. Sci. 38, 41–61 (2012).

[CrossRef]

X. An, T. Kraetschmer, K. Takami, S. T. Sanders, L. Ma, W. Cai, X. Li, S. Roy, and J. R. Gord, “Validation of temperature imaging by H2O absorption spectroscopy using hyperspectral tomography in controlled experiments,” Appl. Opt. 50, A29–A37 (2011).

[CrossRef]

L. Ma, X. Li, S. Roy, A. Caswell, J. R. Gord, D. Plemmons, X. An, and S. T. Sanders, “Demonstration of high speed imaging in practical propulsion systems using hyperspectral tomography,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest (Optical Society of America, 2012), paper LM1B.5.

N. Anikin, R. Suntz, and H. Bockhorn, “Tomographic reconstruction of the OH*-chemiluminescence distribution in premixed and diffusion flames,” Appl. Phys. 100, 675–694 (2010).

[CrossRef]

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P. E. Bengtsson, and M. Alden, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33, 265–269 (2002).

[CrossRef]

L. Ma, L. Kranendonk, W. Cai, Y. Zhao, and J. Baba, “Application of simulated annealing for simultaneous retrieval of particle size distribution and refractive index,” J. Aerosol Sci. 40, 588–596 (2009).

[CrossRef]

R. S. Barlow, “Laser diagnostics and their interplay with computations to understand turbulent combustion,” Proc. Combust. Inst. 31, 49–75 (2007).

[CrossRef]

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P. E. Bengtsson, and M. Alden, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33, 265–269 (2002).

[CrossRef]

N. Anikin, R. Suntz, and H. Bockhorn, “Tomographic reconstruction of the OH*-chemiluminescence distribution in premixed and diffusion flames,” Appl. Phys. 100, 675–694 (2010).

[CrossRef]

J. Kitzhofer, T. Nonn, and C. Bruecker, “Generation and visualization of volumetric PIV data fields,” Exp. Fluids 51, 1471–1492 (2011).

[CrossRef]

X. Li, W. Cai, F. Li, and L. Ma, “Numerical and experimental validation of a three-dimensional combustion diagnostic based on tomographic chemiluminescence,” Opt. Express 21, 7050–7064 (2013).

[CrossRef]

X. An, T. Kraetschmer, K. Takami, S. T. Sanders, L. Ma, W. Cai, X. Li, S. Roy, and J. R. Gord, “Validation of temperature imaging by H2O absorption spectroscopy using hyperspectral tomography in controlled experiments,” Appl. Opt. 50, A29–A37 (2011).

[CrossRef]

W. Cai, D. J. Ewing, and L. Ma, “Investigation of temperature parallel simulated annealing for optimizing continuous functions with application to hyperspectral tomography,” Appl. Math. Comput. 217, 5754–5767 (2011).

[CrossRef]

W. Cai and L. Ma, “Applications of critical temperature in minimizing functions of continuous variables with simulated annealing algorithm,” Comput. Phys. Commun. 181, 11–16 (2010).

[CrossRef]

W. Cai and L. Ma, “Hyperspectral tomography based on proper orthogonal decomposition as motivated by imaging diagnostics of unsteady reactive flows,” Appl. Opt. 49, 601–610 (2010).

[CrossRef]

W. Cai, L. Kranendonk, T. Lee, and L. Ma, “Characterization of composite nanoparticles using an improved light scattering program for coated spheres,” Comput. Phys. Commun. 181, 978–984 (2010).

[CrossRef]

W. Cai and L. Ma, “Comparison of approaches based on optimization and algebraic iteration for binary tomography,” Comp. Phys. Commun. 181, 1974–1981 (2010).

[CrossRef]

L. Ma, L. Kranendonk, W. Cai, Y. Zhao, and J. Baba, “Application of simulated annealing for simultaneous retrieval of particle size distribution and refractive index,” J. Aerosol Sci. 40, 588–596 (2009).

[CrossRef]

L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express 17, 8602–8613 (2009).

[CrossRef]

L. Ma and W. Cai, “Determination of the optimal regularization parameters in hyperspectral tomography,” Appl. Opt. 47, 4186 (2008).

[CrossRef]

W. Cai, D. J. Ewing, and L. Ma, “Application of simulated annealing for multispectral tomography,” Comput. Phys. Commun. 179, 250 (2008).

[CrossRef]

W. Cai, A. J. Wickersham, and L. Ma, “Three-dimensional combustion diagnostics based on computed tomography of chemiluminescence,” presented at the 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Dallas Region, Texas, 7–10 January2013.

D. P. Correia, P. Ferrao, and A. Caldeira-Pires, “Advanced 3D emission tomography flame temperature sensor,” Combust. Sci. Technol. 163, 1–24 (2001).

[CrossRef]

L. Ma, X. Li, S. Roy, A. Caswell, J. R. Gord, D. Plemmons, X. An, and S. T. Sanders, “Demonstration of high speed imaging in practical propulsion systems using hyperspectral tomography,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest (Optical Society of America, 2012), paper LM1B.5.

L. Ma, X. Li, S. T. Sanders, A. W. Caswell, S. Roy, D. H. Plemmons, and J. R. Gord, “50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography,” Opt. Express 21, 1152–1162 (2013).

[CrossRef]

L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express 17, 8602–8613 (2009).

[CrossRef]

G. J. Nathan, P. A. M. Kalt, Z. T. Alwahabi, B. B. Dally, P. R. Medwell, and Q. N. Chan, “Recent advances in the measurement of strongly radiating, turbulent reacting flows,” Prog. Energy Combust. Sci. 38, 41–61 (2012).

[CrossRef]

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P. E. Bengtsson, and M. Alden, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33, 265–269 (2002).

[CrossRef]

D. P. Correia, P. Ferrao, and A. Caldeira-Pires, “Advanced 3D emission tomography flame temperature sensor,” Combust. Sci. Technol. 163, 1–24 (2001).

[CrossRef]

R. Crowther, D. DeRosier, and A. Klug, “The reconstruction of a three-dimensional structure from projections and its application to electron microscopy,” Proc. R. Soc. London 317, 319–340 (1970).

[CrossRef]

G. J. Nathan, P. A. M. Kalt, Z. T. Alwahabi, B. B. Dally, P. R. Medwell, and Q. N. Chan, “Recent advances in the measurement of strongly radiating, turbulent reacting flows,” Prog. Energy Combust. Sci. 38, 41–61 (2012).

[CrossRef]

R. Crowther, D. DeRosier, and A. Klug, “The reconstruction of a three-dimensional structure from projections and its application to electron microscopy,” Proc. R. Soc. London 317, 319–340 (1970).

[CrossRef]

W. Cai, D. J. Ewing, and L. Ma, “Investigation of temperature parallel simulated annealing for optimizing continuous functions with application to hyperspectral tomography,” Appl. Math. Comput. 217, 5754–5767 (2011).

[CrossRef]

W. Cai, D. J. Ewing, and L. Ma, “Application of simulated annealing for multispectral tomography,” Comput. Phys. Commun. 179, 250 (2008).

[CrossRef]

D. P. Correia, P. Ferrao, and A. Caldeira-Pires, “Advanced 3D emission tomography flame temperature sensor,” Combust. Sci. Technol. 163, 1–24 (2001).

[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN: The Art of Scientific Computing (Cambridge, 1992).

J. Floyd and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): high resolution and instantaneous 3-D measurements of a matrix burner,” Proc. Combust. Inst. 33, 751–758 (2011).

[CrossRef]

J. Floyd, P. Geipel, and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): instantaneous 3D measurements and phantom studies of a turbulent opposed jet flame,” Combust. Flame 158, 376–391 (2011).

[CrossRef]

G. Frieder and G. T. Herman, “Resolution in reconstructing objects from electron micrographs,” J. Theor. Biol. 33, 189–211 (1971).

[CrossRef]

J. Floyd, P. Geipel, and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): instantaneous 3D measurements and phantom studies of a turbulent opposed jet flame,” Combust. Flame 158, 376–391 (2011).

[CrossRef]

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).

[CrossRef]

L. Ma, X. Li, S. T. Sanders, A. W. Caswell, S. Roy, D. H. Plemmons, and J. R. Gord, “50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography,” Opt. Express 21, 1152–1162 (2013).

[CrossRef]

X. An, T. Kraetschmer, K. Takami, S. T. Sanders, L. Ma, W. Cai, X. Li, S. Roy, and J. R. Gord, “Validation of temperature imaging by H2O absorption spectroscopy using hyperspectral tomography in controlled experiments,” Appl. Opt. 50, A29–A37 (2011).

[CrossRef]

L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express 17, 8602–8613 (2009).

[CrossRef]

L. Ma, X. Li, S. Roy, A. Caswell, J. R. Gord, D. Plemmons, X. An, and S. T. Sanders, “Demonstration of high speed imaging in practical propulsion systems using hyperspectral tomography,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest (Optical Society of America, 2012), paper LM1B.5.

P. C. Hansen, “Analysis of discrete ill-posed problems by means of the L-Curve,” Siam Rev. 34, 561–580 (1992).

[CrossRef]

C. T. Herman, Image reconstruction from projections—the fundamentals of computerized tomography (Academic, 1980).

G. Frieder and G. T. Herman, “Resolution in reconstructing objects from electron micrographs,” J. Theor. Biol. 33, 189–211 (1971).

[CrossRef]

G. T. Herman and S. Rowland, “Resolution in algebraic reconstruction technique: an experimental investigation of the resolving power of an algebraic picture reconstruction technique,” J. Theor. Biol. 33, 213–223 (1971).

[CrossRef]

M. M. Hossain, G. Lu, and Y. Yan, “Optical fiber imaging based tomographic reconstruction of burner flames,” IEEE Trans. Instrum. Meas. 61, 1417–1425 (2012).

[CrossRef]

H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans. Med. Imaging 13, 601–609 (1994).

[CrossRef]

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P. E. Bengtsson, and M. Alden, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33, 265–269 (2002).

[CrossRef]

Y. Ishino and N. Ohiwa, “Three-dimensional computerized tomographic reconstruction of instantaneous distribution of chemiluminescence of a turbulent premixed flame,” JSME Int. J. 48, 34–40 (2005).

[CrossRef]

A. Seppanen, A. Voutilainen, and J. P. Kaipio, “State estimation in process tomography-reconstruction of velocity fields using EIT,” Inverse Probl. 25, 085009 (2009).

[CrossRef]

G. J. Nathan, P. A. M. Kalt, Z. T. Alwahabi, B. B. Dally, P. R. Medwell, and Q. N. Chan, “Recent advances in the measurement of strongly radiating, turbulent reacting flows,” Prog. Energy Combust. Sci. 38, 41–61 (2012).

[CrossRef]

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P. E. Bengtsson, and M. Alden, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33, 265–269 (2002).

[CrossRef]

E. Y. Sidky, C. M. Kao, and X. H. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. X-Ray Sci. Technol. 14, 119–139 (2006).

J. Floyd, P. Geipel, and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): instantaneous 3D measurements and phantom studies of a turbulent opposed jet flame,” Combust. Flame 158, 376–391 (2011).

[CrossRef]

J. Floyd and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): high resolution and instantaneous 3-D measurements of a matrix burner,” Proc. Combust. Inst. 33, 751–758 (2011).

[CrossRef]

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).

[CrossRef]

J. Kitzhofer, T. Nonn, and C. Bruecker, “Generation and visualization of volumetric PIV data fields,” Exp. Fluids 51, 1471–1492 (2011).

[CrossRef]

R. Crowther, D. DeRosier, and A. Klug, “The reconstruction of a three-dimensional structure from projections and its application to electron microscopy,” Proc. R. Soc. London 317, 319–340 (1970).

[CrossRef]

X. An, T. Kraetschmer, K. Takami, S. T. Sanders, L. Ma, W. Cai, X. Li, S. Roy, and J. R. Gord, “Validation of temperature imaging by H2O absorption spectroscopy using hyperspectral tomography in controlled experiments,” Appl. Opt. 50, A29–A37 (2011).

[CrossRef]

L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express 17, 8602–8613 (2009).

[CrossRef]

W. Cai, L. Kranendonk, T. Lee, and L. Ma, “Characterization of composite nanoparticles using an improved light scattering program for coated spheres,” Comput. Phys. Commun. 181, 978–984 (2010).

[CrossRef]

L. Ma, L. Kranendonk, W. Cai, Y. Zhao, and J. Baba, “Application of simulated annealing for simultaneous retrieval of particle size distribution and refractive index,” J. Aerosol Sci. 40, 588–596 (2009).

[CrossRef]

H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans. Med. Imaging 13, 601–609 (1994).

[CrossRef]

W. Cai, L. Kranendonk, T. Lee, and L. Ma, “Characterization of composite nanoparticles using an improved light scattering program for coated spheres,” Comput. Phys. Commun. 181, 978–984 (2010).

[CrossRef]

X. Li, W. Cai, F. Li, and L. Ma, “Numerical and experimental validation of a three-dimensional combustion diagnostic based on tomographic chemiluminescence,” Opt. Express 21, 7050–7064 (2013).

[CrossRef]

L. Ma, X. Li, S. T. Sanders, A. W. Caswell, S. Roy, D. H. Plemmons, and J. R. Gord, “50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography,” Opt. Express 21, 1152–1162 (2013).

[CrossRef]

Y. Zhao, X. Li, and L. Ma, “Multidimensional Monte Carlo model for two-photon laser-induced fluorescence and amplified spontaneous emission,” Comput. Phys. Commun. 183, 1588–1595 (2012).

[CrossRef]

X. Li and L. Ma, “Minimizing binary functions with simulated annealing algorithm with applications to binary tomography,” Comput. Phys. Commun. 183, 309–315 (2012).

[CrossRef]

X. An, T. Kraetschmer, K. Takami, S. T. Sanders, L. Ma, W. Cai, X. Li, S. Roy, and J. R. Gord, “Validation of temperature imaging by H2O absorption spectroscopy using hyperspectral tomography in controlled experiments,” Appl. Opt. 50, A29–A37 (2011).

[CrossRef]

L. Ma, X. Li, S. Roy, A. Caswell, J. R. Gord, D. Plemmons, X. An, and S. T. Sanders, “Demonstration of high speed imaging in practical propulsion systems using hyperspectral tomography,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest (Optical Society of America, 2012), paper LM1B.5.

M. M. Hossain, G. Lu, and Y. Yan, “Optical fiber imaging based tomographic reconstruction of burner flames,” IEEE Trans. Instrum. Meas. 61, 1417–1425 (2012).

[CrossRef]

X. Li, W. Cai, F. Li, and L. Ma, “Numerical and experimental validation of a three-dimensional combustion diagnostic based on tomographic chemiluminescence,” Opt. Express 21, 7050–7064 (2013).

[CrossRef]

L. Ma, X. Li, S. T. Sanders, A. W. Caswell, S. Roy, D. H. Plemmons, and J. R. Gord, “50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography,” Opt. Express 21, 1152–1162 (2013).

[CrossRef]

Y. Zhao, X. Li, and L. Ma, “Multidimensional Monte Carlo model for two-photon laser-induced fluorescence and amplified spontaneous emission,” Comput. Phys. Commun. 183, 1588–1595 (2012).

[CrossRef]

X. Li and L. Ma, “Minimizing binary functions with simulated annealing algorithm with applications to binary tomography,” Comput. Phys. Commun. 183, 309–315 (2012).

[CrossRef]

W. Cai, D. J. Ewing, and L. Ma, “Investigation of temperature parallel simulated annealing for optimizing continuous functions with application to hyperspectral tomography,” Appl. Math. Comput. 217, 5754–5767 (2011).

[CrossRef]

X. An, T. Kraetschmer, K. Takami, S. T. Sanders, L. Ma, W. Cai, X. Li, S. Roy, and J. R. Gord, “Validation of temperature imaging by H2O absorption spectroscopy using hyperspectral tomography in controlled experiments,” Appl. Opt. 50, A29–A37 (2011).

[CrossRef]

W. Cai and L. Ma, “Applications of critical temperature in minimizing functions of continuous variables with simulated annealing algorithm,” Comput. Phys. Commun. 181, 11–16 (2010).

[CrossRef]

W. Cai and L. Ma, “Hyperspectral tomography based on proper orthogonal decomposition as motivated by imaging diagnostics of unsteady reactive flows,” Appl. Opt. 49, 601–610 (2010).

[CrossRef]

W. Cai and L. Ma, “Comparison of approaches based on optimization and algebraic iteration for binary tomography,” Comp. Phys. Commun. 181, 1974–1981 (2010).

[CrossRef]

W. Cai, L. Kranendonk, T. Lee, and L. Ma, “Characterization of composite nanoparticles using an improved light scattering program for coated spheres,” Comput. Phys. Commun. 181, 978–984 (2010).

[CrossRef]

L. Ma, L. Kranendonk, W. Cai, Y. Zhao, and J. Baba, “Application of simulated annealing for simultaneous retrieval of particle size distribution and refractive index,” J. Aerosol Sci. 40, 588–596 (2009).

[CrossRef]

L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express 17, 8602–8613 (2009).

[CrossRef]

W. Cai, D. J. Ewing, and L. Ma, “Application of simulated annealing for multispectral tomography,” Comput. Phys. Commun. 179, 250 (2008).

[CrossRef]

L. Ma and W. Cai, “Determination of the optimal regularization parameters in hyperspectral tomography,” Appl. Opt. 47, 4186 (2008).

[CrossRef]

L. Ma, “High speed imaging in reactive flows using hyperspectral tomography and photodissociation spectroscopy,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest (Optical Society of America, 2010), paper LWA3.

L. Ma, X. Li, S. Roy, A. Caswell, J. R. Gord, D. Plemmons, X. An, and S. T. Sanders, “Demonstration of high speed imaging in practical propulsion systems using hyperspectral tomography,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest (Optical Society of America, 2012), paper LM1B.5.

W. Cai, A. J. Wickersham, and L. Ma, “Three-dimensional combustion diagnostics based on computed tomography of chemiluminescence,” presented at the 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Dallas Region, Texas, 7–10 January2013.

G. J. Nathan, P. A. M. Kalt, Z. T. Alwahabi, B. B. Dally, P. R. Medwell, and Q. N. Chan, “Recent advances in the measurement of strongly radiating, turbulent reacting flows,” Prog. Energy Combust. Sci. 38, 41–61 (2012).

[CrossRef]

G. J. Nathan, P. A. M. Kalt, Z. T. Alwahabi, B. B. Dally, P. R. Medwell, and Q. N. Chan, “Recent advances in the measurement of strongly radiating, turbulent reacting flows,” Prog. Energy Combust. Sci. 38, 41–61 (2012).

[CrossRef]

J. Kitzhofer, T. Nonn, and C. Bruecker, “Generation and visualization of volumetric PIV data fields,” Exp. Fluids 51, 1471–1492 (2011).

[CrossRef]

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P. E. Bengtsson, and M. Alden, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33, 265–269 (2002).

[CrossRef]

Y. Ishino and N. Ohiwa, “Three-dimensional computerized tomographic reconstruction of instantaneous distribution of chemiluminescence of a turbulent premixed flame,” JSME Int. J. 48, 34–40 (2005).

[CrossRef]

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P. E. Bengtsson, and M. Alden, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33, 265–269 (2002).

[CrossRef]

E. Y. Sidky, C. M. Kao, and X. H. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. X-Ray Sci. Technol. 14, 119–139 (2006).

L. Ma, X. Li, S. Roy, A. Caswell, J. R. Gord, D. Plemmons, X. An, and S. T. Sanders, “Demonstration of high speed imaging in practical propulsion systems using hyperspectral tomography,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest (Optical Society of America, 2012), paper LM1B.5.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN: The Art of Scientific Computing (Cambridge, 1992).

G. T. Herman and S. Rowland, “Resolution in algebraic reconstruction technique: an experimental investigation of the resolving power of an algebraic picture reconstruction technique,” J. Theor. Biol. 33, 213–223 (1971).

[CrossRef]

L. Ma, X. Li, S. T. Sanders, A. W. Caswell, S. Roy, D. H. Plemmons, and J. R. Gord, “50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography,” Opt. Express 21, 1152–1162 (2013).

[CrossRef]

X. An, T. Kraetschmer, K. Takami, S. T. Sanders, L. Ma, W. Cai, X. Li, S. Roy, and J. R. Gord, “Validation of temperature imaging by H2O absorption spectroscopy using hyperspectral tomography in controlled experiments,” Appl. Opt. 50, A29–A37 (2011).

[CrossRef]

L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express 17, 8602–8613 (2009).

[CrossRef]

L. Ma, X. Li, S. Roy, A. Caswell, J. R. Gord, D. Plemmons, X. An, and S. T. Sanders, “Demonstration of high speed imaging in practical propulsion systems using hyperspectral tomography,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest (Optical Society of America, 2012), paper LM1B.5.

L. Ma, X. Li, S. T. Sanders, A. W. Caswell, S. Roy, D. H. Plemmons, and J. R. Gord, “50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography,” Opt. Express 21, 1152–1162 (2013).

[CrossRef]

X. An, T. Kraetschmer, K. Takami, S. T. Sanders, L. Ma, W. Cai, X. Li, S. Roy, and J. R. Gord, “Validation of temperature imaging by H2O absorption spectroscopy using hyperspectral tomography in controlled experiments,” Appl. Opt. 50, A29–A37 (2011).

[CrossRef]

L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express 17, 8602–8613 (2009).

[CrossRef]

L. Ma, X. Li, S. Roy, A. Caswell, J. R. Gord, D. Plemmons, X. An, and S. T. Sanders, “Demonstration of high speed imaging in practical propulsion systems using hyperspectral tomography,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest (Optical Society of America, 2012), paper LM1B.5.

A. Seppanen, A. Voutilainen, and J. P. Kaipio, “State estimation in process tomography-reconstruction of velocity fields using EIT,” Inverse Probl. 25, 085009 (2009).

[CrossRef]

E. Y. Sidky, C. M. Kao, and X. H. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. X-Ray Sci. Technol. 14, 119–139 (2006).

N. Anikin, R. Suntz, and H. Bockhorn, “Tomographic reconstruction of the OH*-chemiluminescence distribution in premixed and diffusion flames,” Appl. Phys. 100, 675–694 (2010).

[CrossRef]

X. An, T. Kraetschmer, K. Takami, S. T. Sanders, L. Ma, W. Cai, X. Li, S. Roy, and J. R. Gord, “Validation of temperature imaging by H2O absorption spectroscopy using hyperspectral tomography in controlled experiments,” Appl. Opt. 50, A29–A37 (2011).

[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN: The Art of Scientific Computing (Cambridge, 1992).

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).

[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN: The Art of Scientific Computing (Cambridge, 1992).

A. Seppanen, A. Voutilainen, and J. P. Kaipio, “State estimation in process tomography-reconstruction of velocity fields using EIT,” Inverse Probl. 25, 085009 (2009).

[CrossRef]

W. Cai, A. J. Wickersham, and L. Ma, “Three-dimensional combustion diagnostics based on computed tomography of chemiluminescence,” presented at the 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Dallas Region, Texas, 7–10 January2013.

M. M. Hossain, G. Lu, and Y. Yan, “Optical fiber imaging based tomographic reconstruction of burner flames,” IEEE Trans. Instrum. Meas. 61, 1417–1425 (2012).

[CrossRef]

Y. Zhao, X. Li, and L. Ma, “Multidimensional Monte Carlo model for two-photon laser-induced fluorescence and amplified spontaneous emission,” Comput. Phys. Commun. 183, 1588–1595 (2012).

[CrossRef]

L. Ma, L. Kranendonk, W. Cai, Y. Zhao, and J. Baba, “Application of simulated annealing for simultaneous retrieval of particle size distribution and refractive index,” J. Aerosol Sci. 40, 588–596 (2009).

[CrossRef]

W. Cai, D. J. Ewing, and L. Ma, “Investigation of temperature parallel simulated annealing for optimizing continuous functions with application to hyperspectral tomography,” Appl. Math. Comput. 217, 5754–5767 (2011).

[CrossRef]

L. Ma and W. Cai, “Determination of the optimal regularization parameters in hyperspectral tomography,” Appl. Opt. 47, 4186 (2008).

[CrossRef]

X. An, T. Kraetschmer, K. Takami, S. T. Sanders, L. Ma, W. Cai, X. Li, S. Roy, and J. R. Gord, “Validation of temperature imaging by H2O absorption spectroscopy using hyperspectral tomography in controlled experiments,” Appl. Opt. 50, A29–A37 (2011).

[CrossRef]

Q. Huang, F. Wang, J. Yan, and Y. Chi, “Simultaneous estimation of the 3-D soot temperature and volume fraction distributions in asymmetric flames using high-speed stereoscopic images,” Appl. Opt. 51, 2968–2978 (2012).

[CrossRef]

W. Cai and L. Ma, “Hyperspectral tomography based on proper orthogonal decomposition as motivated by imaging diagnostics of unsteady reactive flows,” Appl. Opt. 49, 601–610 (2010).

[CrossRef]

D. Verhoeven, “Limited-data computed-tomography algorithms for the physical sciences,” Appl. Opt. 32, 3736–3754 (1993).

[CrossRef]

N. Anikin, R. Suntz, and H. Bockhorn, “Tomographic reconstruction of the OH*-chemiluminescence distribution in premixed and diffusion flames,” Appl. Phys. 100, 675–694 (2010).

[CrossRef]

J. Floyd, P. Geipel, and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): instantaneous 3D measurements and phantom studies of a turbulent opposed jet flame,” Combust. Flame 158, 376–391 (2011).

[CrossRef]

D. P. Correia, P. Ferrao, and A. Caldeira-Pires, “Advanced 3D emission tomography flame temperature sensor,” Combust. Sci. Technol. 163, 1–24 (2001).

[CrossRef]

W. Cai and L. Ma, “Comparison of approaches based on optimization and algebraic iteration for binary tomography,” Comp. Phys. Commun. 181, 1974–1981 (2010).

[CrossRef]

X. Li and L. Ma, “Minimizing binary functions with simulated annealing algorithm with applications to binary tomography,” Comput. Phys. Commun. 183, 309–315 (2012).

[CrossRef]

W. Cai, L. Kranendonk, T. Lee, and L. Ma, “Characterization of composite nanoparticles using an improved light scattering program for coated spheres,” Comput. Phys. Commun. 181, 978–984 (2010).

[CrossRef]

Y. Zhao, X. Li, and L. Ma, “Multidimensional Monte Carlo model for two-photon laser-induced fluorescence and amplified spontaneous emission,” Comput. Phys. Commun. 183, 1588–1595 (2012).

[CrossRef]

W. Cai and L. Ma, “Applications of critical temperature in minimizing functions of continuous variables with simulated annealing algorithm,” Comput. Phys. Commun. 181, 11–16 (2010).

[CrossRef]

W. Cai, D. J. Ewing, and L. Ma, “Application of simulated annealing for multispectral tomography,” Comput. Phys. Commun. 179, 250 (2008).

[CrossRef]

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P. E. Bengtsson, and M. Alden, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33, 265–269 (2002).

[CrossRef]

J. Kitzhofer, T. Nonn, and C. Bruecker, “Generation and visualization of volumetric PIV data fields,” Exp. Fluids 51, 1471–1492 (2011).

[CrossRef]

M. M. Hossain, G. Lu, and Y. Yan, “Optical fiber imaging based tomographic reconstruction of burner flames,” IEEE Trans. Instrum. Meas. 61, 1417–1425 (2012).

[CrossRef]

H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans. Med. Imaging 13, 601–609 (1994).

[CrossRef]

A. Seppanen, A. Voutilainen, and J. P. Kaipio, “State estimation in process tomography-reconstruction of velocity fields using EIT,” Inverse Probl. 25, 085009 (2009).

[CrossRef]

L. Ma, L. Kranendonk, W. Cai, Y. Zhao, and J. Baba, “Application of simulated annealing for simultaneous retrieval of particle size distribution and refractive index,” J. Aerosol Sci. 40, 588–596 (2009).

[CrossRef]

G. Frieder and G. T. Herman, “Resolution in reconstructing objects from electron micrographs,” J. Theor. Biol. 33, 189–211 (1971).

[CrossRef]

G. T. Herman and S. Rowland, “Resolution in algebraic reconstruction technique: an experimental investigation of the resolving power of an algebraic picture reconstruction technique,” J. Theor. Biol. 33, 213–223 (1971).

[CrossRef]

E. Y. Sidky, C. M. Kao, and X. H. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. X-Ray Sci. Technol. 14, 119–139 (2006).

Y. Ishino and N. Ohiwa, “Three-dimensional computerized tomographic reconstruction of instantaneous distribution of chemiluminescence of a turbulent premixed flame,” JSME Int. J. 48, 34–40 (2005).

[CrossRef]

L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express 17, 8602–8613 (2009).

[CrossRef]

L. Ma, X. Li, S. T. Sanders, A. W. Caswell, S. Roy, D. H. Plemmons, and J. R. Gord, “50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography,” Opt. Express 21, 1152–1162 (2013).

[CrossRef]

X. Li, W. Cai, F. Li, and L. Ma, “Numerical and experimental validation of a three-dimensional combustion diagnostic based on tomographic chemiluminescence,” Opt. Express 21, 7050–7064 (2013).

[CrossRef]

R. Wellander, M. Richter, and M. Alden, “Time resolved, 3D imaging (4D) of two phase flow at a repetition rate of 1 kHz,” Opt. Express 19, 21508–21514 (2011).

[CrossRef]

R. S. Barlow, “Laser diagnostics and their interplay with computations to understand turbulent combustion,” Proc. Combust. Inst. 31, 49–75 (2007).

[CrossRef]

J. Floyd and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): high resolution and instantaneous 3-D measurements of a matrix burner,” Proc. Combust. Inst. 33, 751–758 (2011).

[CrossRef]

R. Crowther, D. DeRosier, and A. Klug, “The reconstruction of a three-dimensional structure from projections and its application to electron microscopy,” Proc. R. Soc. London 317, 319–340 (1970).

[CrossRef]

G. J. Nathan, P. A. M. Kalt, Z. T. Alwahabi, B. B. Dally, P. R. Medwell, and Q. N. Chan, “Recent advances in the measurement of strongly radiating, turbulent reacting flows,” Prog. Energy Combust. Sci. 38, 41–61 (2012).

[CrossRef]

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).

[CrossRef]

P. C. Hansen, “Analysis of discrete ill-posed problems by means of the L-Curve,” Siam Rev. 34, 561–580 (1992).

[CrossRef]

W. Cai, A. J. Wickersham, and L. Ma, “Three-dimensional combustion diagnostics based on computed tomography of chemiluminescence,” presented at the 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Dallas Region, Texas, 7–10 January2013.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN: The Art of Scientific Computing (Cambridge, 1992).

L. Ma, “High speed imaging in reactive flows using hyperspectral tomography and photodissociation spectroscopy,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest (Optical Society of America, 2010), paper LWA3.

L. Ma, X. Li, S. Roy, A. Caswell, J. R. Gord, D. Plemmons, X. An, and S. T. Sanders, “Demonstration of high speed imaging in practical propulsion systems using hyperspectral tomography,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest (Optical Society of America, 2012), paper LM1B.5.

C. T. Herman, Image reconstruction from projections—the fundamentals of computerized tomography (Academic, 1980).