Abstract

The conversion efficiency of mid-infrared wavelength conversion based on coherent anti-Stokes Raman scattering with TE-polarized pump and TM-polarized Stokes waves is theoretically investigated in silicon-on-sapphire (SOS) waveguides. The peak conversion efficiency of 10dB is obtained when the linear propagation loss is 1dB/cm at Δk=0; however, it is reduced to 13.6dB when the linear propagation loss is 2dB/cm. The phase matching for wavelength conversion with orthogonally polarized pump and Stokes waves can be realized by engineering the birefringence in SOS waveguides, because proper phase mismatch induced by birefringence together with material dispersion-induced phase mismatch can counteract the large phase mismatch induced by waveguide dispersion. Moreover, compared with the phase matching for identically polarized pump and Stokes waves, the phase matching for orthogonally polarized pump and Stokes waves can be realized in a SOS waveguide with much smaller cross section, which reduces the power requirement for optical systems.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
    [CrossRef]
  2. R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultrasmall silicon-on-insulator wire waveguides,” Opt. Express 12, 3713–3718 (2004).
    [CrossRef]
  3. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
    [CrossRef]
  4. H. Rong, Y. H. Kuo, S. Xu, A. Liu, R. Jones, and M. Paniccia, “Monolithic integrated Raman silicon laser,” Opt. Express 14, 6705–6712 (2006).
    [CrossRef]
  5. J. Y. Lee, L. Yin, G. P. Agrawal, and P. M. Fauchet, “Ultrafast optical switching based on nonlinear polarization rotation in silicon waveguides,” Opt. Express 18, 11514–11523 (2010).
    [CrossRef]
  6. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
    [CrossRef]
  7. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
    [CrossRef]
  8. R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13, 4341–4349 (2005).
    [CrossRef]
  9. H. Rong, Y.-H. Kuo, A. Liu, and M. Paniccia, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express 14, 1182–1188 (2006).
    [CrossRef]
  10. Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express 14, 11721–11726 (2006).
    [CrossRef]
  11. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
    [CrossRef]
  12. W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16, 16735–16745 (2008).
    [CrossRef]
  13. A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18, 1904–1908 (2010).
    [CrossRef]
  14. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
    [CrossRef]
  15. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Anti-Stokes Raman conversion in silicon waveguides,” Opt. Express 11, 2862–2872 (2003).
    [CrossRef]
  16. V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Parametric Raman wavelength conversion in scaled silicon waveguides,” J. Lightwave Technol. 23, 2094–2102 (2005).
    [CrossRef]
  17. P. V. Koonath, D. R. Solli, and B. Jalali, “High efficiency CARS conversion in silicon,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThE3.
  18. N. Vermeulen, J. E. Sipe, Y. Lefevre, C. Debaes, and H. Thienpont, “Wavelength conversion based on Raman- and non-resonant four-wave mixing in silicon nanowire rings without dispersion engineering,” IEEE J. Sel. Top. Quantum Electron. 17, 1078–1091 (2011).
    [CrossRef]
  19. N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 99, 093903 (2007).
    [CrossRef]
  20. N. Vermeulen, C. Debaes, and H. Thienpont, “The behavior of CARS in anti-Stokes Raman converters operating at exact Raman resonance,” IEEE J. Quantum Electron. 44, 1248–1255 (2008).
    [CrossRef]
  21. D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, “Phase-matching and nonlinear optical processes in silicon waveguides,” Opt. Express 12, 149–160 (2004).
    [CrossRef]
  22. A. C. Turner, C. Manolatou, B. S. Schmidt, and M. Lipson, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
    [CrossRef]
  23. S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. N. Passaro, “Single-more and polarization-independent silicon-on-insulator waveguides with small cross section,” J. Lightwave Technol. 23, 2103–2111 (2005).
    [CrossRef]
  24. The Scott Partnership, “Mid-infrared lasers,” Nat. Photonics 4, 576–577 (2010).
    [CrossRef]
  25. Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14, 4786–4799 (2006).
    [CrossRef]
  26. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15, 16604–16644 (2007).
    [CrossRef]
  27. P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. D. Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4, 862–868 (2010).
    [CrossRef]
  28. B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, “Prospects for silicon mid-IR Raman lasers,” IEEE J. Quantum Electron. 12, 1618–1627 (2006).
    [CrossRef]
  29. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
    [CrossRef]
  30. F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19, 15212–15220 (2011).
    [CrossRef]
  31. S. Pearl, N. Rotenberg, and H. M. Driel, “Three photon absorption in silicon for 2300–3300 nm,” Appl. Phys. Lett. 93, 131102 (2008).
    [CrossRef]
  32. Z. Wang, H. Liu, N. Huang, Q. Sun, J. Wen, and X. Li, “Influence of three-photon absorption on mid-infrared cross-phase modulation in silicon-on-sapphire waveguides,” Opt. Express 21, 1840–1848 (2013).
    [CrossRef]
  33. R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Forst, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 μm,” Opt. Express 14, 8336–8346 (2006).
    [CrossRef]
  34. T. E. Murphy, software available at http://www.photonics.umd.edu .
  35. E.-K. Tien, Y. Huang, S. Gao, Q. Song, F. Qian, S. K. Kalyoncu, and O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express 18, 21981–21989 (2010).
    [CrossRef]

2013 (1)

2011 (2)

F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19, 15212–15220 (2011).
[CrossRef]

N. Vermeulen, J. E. Sipe, Y. Lefevre, C. Debaes, and H. Thienpont, “Wavelength conversion based on Raman- and non-resonant four-wave mixing in silicon nanowire rings without dispersion engineering,” IEEE J. Sel. Top. Quantum Electron. 17, 1078–1091 (2011).
[CrossRef]

2010 (8)

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[CrossRef]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[CrossRef]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[CrossRef]

The Scott Partnership, “Mid-infrared lasers,” Nat. Photonics 4, 576–577 (2010).
[CrossRef]

P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. D. Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4, 862–868 (2010).
[CrossRef]

A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18, 1904–1908 (2010).
[CrossRef]

J. Y. Lee, L. Yin, G. P. Agrawal, and P. M. Fauchet, “Ultrafast optical switching based on nonlinear polarization rotation in silicon waveguides,” Opt. Express 18, 11514–11523 (2010).
[CrossRef]

E.-K. Tien, Y. Huang, S. Gao, Q. Song, F. Qian, S. K. Kalyoncu, and O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express 18, 21981–21989 (2010).
[CrossRef]

2008 (3)

W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16, 16735–16745 (2008).
[CrossRef]

N. Vermeulen, C. Debaes, and H. Thienpont, “The behavior of CARS in anti-Stokes Raman converters operating at exact Raman resonance,” IEEE J. Quantum Electron. 44, 1248–1255 (2008).
[CrossRef]

S. Pearl, N. Rotenberg, and H. M. Driel, “Three photon absorption in silicon for 2300–3300 nm,” Appl. Phys. Lett. 93, 131102 (2008).
[CrossRef]

2007 (4)

N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 99, 093903 (2007).
[CrossRef]

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
[CrossRef]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15, 16604–16644 (2007).
[CrossRef]

2006 (8)

H. Rong, Y.-H. Kuo, A. Liu, and M. Paniccia, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express 14, 1182–1188 (2006).
[CrossRef]

A. C. Turner, C. Manolatou, B. S. Schmidt, and M. Lipson, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
[CrossRef]

Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14, 4786–4799 (2006).
[CrossRef]

H. Rong, Y. H. Kuo, S. Xu, A. Liu, R. Jones, and M. Paniccia, “Monolithic integrated Raman silicon laser,” Opt. Express 14, 6705–6712 (2006).
[CrossRef]

R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Forst, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 μm,” Opt. Express 14, 8336–8346 (2006).
[CrossRef]

Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express 14, 11721–11726 (2006).
[CrossRef]

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, “Prospects for silicon mid-IR Raman lasers,” IEEE J. Quantum Electron. 12, 1618–1627 (2006).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef]

2005 (4)

2004 (2)

2003 (1)

Agrawal, G. P.

Alic, N.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[CrossRef]

Atanackovic, P.

Boggio, J. M. C.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[CrossRef]

Boyraz, O.

Bristow, A. D.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

Chan, S. P.

Claps, R.

Cohen, O.

Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express 14, 11721–11726 (2006).
[CrossRef]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[CrossRef]

Colman, P.

P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. D. Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4, 862–868 (2010).
[CrossRef]

Combrie, S.

P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. D. Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4, 862–868 (2010).
[CrossRef]

Dadap, J. I.

Debaes, C.

N. Vermeulen, J. E. Sipe, Y. Lefevre, C. Debaes, and H. Thienpont, “Wavelength conversion based on Raman- and non-resonant four-wave mixing in silicon nanowire rings without dispersion engineering,” IEEE J. Sel. Top. Quantum Electron. 17, 1078–1091 (2011).
[CrossRef]

N. Vermeulen, C. Debaes, and H. Thienpont, “The behavior of CARS in anti-Stokes Raman converters operating at exact Raman resonance,” IEEE J. Quantum Electron. 44, 1248–1255 (2008).
[CrossRef]

N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 99, 093903 (2007).
[CrossRef]

Dekker, R.

Dimitropoulos, D.

Divliansky, I. B.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[CrossRef]

Driel, H. M.

S. Pearl, N. Rotenberg, and H. M. Driel, “Three photon absorption in silicon for 2300–3300 nm,” Appl. Phys. Lett. 93, 131102 (2008).
[CrossRef]

Driessen, A.

Duvall, S. G.

Eggleton, B. J.

Espinola, R. L.

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[CrossRef]

Fathpour, S.

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, “Prospects for silicon mid-IR Raman lasers,” IEEE J. Quantum Electron. 12, 1618–1627 (2006).
[CrossRef]

Fauchet, P. M.

Forst, M.

Foster, M. A.

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[CrossRef]

Gaeta, A. L.

Gao, S.

Green, W. M. J.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[CrossRef]

Grillet, C.

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[CrossRef]

Huang, N.

Huang, Y.

Hudson, D.

Husko, C.

P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. D. Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4, 862–868 (2010).
[CrossRef]

Jackson, S. D.

Jalali, B.

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, “Prospects for silicon mid-IR Raman lasers,” IEEE J. Quantum Electron. 12, 1618–1627 (2006).
[CrossRef]

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Parametric Raman wavelength conversion in scaled silicon waveguides,” J. Lightwave Technol. 23, 2094–2102 (2005).
[CrossRef]

D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, “Phase-matching and nonlinear optical processes in silicon waveguides,” Opt. Express 12, 149–160 (2004).
[CrossRef]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Anti-Stokes Raman conversion in silicon waveguides,” Opt. Express 11, 2862–2872 (2003).
[CrossRef]

P. V. Koonath, D. R. Solli, and B. Jalali, “High efficiency CARS conversion in silicon,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThE3.

Jones, R.

H. Rong, Y. H. Kuo, S. Xu, A. Liu, R. Jones, and M. Paniccia, “Monolithic integrated Raman silicon laser,” Opt. Express 14, 6705–6712 (2006).
[CrossRef]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[CrossRef]

Kalyoncu, S. K.

Koonath, P. V.

P. V. Koonath, D. R. Solli, and B. Jalali, “High efficiency CARS conversion in silicon,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThE3.

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[CrossRef]

Kuo, Y. H.

Kuo, Y.-H.

Lee, J. Y.

Lefevre, Y.

N. Vermeulen, J. E. Sipe, Y. Lefevre, C. Debaes, and H. Thienpont, “Wavelength conversion based on Raman- and non-resonant four-wave mixing in silicon nanowire rings without dispersion engineering,” IEEE J. Sel. Top. Quantum Electron. 17, 1078–1091 (2011).
[CrossRef]

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[CrossRef]

Li, F.

Li, X.

Lim, S. T.

Lin, Q.

Lipson, M.

Liu, A.

Liu, H.

Liu, X.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[CrossRef]

Madden, S. J.

Magi, E.

Manolatou, C.

Mathlouthi, W.

McNab, S. J.

Moghe, Y.

Mookherjea, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[CrossRef]

Moormann, C.

Moro, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[CrossRef]

Moss, D. J.

Muys, P.

N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 99, 093903 (2007).
[CrossRef]

Niehusmann, J.

O’Brien, C.

Osgood, R. M.

Painter, O. J.

Paniccia, M.

Park, J. S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[CrossRef]

Passaro, V. M. N.

Pearl, S.

S. Pearl, N. Rotenberg, and H. M. Driel, “Three photon absorption in silicon for 2300–3300 nm,” Appl. Phys. Lett. 93, 131102 (2008).
[CrossRef]

Png, C. E.

Qian, F.

Radic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[CrossRef]

Raghunathan, V.

Read, A.

Reed, G. T.

Rong, H.

Rossi, A. D.

P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. D. Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4, 862–868 (2010).
[CrossRef]

Rotenberg, N.

S. Pearl, N. Rotenberg, and H. M. Driel, “Three photon absorption in silicon for 2300–3300 nm,” Appl. Phys. Lett. 93, 131102 (2008).
[CrossRef]

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

Sagnes, I.

P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. D. Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4, 862–868 (2010).
[CrossRef]

Salem, R.

Schmidt, B. S.

A. C. Turner, C. Manolatou, B. S. Schmidt, and M. Lipson, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef]

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef]

Shori, R.

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, “Prospects for silicon mid-IR Raman lasers,” IEEE J. Quantum Electron. 12, 1618–1627 (2006).
[CrossRef]

Sih, V.

Sipe, J. E.

N. Vermeulen, J. E. Sipe, Y. Lefevre, C. Debaes, and H. Thienpont, “Wavelength conversion based on Raman- and non-resonant four-wave mixing in silicon nanowire rings without dispersion engineering,” IEEE J. Sel. Top. Quantum Electron. 17, 1078–1091 (2011).
[CrossRef]

Solli, D. R.

P. V. Koonath, D. R. Solli, and B. Jalali, “High efficiency CARS conversion in silicon,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThE3.

Song, Q.

Stafsudd, O.

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, “Prospects for silicon mid-IR Raman lasers,” IEEE J. Quantum Electron. 12, 1618–1627 (2006).
[CrossRef]

Sun, Q.

Thienpont, H.

N. Vermeulen, J. E. Sipe, Y. Lefevre, C. Debaes, and H. Thienpont, “Wavelength conversion based on Raman- and non-resonant four-wave mixing in silicon nanowire rings without dispersion engineering,” IEEE J. Sel. Top. Quantum Electron. 17, 1078–1091 (2011).
[CrossRef]

N. Vermeulen, C. Debaes, and H. Thienpont, “The behavior of CARS in anti-Stokes Raman converters operating at exact Raman resonance,” IEEE J. Quantum Electron. 44, 1248–1255 (2008).
[CrossRef]

N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 99, 093903 (2007).
[CrossRef]

Tien, E.-K.

Turner, A. C.

Turner-Foster, A. C.

van Driel, H. M.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

Vermeulen, N.

N. Vermeulen, J. E. Sipe, Y. Lefevre, C. Debaes, and H. Thienpont, “Wavelength conversion based on Raman- and non-resonant four-wave mixing in silicon nanowire rings without dispersion engineering,” IEEE J. Sel. Top. Quantum Electron. 17, 1078–1091 (2011).
[CrossRef]

N. Vermeulen, C. Debaes, and H. Thienpont, “The behavior of CARS in anti-Stokes Raman converters operating at exact Raman resonance,” IEEE J. Quantum Electron. 44, 1248–1255 (2008).
[CrossRef]

N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 99, 093903 (2007).
[CrossRef]

Vlasov, Y. A.

Wahlbrink, T.

Wang, Z.

Wen, J.

Wong, C. W.

P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. D. Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4, 862–868 (2010).
[CrossRef]

Xu, S.

Yin, L.

Zhang, J.

Zlatanovic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

S. Pearl, N. Rotenberg, and H. M. Driel, “Three photon absorption in silicon for 2300–3300 nm,” Appl. Phys. Lett. 93, 131102 (2008).
[CrossRef]

IEEE J. Quantum Electron. (2)

N. Vermeulen, C. Debaes, and H. Thienpont, “The behavior of CARS in anti-Stokes Raman converters operating at exact Raman resonance,” IEEE J. Quantum Electron. 44, 1248–1255 (2008).
[CrossRef]

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, “Prospects for silicon mid-IR Raman lasers,” IEEE J. Quantum Electron. 12, 1618–1627 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

N. Vermeulen, J. E. Sipe, Y. Lefevre, C. Debaes, and H. Thienpont, “Wavelength conversion based on Raman- and non-resonant four-wave mixing in silicon nanowire rings without dispersion engineering,” IEEE J. Sel. Top. Quantum Electron. 17, 1078–1091 (2011).
[CrossRef]

J. Lightwave Technol. (2)

Nat. Photonics (5)

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[CrossRef]

The Scott Partnership, “Mid-infrared lasers,” Nat. Photonics 4, 576–577 (2010).
[CrossRef]

P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. D. Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4, 862–868 (2010).
[CrossRef]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[CrossRef]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[CrossRef]

Nature (2)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef]

Opt. Express (18)

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Anti-Stokes Raman conversion in silicon waveguides,” Opt. Express 11, 2862–2872 (2003).
[CrossRef]

D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, “Phase-matching and nonlinear optical processes in silicon waveguides,” Opt. Express 12, 149–160 (2004).
[CrossRef]

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultrasmall silicon-on-insulator wire waveguides,” Opt. Express 12, 3713–3718 (2004).
[CrossRef]

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13, 4341–4349 (2005).
[CrossRef]

H. Rong, Y.-H. Kuo, A. Liu, and M. Paniccia, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express 14, 1182–1188 (2006).
[CrossRef]

A. C. Turner, C. Manolatou, B. S. Schmidt, and M. Lipson, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
[CrossRef]

Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14, 4786–4799 (2006).
[CrossRef]

H. Rong, Y. H. Kuo, S. Xu, A. Liu, R. Jones, and M. Paniccia, “Monolithic integrated Raman silicon laser,” Opt. Express 14, 6705–6712 (2006).
[CrossRef]

R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Forst, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 μm,” Opt. Express 14, 8336–8346 (2006).
[CrossRef]

Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express 14, 11721–11726 (2006).
[CrossRef]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
[CrossRef]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15, 16604–16644 (2007).
[CrossRef]

W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16, 16735–16745 (2008).
[CrossRef]

A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18, 1904–1908 (2010).
[CrossRef]

J. Y. Lee, L. Yin, G. P. Agrawal, and P. M. Fauchet, “Ultrafast optical switching based on nonlinear polarization rotation in silicon waveguides,” Opt. Express 18, 11514–11523 (2010).
[CrossRef]

E.-K. Tien, Y. Huang, S. Gao, Q. Song, F. Qian, S. K. Kalyoncu, and O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express 18, 21981–21989 (2010).
[CrossRef]

F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19, 15212–15220 (2011).
[CrossRef]

Z. Wang, H. Liu, N. Huang, Q. Sun, J. Wen, and X. Li, “Influence of three-photon absorption on mid-infrared cross-phase modulation in silicon-on-sapphire waveguides,” Opt. Express 21, 1840–1848 (2013).
[CrossRef]

Phys. Rev. Lett. (1)

N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 99, 093903 (2007).
[CrossRef]

Other (2)

P. V. Koonath, D. R. Solli, and B. Jalali, “High efficiency CARS conversion in silicon,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThE3.

T. E. Murphy, software available at http://www.photonics.umd.edu .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic representation of (a) stimulated Stokes Raman scattering (SSRS), (b) coherent anti-Stokes Raman scattering (CARS), and (c) stimulated anti-Stokes Raman scattering (SARS).

Fig. 2.
Fig. 2.

Conversion efficiency as a function of linear phase mismatch Δk with linear losses of 1 and 2dB/cm.

Fig. 3.
Fig. 3.

SOS rib-waveguide geometry.

Fig. 4.
Fig. 4.

Phase mismatch induced by birefringence and waveguide dispersion as a function of rib width for waveguide heights (a) 2.0 μm, (b) 1.8 μm, (c) 1.6 μm, and (d) 1.4 μm.

Fig. 5.
Fig. 5.

Birefringence-induced phase mismatch and waveguide dispersion-induced phase mismatch as a function of rib width, separately, for waveguide heights (a) 2.0 μm, (b) 1.8 μm, (c) 1.6 μm, and (d) 1.4 μm.

Fig. 6.
Fig. 6.

Phase mismatch induced by waveguide dispersion for TE-polarized pump and TE-polarized Stokes waves in SOS waveguides with rib height of 2.4 μm.

Fig. 7.
Fig. 7.

Left: TE mode profiles at the wavelength of 2.6 μm in the SOS rib waveguide with dimensions H=2.4μm, h=1.3μm, and W=1.95μm. Right: TE mode profiles at the wavelength of 2.6 μm in the SOS rib waveguide with dimensions H=1.4μm, h=0.89μm, and W=1.07μm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

dApdz=12(αl+αfcp)Apβ3PA2Aeff2|Ap|4Ap+i2πλpΔnfcpAp+i(bγKp+γRp)|Ap|2Ap+i(2bγKp+γRp+igp2Aeff)|As|2Ap+i(2bγKp+γRpigp2Aeff)|Aa|2Ap+2ibγKpAsAaAp*exp(iΔkz),
dAsdz=12(αl+αfcs)As+i2πλsΔnfcsAs+i(bγKs+γRs)|As|2As+i(2bγKs+γRsigs2Aeff)|Ap|2As+i(2bγKs+γRs)|Aa|2As+i(bγKsigs2Aeff)Ap2Aa*exp(iΔkz),
dAadz=12(αl+αfca)Aa+i2πλaΔnfcaAa+i(bγKa+γRa)|Aa|2Aa+i(2bγKa+γRa+iga2Aeff)|Ap|2Aa+i(2bγKa+γRa)|As|2Aa+i(bγKa+iga2Aeff)Ap2As*exp(iΔkz),
Nct=β3PA3hυp|Ap|6Aeff3Ncτc,
Δk=kTM(s)+kTM(a)2kTE(p),
Δk=ΔkB+ΔkWD+ΔkMAT,
ΔkMAT=[nsωs+naωa2npωp]/c,
ΔkB+ΔkWD=[(nsTMns)ωs+(naTMna)ωa2(npTEnp)ωp]/c,
ΔkB2ωp(nTEnTM)c.

Metrics