Abstract

The refractive index sensitivity of a polymer slot waveguide coated with a bilayer of Al2O3/TiO2 was investigated theoretically and optimized for biosensor applications. The influence of atomic-layer-deposition-coated thin high-refractive-index layers on the slot confinement factor and the homogeneous sensitivity of polymer slot waveguides with different geometries were simulated. The results were compared with those of an optimized noncoated polymer slot waveguide, both operating at visible wavelengths. The simulations reveal that the proposed structure offers a significant improvement in the confinement factor and the sensitivity. These calculations present guidelines for the design and fabrication of relatively sensitive polymer slot waveguide devices for low-cost biochemical sensor applications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Barrios, “Optical slot-waveguide based biochemical sensors,” Sensors 9, 4751–4765 (2009).
    [CrossRef]
  2. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
    [CrossRef]
  3. R. G. Eldridge, “Water vapor absorption of visible and near-infrared radiation,” Appl. Opt. 6, 709–713 (1967).
    [CrossRef]
  4. P. Bettotti, A. Pitanti, E. Rigo, F. Leonardis, V. Passaro, and L. Pavesi, “Modeling of slot waveguide sensors based on polymeric materials,” Sensors 11, 7327–7340 (2011).
    [CrossRef]
  5. M. Hiltunen, J. Hiltunen, P. Stenberg, E. Heinonen, P. Vahimaa, and P. Karioja, “Polymeric slot waveguide at visible wavelength,” Opt. Lett. 37, 4449–4451 (2012).
    [CrossRef]
  6. G. Testa and R. Bernini, “Slot and layer-slot waveguide in the visible spectrum,” J. Lightwave Technol. 29, 2979–2984 (2011).
    [CrossRef]
  7. S. W. Kwon, W. S. Yang, H. M. Lee, W. K. Kim, G. S. Son, D. H. Yoon, S. D. Lee, and H. Y. Lee, “The fabrication of polymer-based evanescent optical waveguide for biosensing,” Appl. Surf. Sci. 255, 5466–5470 (2009).
    [CrossRef]
  8. J. Hiltunen, S. Uusitalo, P. Karioja, S. Pearce, M. Charlton, M. Wang, J. Puustinen, and J. Lappalainen, “Manipulation of optical field distribution in layered composite polymeric inorganic waveguides,” Appl. Phys. Lett. 98, 111113 (2011).
    [CrossRef]
  9. K. Solehmainen, T. Aalto, J. Dekker, M. Kapulainen, M. Harjanne, K. Kukli, P. Heimala, K. Kolari, and M. Leskelä, “Dry-etched silicon-on-insulator waveguides with low propagation and fiber-coupling losses,” J. Lightwave Technol. 23, 3875–3880 (2005).
    [CrossRef]
  10. T. Alasaarela, T. Saastamoinen, J. Hiltunen, A. Säynätjoki, A. Tervonen, P. Stenberg, M. Kuittinen, and S. Honkanen, “Atomic layer deposited titanium dioxide and its application in resonant waveguide grating,” Appl. Opt. 49, 4321–4325 (2010).
    [CrossRef]
  11. T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express 19, 11529–11538 (2011).
    [CrossRef]
  12. T. Kwon, D. Moon, Y. Moon, W. Kim, and J. Park, “Al2O3/TiO2 multilayer passivation layers grown at low temperature for flexible organic devices,” J. Nanosci. Nanotechnol. 12, 3696–3700 (2012).
    [CrossRef]
  13. C. Zhou and L. Li, “Formulation of the Fourier modal method for symmetric crossed gratings in symmetric mountings,” J. Opt. A 6, 43–50 (2004).
    [CrossRef]
  14. J. Hugonin and P. Lalanne, “Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization,” J. Opt. Soc. Am. A 22, 1844–1849 (2005).
    [CrossRef]
  15. N. N. Feng, J. Michel, and L. C. Kimerling, “Optical field concentration in low-index waveguides,” IEEE J. Quantum Electron. 42, 885–890 (2006).
    [CrossRef]
  16. K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6, 209–220 (1989).
    [CrossRef]
  17. M. Wang, S. Uusitalo, L. Hakalahti, C. Liedert, R. Myllylä, and J. Hiltunen, “Polymeric dual-slab waveguide interferometer for biochemical sensing applications,” Appl. Opt. 51, 1886–1893 (2012).
    [CrossRef]

2012 (3)

2011 (4)

T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express 19, 11529–11538 (2011).
[CrossRef]

G. Testa and R. Bernini, “Slot and layer-slot waveguide in the visible spectrum,” J. Lightwave Technol. 29, 2979–2984 (2011).
[CrossRef]

P. Bettotti, A. Pitanti, E. Rigo, F. Leonardis, V. Passaro, and L. Pavesi, “Modeling of slot waveguide sensors based on polymeric materials,” Sensors 11, 7327–7340 (2011).
[CrossRef]

J. Hiltunen, S. Uusitalo, P. Karioja, S. Pearce, M. Charlton, M. Wang, J. Puustinen, and J. Lappalainen, “Manipulation of optical field distribution in layered composite polymeric inorganic waveguides,” Appl. Phys. Lett. 98, 111113 (2011).
[CrossRef]

2010 (1)

2009 (2)

C. A. Barrios, “Optical slot-waveguide based biochemical sensors,” Sensors 9, 4751–4765 (2009).
[CrossRef]

S. W. Kwon, W. S. Yang, H. M. Lee, W. K. Kim, G. S. Son, D. H. Yoon, S. D. Lee, and H. Y. Lee, “The fabrication of polymer-based evanescent optical waveguide for biosensing,” Appl. Surf. Sci. 255, 5466–5470 (2009).
[CrossRef]

2006 (1)

N. N. Feng, J. Michel, and L. C. Kimerling, “Optical field concentration in low-index waveguides,” IEEE J. Quantum Electron. 42, 885–890 (2006).
[CrossRef]

2005 (2)

2004 (2)

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
[CrossRef]

C. Zhou and L. Li, “Formulation of the Fourier modal method for symmetric crossed gratings in symmetric mountings,” J. Opt. A 6, 43–50 (2004).
[CrossRef]

1989 (1)

1967 (1)

Aalto, T.

Alasaarela, T.

Alloatti, L.

Almeida, V. R.

Barrios, C. A.

Bernini, R.

Bettotti, P.

P. Bettotti, A. Pitanti, E. Rigo, F. Leonardis, V. Passaro, and L. Pavesi, “Modeling of slot waveguide sensors based on polymeric materials,” Sensors 11, 7327–7340 (2011).
[CrossRef]

Charlton, M.

J. Hiltunen, S. Uusitalo, P. Karioja, S. Pearce, M. Charlton, M. Wang, J. Puustinen, and J. Lappalainen, “Manipulation of optical field distribution in layered composite polymeric inorganic waveguides,” Appl. Phys. Lett. 98, 111113 (2011).
[CrossRef]

Dekker, J.

Eldridge, R. G.

Feng, N. N.

N. N. Feng, J. Michel, and L. C. Kimerling, “Optical field concentration in low-index waveguides,” IEEE J. Quantum Electron. 42, 885–890 (2006).
[CrossRef]

Freude, W.

Hakalahti, L.

Harjanne, M.

Heimala, P.

Heinonen, E.

Hiltunen, J.

Hiltunen, M.

Honkanen, S.

Hugonin, J.

Kapulainen, M.

Karioja, P.

M. Hiltunen, J. Hiltunen, P. Stenberg, E. Heinonen, P. Vahimaa, and P. Karioja, “Polymeric slot waveguide at visible wavelength,” Opt. Lett. 37, 4449–4451 (2012).
[CrossRef]

J. Hiltunen, S. Uusitalo, P. Karioja, S. Pearce, M. Charlton, M. Wang, J. Puustinen, and J. Lappalainen, “Manipulation of optical field distribution in layered composite polymeric inorganic waveguides,” Appl. Phys. Lett. 98, 111113 (2011).
[CrossRef]

Kim, W.

T. Kwon, D. Moon, Y. Moon, W. Kim, and J. Park, “Al2O3/TiO2 multilayer passivation layers grown at low temperature for flexible organic devices,” J. Nanosci. Nanotechnol. 12, 3696–3700 (2012).
[CrossRef]

Kim, W. K.

S. W. Kwon, W. S. Yang, H. M. Lee, W. K. Kim, G. S. Son, D. H. Yoon, S. D. Lee, and H. Y. Lee, “The fabrication of polymer-based evanescent optical waveguide for biosensing,” Appl. Surf. Sci. 255, 5466–5470 (2009).
[CrossRef]

Kimerling, L. C.

N. N. Feng, J. Michel, and L. C. Kimerling, “Optical field concentration in low-index waveguides,” IEEE J. Quantum Electron. 42, 885–890 (2006).
[CrossRef]

Kolari, K.

Korn, D.

Kuittinen, M.

Kukli, K.

Kwon, S. W.

S. W. Kwon, W. S. Yang, H. M. Lee, W. K. Kim, G. S. Son, D. H. Yoon, S. D. Lee, and H. Y. Lee, “The fabrication of polymer-based evanescent optical waveguide for biosensing,” Appl. Surf. Sci. 255, 5466–5470 (2009).
[CrossRef]

Kwon, T.

T. Kwon, D. Moon, Y. Moon, W. Kim, and J. Park, “Al2O3/TiO2 multilayer passivation layers grown at low temperature for flexible organic devices,” J. Nanosci. Nanotechnol. 12, 3696–3700 (2012).
[CrossRef]

Lalanne, P.

Lappalainen, J.

J. Hiltunen, S. Uusitalo, P. Karioja, S. Pearce, M. Charlton, M. Wang, J. Puustinen, and J. Lappalainen, “Manipulation of optical field distribution in layered composite polymeric inorganic waveguides,” Appl. Phys. Lett. 98, 111113 (2011).
[CrossRef]

Lee, H. M.

S. W. Kwon, W. S. Yang, H. M. Lee, W. K. Kim, G. S. Son, D. H. Yoon, S. D. Lee, and H. Y. Lee, “The fabrication of polymer-based evanescent optical waveguide for biosensing,” Appl. Surf. Sci. 255, 5466–5470 (2009).
[CrossRef]

Lee, H. Y.

S. W. Kwon, W. S. Yang, H. M. Lee, W. K. Kim, G. S. Son, D. H. Yoon, S. D. Lee, and H. Y. Lee, “The fabrication of polymer-based evanescent optical waveguide for biosensing,” Appl. Surf. Sci. 255, 5466–5470 (2009).
[CrossRef]

Lee, S. D.

S. W. Kwon, W. S. Yang, H. M. Lee, W. K. Kim, G. S. Son, D. H. Yoon, S. D. Lee, and H. Y. Lee, “The fabrication of polymer-based evanescent optical waveguide for biosensing,” Appl. Surf. Sci. 255, 5466–5470 (2009).
[CrossRef]

Leonardis, F.

P. Bettotti, A. Pitanti, E. Rigo, F. Leonardis, V. Passaro, and L. Pavesi, “Modeling of slot waveguide sensors based on polymeric materials,” Sensors 11, 7327–7340 (2011).
[CrossRef]

Leskelä, M.

Leuthold, J.

Li, L.

C. Zhou and L. Li, “Formulation of the Fourier modal method for symmetric crossed gratings in symmetric mountings,” J. Opt. A 6, 43–50 (2004).
[CrossRef]

Liedert, C.

Lipson, M.

Lukosz, W.

Michel, J.

N. N. Feng, J. Michel, and L. C. Kimerling, “Optical field concentration in low-index waveguides,” IEEE J. Quantum Electron. 42, 885–890 (2006).
[CrossRef]

Moon, D.

T. Kwon, D. Moon, Y. Moon, W. Kim, and J. Park, “Al2O3/TiO2 multilayer passivation layers grown at low temperature for flexible organic devices,” J. Nanosci. Nanotechnol. 12, 3696–3700 (2012).
[CrossRef]

Moon, Y.

T. Kwon, D. Moon, Y. Moon, W. Kim, and J. Park, “Al2O3/TiO2 multilayer passivation layers grown at low temperature for flexible organic devices,” J. Nanosci. Nanotechnol. 12, 3696–3700 (2012).
[CrossRef]

Myllylä, R.

Palmer, R.

Park, J.

T. Kwon, D. Moon, Y. Moon, W. Kim, and J. Park, “Al2O3/TiO2 multilayer passivation layers grown at low temperature for flexible organic devices,” J. Nanosci. Nanotechnol. 12, 3696–3700 (2012).
[CrossRef]

Passaro, V.

P. Bettotti, A. Pitanti, E. Rigo, F. Leonardis, V. Passaro, and L. Pavesi, “Modeling of slot waveguide sensors based on polymeric materials,” Sensors 11, 7327–7340 (2011).
[CrossRef]

Pavesi, L.

P. Bettotti, A. Pitanti, E. Rigo, F. Leonardis, V. Passaro, and L. Pavesi, “Modeling of slot waveguide sensors based on polymeric materials,” Sensors 11, 7327–7340 (2011).
[CrossRef]

Pearce, S.

J. Hiltunen, S. Uusitalo, P. Karioja, S. Pearce, M. Charlton, M. Wang, J. Puustinen, and J. Lappalainen, “Manipulation of optical field distribution in layered composite polymeric inorganic waveguides,” Appl. Phys. Lett. 98, 111113 (2011).
[CrossRef]

Pitanti, A.

P. Bettotti, A. Pitanti, E. Rigo, F. Leonardis, V. Passaro, and L. Pavesi, “Modeling of slot waveguide sensors based on polymeric materials,” Sensors 11, 7327–7340 (2011).
[CrossRef]

Puustinen, J.

J. Hiltunen, S. Uusitalo, P. Karioja, S. Pearce, M. Charlton, M. Wang, J. Puustinen, and J. Lappalainen, “Manipulation of optical field distribution in layered composite polymeric inorganic waveguides,” Appl. Phys. Lett. 98, 111113 (2011).
[CrossRef]

Rigo, E.

P. Bettotti, A. Pitanti, E. Rigo, F. Leonardis, V. Passaro, and L. Pavesi, “Modeling of slot waveguide sensors based on polymeric materials,” Sensors 11, 7327–7340 (2011).
[CrossRef]

Saastamoinen, T.

Säynätjoki, A.

Solehmainen, K.

Son, G. S.

S. W. Kwon, W. S. Yang, H. M. Lee, W. K. Kim, G. S. Son, D. H. Yoon, S. D. Lee, and H. Y. Lee, “The fabrication of polymer-based evanescent optical waveguide for biosensing,” Appl. Surf. Sci. 255, 5466–5470 (2009).
[CrossRef]

Stenberg, P.

Tervonen, A.

Testa, G.

Tiefenthaler, K.

Uusitalo, S.

M. Wang, S. Uusitalo, L. Hakalahti, C. Liedert, R. Myllylä, and J. Hiltunen, “Polymeric dual-slab waveguide interferometer for biochemical sensing applications,” Appl. Opt. 51, 1886–1893 (2012).
[CrossRef]

J. Hiltunen, S. Uusitalo, P. Karioja, S. Pearce, M. Charlton, M. Wang, J. Puustinen, and J. Lappalainen, “Manipulation of optical field distribution in layered composite polymeric inorganic waveguides,” Appl. Phys. Lett. 98, 111113 (2011).
[CrossRef]

Vahimaa, P.

Wang, M.

M. Wang, S. Uusitalo, L. Hakalahti, C. Liedert, R. Myllylä, and J. Hiltunen, “Polymeric dual-slab waveguide interferometer for biochemical sensing applications,” Appl. Opt. 51, 1886–1893 (2012).
[CrossRef]

J. Hiltunen, S. Uusitalo, P. Karioja, S. Pearce, M. Charlton, M. Wang, J. Puustinen, and J. Lappalainen, “Manipulation of optical field distribution in layered composite polymeric inorganic waveguides,” Appl. Phys. Lett. 98, 111113 (2011).
[CrossRef]

Xu, Q.

Yang, W. S.

S. W. Kwon, W. S. Yang, H. M. Lee, W. K. Kim, G. S. Son, D. H. Yoon, S. D. Lee, and H. Y. Lee, “The fabrication of polymer-based evanescent optical waveguide for biosensing,” Appl. Surf. Sci. 255, 5466–5470 (2009).
[CrossRef]

Yoon, D. H.

S. W. Kwon, W. S. Yang, H. M. Lee, W. K. Kim, G. S. Son, D. H. Yoon, S. D. Lee, and H. Y. Lee, “The fabrication of polymer-based evanescent optical waveguide for biosensing,” Appl. Surf. Sci. 255, 5466–5470 (2009).
[CrossRef]

Zhou, C.

C. Zhou and L. Li, “Formulation of the Fourier modal method for symmetric crossed gratings in symmetric mountings,” J. Opt. A 6, 43–50 (2004).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

J. Hiltunen, S. Uusitalo, P. Karioja, S. Pearce, M. Charlton, M. Wang, J. Puustinen, and J. Lappalainen, “Manipulation of optical field distribution in layered composite polymeric inorganic waveguides,” Appl. Phys. Lett. 98, 111113 (2011).
[CrossRef]

Appl. Surf. Sci. (1)

S. W. Kwon, W. S. Yang, H. M. Lee, W. K. Kim, G. S. Son, D. H. Yoon, S. D. Lee, and H. Y. Lee, “The fabrication of polymer-based evanescent optical waveguide for biosensing,” Appl. Surf. Sci. 255, 5466–5470 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. N. Feng, J. Michel, and L. C. Kimerling, “Optical field concentration in low-index waveguides,” IEEE J. Quantum Electron. 42, 885–890 (2006).
[CrossRef]

J. Lightwave Technol. (2)

J. Nanosci. Nanotechnol. (1)

T. Kwon, D. Moon, Y. Moon, W. Kim, and J. Park, “Al2O3/TiO2 multilayer passivation layers grown at low temperature for flexible organic devices,” J. Nanosci. Nanotechnol. 12, 3696–3700 (2012).
[CrossRef]

J. Opt. A (1)

C. Zhou and L. Li, “Formulation of the Fourier modal method for symmetric crossed gratings in symmetric mountings,” J. Opt. A 6, 43–50 (2004).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (2)

Sensors (2)

C. A. Barrios, “Optical slot-waveguide based biochemical sensors,” Sensors 9, 4751–4765 (2009).
[CrossRef]

P. Bettotti, A. Pitanti, E. Rigo, F. Leonardis, V. Passaro, and L. Pavesi, “Modeling of slot waveguide sensors based on polymeric materials,” Sensors 11, 7327–7340 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic view of the cross section of a polymer slot waveguide with a bilayer of Al2O3/TiO2 thin films. The polymer rails have a height h and a width w. The thickness of the Al2O3 and TiO2 layers are ha and hb, respectively.

Fig. 2.
Fig. 2.

Variation, with g and w, of the confinement factor in (a) the slot and (b) the whole cover medium of the polymer slot waveguide with a bilayer of Al2O3/TiO2 with h=400nm, ha=25nm, and hb=90nm.

Fig. 3.
Fig. 3.

(a) Lateral component of the electric field of the quasi-TE mode in the slot waveguide and (b) distribution of the field along the dashed line indicated in (a); the vertical lines indicate the positions of the interfaces. The slot waveguide parameters are h=400nm, w=600nm, g=120nm, ha=25nm, and hb=90nm.

Fig. 4.
Fig. 4.

Comparison of the confinement factors versus g in a noncoated polymer slot waveguide with h=750nm and w=450nm and a polymer slot waveguide with inorganic layers h=400nm, w=600nm, ha=25nm, and hb=90nm.

Fig. 5.
Fig. 5.

Dependence of the homogeneous sensitivity on w and g in a polymer slot waveguide with bilayers of Al2O3/TiO2 with h=400nm, ha=25nm, and hb=90nm.

Fig. 6.
Fig. 6.

Homogeneous sensitivity Sh versus g in an optimized noncoated polymer slot waveguide with h=750nm and w=450nm and in a polymer slot waveguide with layers of Al2O3/TiO2 with h=400nm, w=600nm, ha=25nm, and hb=90nm.

Fig. 7.
Fig. 7.

Homogeneous sensitivity versus ha and hb with g=120nm, h=400nm, and w=600nm.

Fig. 8.
Fig. 8.

(a) Schematic view of the cross section of the slot waveguide with nonuniform layers and an additional layer of TiO2 with a thickness of t and (b) its homogeneous sensitivity as a function of t.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Γi=i|Re{(E×H).uz}|dxdytotal|Re{(E×H).uz}|dxdy,i=S,C,

Metrics