Abstract

A generation-2 (Gen-2) handheld optical imager capable of two-dimensional surface and three-dimensional tomographic imaging has recently been developed. Herein, the ability of the handheld imager to detect and resolve two targets under diffuse and fluorescence imaging conditions has been demonstrated via tissue phantom studies. Two-dimensional surface imaging studies demonstrated that two 0.96 cm diameter Indocyannine Green targets were detected and resolved 0.5cm apart (between edges) at a target depth of 1 cm during diffuse imaging and up to 2 cm depth during fluorescence imaging. Preliminary 3D tomographic imaging capability to resolve the two targets was also demonstrated, but requires extensive future studies.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Erickson and A. Godavarty, “Hand-held based near-infrared optical imaging systems: a review,” Med. Eng. Phys. 31, 495–509 (2009).
    [CrossRef]
  2. S. J. Erickson, A. Godavarty, S. L. Martinez, J. Gonzalez, A. Romero, M. Roman, A. Nunez, J. Ge, S. Regalado, R. Kiszonas, and C. Lopez-Penalver, “Hand-held optical devices for breast cancer: spectroscopic and 3D tomographic imaging,” IEEE J. Sel. Top. Quantum Electron. 18, 1298–1312 (2012).
    [CrossRef]
  3. J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. Flores, S. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” J. Biomed. Opt. 17, 081402 (2012).
    [CrossRef]
  4. J. Gonzalez, M. Roman, M. Hall, and A. Godavarty, “Gen-2 hand-held optical imager towards cancer imaging: reflectance and transillumination phantom studies,” Sensors 12, 1885–1897 (2012).
    [CrossRef]
  5. L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).
  6. V. C. Kavuri, Z. Lin, F. Tian, and H. Liu, “Sparsity enhanced spatial resolution and depth localization in diffuse optical tomography,” Biomed. Opt. Express 3, 943 (2012).
    [CrossRef]
  7. H. Niu, Z. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt. 15, 046005 (2010).
    [CrossRef]
  8. J. Yang, T. Zhang, H. Yang, and H. Jiang, “Fast multispectral diffuse optical tomography system for in vivo three-dimensional imaging of seizure dynamics,” Appl. Opt. 51, 3461–3469 (2012).
    [CrossRef]
  9. J. Chen, V. Venugopal, F. Lesage, and X. Intes, “Time-resolved diffuse optical tomography with patterned-light illumination and detection,” Opt. Lett. 35, 2121–2123 (2010).
    [CrossRef]
  10. X. Liu, W. Daifa, F. Liu, and J. Bai, “Principal component analysis of dynamic fluorescence diffuse optical tomography images,” Opt. Express 18, 6300–6314 (2010).
    [CrossRef]
  11. F. Gao, J. Li, L. Zhang, P. Poulet, H. Zhao, and Y. Yamada, “Simultaneous fluorescence yield and lifetime tomography from time-resolved transmittances of small-animal-size phantom,” Appl. Opt. 49, 3163–3172 (2010).
    [CrossRef]
  12. Q. Zhang, L. Yin, Y. Tan, Z. Yuan, and H. Jiang, “Quantitative bioluminescence tomography guided by diffuse optical tomography,” Opt. Express 16, 1481–1486 (2008).
    [CrossRef]
  13. J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35, 3354–3363 (2008).
    [CrossRef]
  14. A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
    [CrossRef]
  15. M. J. Eppstein, D. J. D. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, “Three-dimensional near-infrared fluorescence tomography with Bayesian methodologies for image reconstruction from sparse and noisy data sets,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).

2012 (5)

J. Yang, T. Zhang, H. Yang, and H. Jiang, “Fast multispectral diffuse optical tomography system for in vivo three-dimensional imaging of seizure dynamics,” Appl. Opt. 51, 3461–3469 (2012).
[CrossRef]

S. J. Erickson, A. Godavarty, S. L. Martinez, J. Gonzalez, A. Romero, M. Roman, A. Nunez, J. Ge, S. Regalado, R. Kiszonas, and C. Lopez-Penalver, “Hand-held optical devices for breast cancer: spectroscopic and 3D tomographic imaging,” IEEE J. Sel. Top. Quantum Electron. 18, 1298–1312 (2012).
[CrossRef]

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. Flores, S. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” J. Biomed. Opt. 17, 081402 (2012).
[CrossRef]

J. Gonzalez, M. Roman, M. Hall, and A. Godavarty, “Gen-2 hand-held optical imager towards cancer imaging: reflectance and transillumination phantom studies,” Sensors 12, 1885–1897 (2012).
[CrossRef]

V. C. Kavuri, Z. Lin, F. Tian, and H. Liu, “Sparsity enhanced spatial resolution and depth localization in diffuse optical tomography,” Biomed. Opt. Express 3, 943 (2012).
[CrossRef]

2010 (4)

2009 (1)

S. J. Erickson and A. Godavarty, “Hand-held based near-infrared optical imaging systems: a review,” Med. Eng. Phys. 31, 495–509 (2009).
[CrossRef]

2008 (2)

Q. Zhang, L. Yin, Y. Tan, Z. Yuan, and H. Jiang, “Quantitative bioluminescence tomography guided by diffuse optical tomography,” Opt. Express 16, 1481–1486 (2008).
[CrossRef]

J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35, 3354–3363 (2008).
[CrossRef]

2003 (1)

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
[CrossRef]

2002 (1)

M. J. Eppstein, D. J. D. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, “Three-dimensional near-infrared fluorescence tomography with Bayesian methodologies for image reconstruction from sparse and noisy data sets,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).

Aguirre, W.

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. Flores, S. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” J. Biomed. Opt. 17, 081402 (2012).
[CrossRef]

Bai, J.

Chen, J.

Daifa, W.

DeCerce, J.

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. Flores, S. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” J. Biomed. Opt. 17, 081402 (2012).
[CrossRef]

Dhamne, S.

H. Niu, Z. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt. 15, 046005 (2010).
[CrossRef]

Eppstein, M. J.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
[CrossRef]

M. J. Eppstein, D. J. D. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, “Three-dimensional near-infrared fluorescence tomography with Bayesian methodologies for image reconstruction from sparse and noisy data sets,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).

Erickson, S. J.

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. Flores, S. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” J. Biomed. Opt. 17, 081402 (2012).
[CrossRef]

S. J. Erickson, A. Godavarty, S. L. Martinez, J. Gonzalez, A. Romero, M. Roman, A. Nunez, J. Ge, S. Regalado, R. Kiszonas, and C. Lopez-Penalver, “Hand-held optical devices for breast cancer: spectroscopic and 3D tomographic imaging,” IEEE J. Sel. Top. Quantum Electron. 18, 1298–1312 (2012).
[CrossRef]

S. J. Erickson and A. Godavarty, “Hand-held based near-infrared optical imaging systems: a review,” Med. Eng. Phys. 31, 495–509 (2009).
[CrossRef]

Flores, C.

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. Flores, S. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” J. Biomed. Opt. 17, 081402 (2012).
[CrossRef]

Gao, F.

Ge, J.

S. J. Erickson, A. Godavarty, S. L. Martinez, J. Gonzalez, A. Romero, M. Roman, A. Nunez, J. Ge, S. Regalado, R. Kiszonas, and C. Lopez-Penalver, “Hand-held optical devices for breast cancer: spectroscopic and 3D tomographic imaging,” IEEE J. Sel. Top. Quantum Electron. 18, 1298–1312 (2012).
[CrossRef]

J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35, 3354–3363 (2008).
[CrossRef]

Godavarty, A.

S. J. Erickson, A. Godavarty, S. L. Martinez, J. Gonzalez, A. Romero, M. Roman, A. Nunez, J. Ge, S. Regalado, R. Kiszonas, and C. Lopez-Penalver, “Hand-held optical devices for breast cancer: spectroscopic and 3D tomographic imaging,” IEEE J. Sel. Top. Quantum Electron. 18, 1298–1312 (2012).
[CrossRef]

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. Flores, S. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” J. Biomed. Opt. 17, 081402 (2012).
[CrossRef]

J. Gonzalez, M. Roman, M. Hall, and A. Godavarty, “Gen-2 hand-held optical imager towards cancer imaging: reflectance and transillumination phantom studies,” Sensors 12, 1885–1897 (2012).
[CrossRef]

S. J. Erickson and A. Godavarty, “Hand-held based near-infrared optical imaging systems: a review,” Med. Eng. Phys. 31, 495–509 (2009).
[CrossRef]

J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35, 3354–3363 (2008).
[CrossRef]

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
[CrossRef]

M. J. Eppstein, D. J. D. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, “Three-dimensional near-infrared fluorescence tomography with Bayesian methodologies for image reconstruction from sparse and noisy data sets,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).

Gonzalez, J.

S. J. Erickson, A. Godavarty, S. L. Martinez, J. Gonzalez, A. Romero, M. Roman, A. Nunez, J. Ge, S. Regalado, R. Kiszonas, and C. Lopez-Penalver, “Hand-held optical devices for breast cancer: spectroscopic and 3D tomographic imaging,” IEEE J. Sel. Top. Quantum Electron. 18, 1298–1312 (2012).
[CrossRef]

J. Gonzalez, M. Roman, M. Hall, and A. Godavarty, “Gen-2 hand-held optical imager towards cancer imaging: reflectance and transillumination phantom studies,” Sensors 12, 1885–1897 (2012).
[CrossRef]

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. Flores, S. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” J. Biomed. Opt. 17, 081402 (2012).
[CrossRef]

Gurfinkel, M.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
[CrossRef]

Hall, M.

J. Gonzalez, M. Roman, M. Hall, and A. Godavarty, “Gen-2 hand-held optical imager towards cancer imaging: reflectance and transillumination phantom studies,” Sensors 12, 1885–1897 (2012).
[CrossRef]

Hawrysz, D. J. D.

M. J. Eppstein, D. J. D. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, “Three-dimensional near-infrared fluorescence tomography with Bayesian methodologies for image reconstruction from sparse and noisy data sets,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).

Hernandez, E.

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. Flores, S. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” J. Biomed. Opt. 17, 081402 (2012).
[CrossRef]

Intes, X.

Jiang, H.

Kavuri, V. C.

Kiszonas, R.

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. Flores, S. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” J. Biomed. Opt. 17, 081402 (2012).
[CrossRef]

S. J. Erickson, A. Godavarty, S. L. Martinez, J. Gonzalez, A. Romero, M. Roman, A. Nunez, J. Ge, S. Regalado, R. Kiszonas, and C. Lopez-Penalver, “Hand-held optical devices for breast cancer: spectroscopic and 3D tomographic imaging,” IEEE J. Sel. Top. Quantum Electron. 18, 1298–1312 (2012).
[CrossRef]

Lesage, F.

Li, J.

Lin, Z.

V. C. Kavuri, Z. Lin, F. Tian, and H. Liu, “Sparsity enhanced spatial resolution and depth localization in diffuse optical tomography,” Biomed. Opt. Express 3, 943 (2012).
[CrossRef]

H. Niu, Z. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt. 15, 046005 (2010).
[CrossRef]

Liu, F.

Liu, H.

V. C. Kavuri, Z. Lin, F. Tian, and H. Liu, “Sparsity enhanced spatial resolution and depth localization in diffuse optical tomography,” Biomed. Opt. Express 3, 943 (2012).
[CrossRef]

H. Niu, Z. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt. 15, 046005 (2010).
[CrossRef]

Liu, X.

Lopez-Penalver, C.

S. J. Erickson, A. Godavarty, S. L. Martinez, J. Gonzalez, A. Romero, M. Roman, A. Nunez, J. Ge, S. Regalado, R. Kiszonas, and C. Lopez-Penalver, “Hand-held optical devices for breast cancer: spectroscopic and 3D tomographic imaging,” IEEE J. Sel. Top. Quantum Electron. 18, 1298–1312 (2012).
[CrossRef]

Martinez, S. L.

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. Flores, S. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” J. Biomed. Opt. 17, 081402 (2012).
[CrossRef]

S. J. Erickson, A. Godavarty, S. L. Martinez, J. Gonzalez, A. Romero, M. Roman, A. Nunez, J. Ge, S. Regalado, R. Kiszonas, and C. Lopez-Penalver, “Hand-held optical devices for breast cancer: spectroscopic and 3D tomographic imaging,” IEEE J. Sel. Top. Quantum Electron. 18, 1298–1312 (2012).
[CrossRef]

Niu, H.

H. Niu, Z. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt. 15, 046005 (2010).
[CrossRef]

Nunez, A.

S. J. Erickson, A. Godavarty, S. L. Martinez, J. Gonzalez, A. Romero, M. Roman, A. Nunez, J. Ge, S. Regalado, R. Kiszonas, and C. Lopez-Penalver, “Hand-held optical devices for breast cancer: spectroscopic and 3D tomographic imaging,” IEEE J. Sel. Top. Quantum Electron. 18, 1298–1312 (2012).
[CrossRef]

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. Flores, S. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” J. Biomed. Opt. 17, 081402 (2012).
[CrossRef]

Poulet, P.

Regalado, S.

S. J. Erickson, A. Godavarty, S. L. Martinez, J. Gonzalez, A. Romero, M. Roman, A. Nunez, J. Ge, S. Regalado, R. Kiszonas, and C. Lopez-Penalver, “Hand-held optical devices for breast cancer: spectroscopic and 3D tomographic imaging,” IEEE J. Sel. Top. Quantum Electron. 18, 1298–1312 (2012).
[CrossRef]

J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35, 3354–3363 (2008).
[CrossRef]

Roberts, S.

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. Flores, S. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” J. Biomed. Opt. 17, 081402 (2012).
[CrossRef]

Roman, M.

J. Gonzalez, M. Roman, M. Hall, and A. Godavarty, “Gen-2 hand-held optical imager towards cancer imaging: reflectance and transillumination phantom studies,” Sensors 12, 1885–1897 (2012).
[CrossRef]

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. Flores, S. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” J. Biomed. Opt. 17, 081402 (2012).
[CrossRef]

S. J. Erickson, A. Godavarty, S. L. Martinez, J. Gonzalez, A. Romero, M. Roman, A. Nunez, J. Ge, S. Regalado, R. Kiszonas, and C. Lopez-Penalver, “Hand-held optical devices for breast cancer: spectroscopic and 3D tomographic imaging,” IEEE J. Sel. Top. Quantum Electron. 18, 1298–1312 (2012).
[CrossRef]

Romero, A.

S. J. Erickson, A. Godavarty, S. L. Martinez, J. Gonzalez, A. Romero, M. Roman, A. Nunez, J. Ge, S. Regalado, R. Kiszonas, and C. Lopez-Penalver, “Hand-held optical devices for breast cancer: spectroscopic and 3D tomographic imaging,” IEEE J. Sel. Top. Quantum Electron. 18, 1298–1312 (2012).
[CrossRef]

Sevick-Muraca, E. M.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
[CrossRef]

M. J. Eppstein, D. J. D. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, “Three-dimensional near-infrared fluorescence tomography with Bayesian methodologies for image reconstruction from sparse and noisy data sets,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).

Tan, Y.

Theru, S.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
[CrossRef]

Thompson, A. B.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
[CrossRef]

Tian, F.

V. C. Kavuri, Z. Lin, F. Tian, and H. Liu, “Sparsity enhanced spatial resolution and depth localization in diffuse optical tomography,” Biomed. Opt. Express 3, 943 (2012).
[CrossRef]

H. Niu, Z. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt. 15, 046005 (2010).
[CrossRef]

Traub, B.

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. Flores, S. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” J. Biomed. Opt. 17, 081402 (2012).
[CrossRef]

Venugopal, V.

Wang, L. V.

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

Wu, H.

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

Yamada, Y.

Yang, H.

Yang, J.

Yin, L.

Yuan, Z.

Zhang, C.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
[CrossRef]

Zhang, L.

Zhang, Q.

Zhang, T.

Zhao, H.

Zhu, B.

J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35, 3354–3363 (2008).
[CrossRef]

Appl. Opt. (2)

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (1)

S. J. Erickson, A. Godavarty, S. L. Martinez, J. Gonzalez, A. Romero, M. Roman, A. Nunez, J. Ge, S. Regalado, R. Kiszonas, and C. Lopez-Penalver, “Hand-held optical devices for breast cancer: spectroscopic and 3D tomographic imaging,” IEEE J. Sel. Top. Quantum Electron. 18, 1298–1312 (2012).
[CrossRef]

J. Biomed. Opt. (2)

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. Flores, S. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” J. Biomed. Opt. 17, 081402 (2012).
[CrossRef]

H. Niu, Z. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt. 15, 046005 (2010).
[CrossRef]

Med. Eng. Phys. (1)

S. J. Erickson and A. Godavarty, “Hand-held based near-infrared optical imaging systems: a review,” Med. Eng. Phys. 31, 495–509 (2009).
[CrossRef]

Med. Phys. (1)

J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35, 3354–3363 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Med. Biol. (1)

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

M. J. Eppstein, D. J. D. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, “Three-dimensional near-infrared fluorescence tomography with Bayesian methodologies for image reconstruction from sparse and noisy data sets,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).

Sensors (1)

J. Gonzalez, M. Roman, M. Hall, and A. Godavarty, “Gen-2 hand-held optical imager towards cancer imaging: reflectance and transillumination phantom studies,” Sensors 12, 1885–1897 (2012).
[CrossRef]

Other (1)

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Handheld optical imager (reproduced from [3]). (b) Source-detector layout of each probe head: sources are shown in big (red) circles and detectors are show in small (blue) circles or dots. All these source-detector points are 0.5 cm apart. (c) Experimental set up: dashed (red) box shows the probe location with respect to the phantom; the (green) thin dotted arrow represents the measured distance between target centroids; the (purple) thick solid arrow represents the distance between target edges.

Fig. 2.
Fig. 2.

Two-dimensional surface contour plots of detected intensity obtained from absorption-contrast diffuse imaging studies performed on cubical phantoms containing two 0.46 cc 1 μM ICG targets located at 1 and 1.5 cm deep and at different distances apart. The (black) hollow circles indicate the true target locations. The (white) thick dashed line indicates the intensity distribution line plot along the x axis (drawn along those detectors located in the same y axis as the detector point with the maximum intensity value across the imaging surface).

Fig. 3.
Fig. 3.

Two-dimensional surface contour plots of detected intensity obtained from fluorescence-contrast diffuse imaging studies performed on cubical phantoms containing two 0.46 cc 1 μM ICG targets located at 1 and 1.5 cm deep and at different distances apart. The (black) hollow circles indicate the true target locations. The (white) thick dashed line indicates the intensity distribution line plot along the x axis (drawn along those detectors located in the same y axis as the detector point with the maximum intensity value across the imaging surface).

Fig. 4.
Fig. 4.

Three-dimensional isosurface and contour plots of reconstructed absorption coefficient of the fluorophore (ICG) at excitation wavelength (μaxf) during fluorescence-enhanced tomographic imaging. Two 1.0 cm diameter targets (0.46 cc) were placed at a depth of 1.5 cm, with separation of 2 and 1.5 cm between the edges. The (orange) solid spheres represent the true target volume and location, and the irregular (blue) solid regions represent the reconstructed target locations. The target locations were (a) [6, 2.5, 1] and [9, 2.5, 1] cm, and (b) [6.5, 2.5, 1] and [9, 2.5, 1] cm.

Tables (1)

Tables Icon

Table 1. Absorption- and Fluorescence-Enhanced Optical Imaging Experimental Studies Using Two Targets of 0.46cm3 Volume under Various Target Depths and Target Separations

Metrics