Abstract

A novel pyroelectric detector consisting of a vertically aligned nanotube array on thin silicon (VANTA/Si) bonded to a 60 μm thick crystal of LiTaO3 has been fabricated. The performance of the VANTA/Si-coated pyroelectric detector was evaluated using National Physical Laboratory’s (NPL’s) detector-characterization facilities. The relative spectral responsivity of the detector was found to be spectrally flat in the 0.8–24 μm wavelength range, in agreement with directional-hemispherical reflectance measurements of witness samples of the VANTA. The spatial uniformity of response of the test detector exhibited good uniformity, although the nonuniformity increased with increasing modulation frequency. The nonuniformity may be assigned either to the dimensions of the VANTA or the continuity of the bond between the VANTA/Si coating and the pyroelectric crystal substrate. The test detector exhibited a small superlinear response, which is similar to that of pyroelectric detectors coated with good quality gold-black coatings.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Blevin and J. Geist, “Influence of black coatings on pyroelectric detectors,” Appl. Opt. 13, 1171–1178 (1974).
    [CrossRef]
  2. Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
  3. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
  4. M. A. Quijada, J. G. Hagopian, S. Getty, R. E. Kinzer, and E. J. Wollack, “Hemispherical reflectance and emittance properties of carbon nanotube coatings at infrared wavelengths,” Proc. SPIE 8150, 815002 (2001).
    [CrossRef]
  5. C. J. Chunnilall, J. H. Lehman, E. Theocharous, and A. Sanders, “Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5–50  μm wavelength region,” Carbon 50, 5348–5350 (2012).
    [CrossRef]
  6. S. Berber, Y. Kwon, and D. Tomanek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett. 84, 4613–4616 (2000).
    [CrossRef]
  7. A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Baba, M. Tanemura, and G. Oomi, “Thermal and electrical conduction properties of vertically aligned carbon nanotubes produced by water-assisted chemical vapor deposition,” Carbon 49, 294–298 (2011).
    [CrossRef]
  8. J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannel, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14, 916–922 (2003).
    [CrossRef]
  9. J. H. Lehman, C. Engtrakul, T. Gennett, and A. C. Dillon, “Single-wall carbon nanotube coating on a pyroelectric detector,” Appl. Opt. 44, 483–488 (2005).
    [CrossRef]
  10. J. H. Lehman, B. Lee, and E. N. Grossman, “Far infrared thermal detectors for laser radiometry using a carbon nanotube array,” Appl. Opt. 50, 4099–4104 (2011).
    [CrossRef]
  11. J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, “Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate,” Nano Lett. 10, 3261–3266 (2010).
  12. J. H. Lehman, R. Deshpande, P. Rice, and A. C. Dillon, “Carbon multi-walled nanotubes grown by HWCVD on a pyroelectric detector,” Infrared Phys. Technol. 47, 246–250 (2006).
    [CrossRef]
  13. E. Theocharous, “The establishment of the NPL infrared relative spectral response scale using cavity pyroelectric detectors,” Metrologia 43, S115–S119 (2006).
    [CrossRef]
  14. C. J. Chunnilall and E. Theocharous, “Infrared hemispherical reflectance measurements in the 2.5  μm to 50  μm wavelength region using an FT spectrometer,” Metrologia 49, S73–S80 (2012).
    [CrossRef]
  15. N. P. Fox, P. R. Haycocks, J. E. Martin, and I. Ul-Haq, “A mechanically cooled portable cryogenic radiometer,” Metrologia 32, 581–584 (1995-96).
    [CrossRef]
  16. E. Theocharous, F. J. J. Clarke, L. J. Rodgers, and N. P. Fox, “Latest techniques at NPL for the characterization of infrared detectors and materials,” Proc. SPIE 5209, 228–239 (2003).
  17. S. P. Theocharous, E. Theocharous, and J. H. Lehman, “The evaluation of the performance of two pyroelectric detectors with vertically aligned multi-walled carbon nanotube coatings,” Infrared Phys. Technol. 55, 299–305 (2012).
    [CrossRef]
  18. E. Theocharous and J. Lehman, “The evaluation of a pyroelectric detector with a sprayed carbon multi-wall nanotube black coating in the infrared,” Infrared Phys. Technol. 54, 34–38 (2011).
    [CrossRef]
  19. E. Theocharous, “Absolute linearity measurements on LiTaO3 pyroelectric detectors,” Appl. Opt. 47, 3397–3405 (2008).
    [CrossRef]
  20. S. B. Lang, E. Ringgaard, S. Muensit, X. Wu, J. C. Lashley, and Y. Wong, “Thermal diffusivity by laser intensity modulation method (LIMM-TD),” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2608–2616 (2007).

2012 (3)

C. J. Chunnilall, J. H. Lehman, E. Theocharous, and A. Sanders, “Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5–50  μm wavelength region,” Carbon 50, 5348–5350 (2012).
[CrossRef]

C. J. Chunnilall and E. Theocharous, “Infrared hemispherical reflectance measurements in the 2.5  μm to 50  μm wavelength region using an FT spectrometer,” Metrologia 49, S73–S80 (2012).
[CrossRef]

S. P. Theocharous, E. Theocharous, and J. H. Lehman, “The evaluation of the performance of two pyroelectric detectors with vertically aligned multi-walled carbon nanotube coatings,” Infrared Phys. Technol. 55, 299–305 (2012).
[CrossRef]

2011 (3)

E. Theocharous and J. Lehman, “The evaluation of a pyroelectric detector with a sprayed carbon multi-wall nanotube black coating in the infrared,” Infrared Phys. Technol. 54, 34–38 (2011).
[CrossRef]

J. H. Lehman, B. Lee, and E. N. Grossman, “Far infrared thermal detectors for laser radiometry using a carbon nanotube array,” Appl. Opt. 50, 4099–4104 (2011).
[CrossRef]

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Baba, M. Tanemura, and G. Oomi, “Thermal and electrical conduction properties of vertically aligned carbon nanotubes produced by water-assisted chemical vapor deposition,” Carbon 49, 294–298 (2011).
[CrossRef]

2010 (1)

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, “Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate,” Nano Lett. 10, 3261–3266 (2010).

2009 (1)

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).

2008 (2)

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).

E. Theocharous, “Absolute linearity measurements on LiTaO3 pyroelectric detectors,” Appl. Opt. 47, 3397–3405 (2008).
[CrossRef]

2007 (1)

S. B. Lang, E. Ringgaard, S. Muensit, X. Wu, J. C. Lashley, and Y. Wong, “Thermal diffusivity by laser intensity modulation method (LIMM-TD),” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2608–2616 (2007).

2006 (2)

J. H. Lehman, R. Deshpande, P. Rice, and A. C. Dillon, “Carbon multi-walled nanotubes grown by HWCVD on a pyroelectric detector,” Infrared Phys. Technol. 47, 246–250 (2006).
[CrossRef]

E. Theocharous, “The establishment of the NPL infrared relative spectral response scale using cavity pyroelectric detectors,” Metrologia 43, S115–S119 (2006).
[CrossRef]

2005 (1)

2003 (2)

E. Theocharous, F. J. J. Clarke, L. J. Rodgers, and N. P. Fox, “Latest techniques at NPL for the characterization of infrared detectors and materials,” Proc. SPIE 5209, 228–239 (2003).

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannel, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14, 916–922 (2003).
[CrossRef]

2001 (1)

M. A. Quijada, J. G. Hagopian, S. Getty, R. E. Kinzer, and E. J. Wollack, “Hemispherical reflectance and emittance properties of carbon nanotube coatings at infrared wavelengths,” Proc. SPIE 8150, 815002 (2001).
[CrossRef]

2000 (1)

S. Berber, Y. Kwon, and D. Tomanek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett. 84, 4613–4616 (2000).
[CrossRef]

1995 (1)

N. P. Fox, P. R. Haycocks, J. E. Martin, and I. Ul-Haq, “A mechanically cooled portable cryogenic radiometer,” Metrologia 32, 581–584 (1995-96).
[CrossRef]

1974 (1)

Ajayan, P. M.

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).

Akoshima, M.

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Baba, M. Tanemura, and G. Oomi, “Thermal and electrical conduction properties of vertically aligned carbon nanotubes produced by water-assisted chemical vapor deposition,” Carbon 49, 294–298 (2011).
[CrossRef]

Baba, T.

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Baba, M. Tanemura, and G. Oomi, “Thermal and electrical conduction properties of vertically aligned carbon nanotubes produced by water-assisted chemical vapor deposition,” Carbon 49, 294–298 (2011).
[CrossRef]

Berber, S.

S. Berber, Y. Kwon, and D. Tomanek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett. 84, 4613–4616 (2000).
[CrossRef]

Blevin, W. R.

Bur, J. A.

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).

Chunnilall, C. J.

C. J. Chunnilall, J. H. Lehman, E. Theocharous, and A. Sanders, “Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5–50  μm wavelength region,” Carbon 50, 5348–5350 (2012).
[CrossRef]

C. J. Chunnilall and E. Theocharous, “Infrared hemispherical reflectance measurements in the 2.5  μm to 50  μm wavelength region using an FT spectrometer,” Metrologia 49, S73–S80 (2012).
[CrossRef]

Ci, L.

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).

Clarke, F. J. J.

E. Theocharous, F. J. J. Clarke, L. J. Rodgers, and N. P. Fox, “Latest techniques at NPL for the characterization of infrared detectors and materials,” Proc. SPIE 5209, 228–239 (2003).

Deshpande, R.

J. H. Lehman, R. Deshpande, P. Rice, and A. C. Dillon, “Carbon multi-walled nanotubes grown by HWCVD on a pyroelectric detector,” Infrared Phys. Technol. 47, 246–250 (2006).
[CrossRef]

Dillon, A. C.

J. H. Lehman, R. Deshpande, P. Rice, and A. C. Dillon, “Carbon multi-walled nanotubes grown by HWCVD on a pyroelectric detector,” Infrared Phys. Technol. 47, 246–250 (2006).
[CrossRef]

J. H. Lehman, C. Engtrakul, T. Gennett, and A. C. Dillon, “Single-wall carbon nanotube coating on a pyroelectric detector,” Appl. Opt. 44, 483–488 (2005).
[CrossRef]

Engtrakul, C.

Eppeldauer, G.

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannel, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14, 916–922 (2003).
[CrossRef]

Fox, N. P.

E. Theocharous, F. J. J. Clarke, L. J. Rodgers, and N. P. Fox, “Latest techniques at NPL for the characterization of infrared detectors and materials,” Proc. SPIE 5209, 228–239 (2003).

N. P. Fox, P. R. Haycocks, J. E. Martin, and I. Ul-Haq, “A mechanically cooled portable cryogenic radiometer,” Metrologia 32, 581–584 (1995-96).
[CrossRef]

Futaba, D. N.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).

Geist, J.

Gennett, T.

Getty, S.

M. A. Quijada, J. G. Hagopian, S. Getty, R. E. Kinzer, and E. J. Wollack, “Hemispherical reflectance and emittance properties of carbon nanotube coatings at infrared wavelengths,” Proc. SPIE 8150, 815002 (2001).
[CrossRef]

Grossman, E. N.

Gunjishima, I.

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Baba, M. Tanemura, and G. Oomi, “Thermal and electrical conduction properties of vertically aligned carbon nanotubes produced by water-assisted chemical vapor deposition,” Carbon 49, 294–298 (2011).
[CrossRef]

Hagopian, J. G.

M. A. Quijada, J. G. Hagopian, S. Getty, R. E. Kinzer, and E. J. Wollack, “Hemispherical reflectance and emittance properties of carbon nanotube coatings at infrared wavelengths,” Proc. SPIE 8150, 815002 (2001).
[CrossRef]

Hanssen, L.

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, “Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate,” Nano Lett. 10, 3261–3266 (2010).

Hata, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).

Hayamizu, Y.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).

Haycocks, P. R.

N. P. Fox, P. R. Haycocks, J. E. Martin, and I. Ul-Haq, “A mechanically cooled portable cryogenic radiometer,” Metrologia 32, 581–584 (1995-96).
[CrossRef]

Inoue, T.

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Baba, M. Tanemura, and G. Oomi, “Thermal and electrical conduction properties of vertically aligned carbon nanotubes produced by water-assisted chemical vapor deposition,” Carbon 49, 294–298 (2011).
[CrossRef]

Ishii, J.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).

Jensen, C.

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, “Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate,” Nano Lett. 10, 3261–3266 (2010).

Kinzer, R. E.

M. A. Quijada, J. G. Hagopian, S. Getty, R. E. Kinzer, and E. J. Wollack, “Hemispherical reflectance and emittance properties of carbon nanotube coatings at infrared wavelengths,” Proc. SPIE 8150, 815002 (2001).
[CrossRef]

Kishida, H.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).

Kwon, Y.

S. Berber, Y. Kwon, and D. Tomanek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett. 84, 4613–4616 (2000).
[CrossRef]

Lang, S. B.

S. B. Lang, E. Ringgaard, S. Muensit, X. Wu, J. C. Lashley, and Y. Wong, “Thermal diffusivity by laser intensity modulation method (LIMM-TD),” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2608–2616 (2007).

Lashley, J. C.

S. B. Lang, E. Ringgaard, S. Muensit, X. Wu, J. C. Lashley, and Y. Wong, “Thermal diffusivity by laser intensity modulation method (LIMM-TD),” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2608–2616 (2007).

Lee, B.

Lehman, J.

E. Theocharous and J. Lehman, “The evaluation of a pyroelectric detector with a sprayed carbon multi-wall nanotube black coating in the infrared,” Infrared Phys. Technol. 54, 34–38 (2011).
[CrossRef]

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, “Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate,” Nano Lett. 10, 3261–3266 (2010).

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannel, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14, 916–922 (2003).
[CrossRef]

Lehman, J. H.

C. J. Chunnilall, J. H. Lehman, E. Theocharous, and A. Sanders, “Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5–50  μm wavelength region,” Carbon 50, 5348–5350 (2012).
[CrossRef]

S. P. Theocharous, E. Theocharous, and J. H. Lehman, “The evaluation of the performance of two pyroelectric detectors with vertically aligned multi-walled carbon nanotube coatings,” Infrared Phys. Technol. 55, 299–305 (2012).
[CrossRef]

J. H. Lehman, B. Lee, and E. N. Grossman, “Far infrared thermal detectors for laser radiometry using a carbon nanotube array,” Appl. Opt. 50, 4099–4104 (2011).
[CrossRef]

J. H. Lehman, R. Deshpande, P. Rice, and A. C. Dillon, “Carbon multi-walled nanotubes grown by HWCVD on a pyroelectric detector,” Infrared Phys. Technol. 47, 246–250 (2006).
[CrossRef]

J. H. Lehman, C. Engtrakul, T. Gennett, and A. C. Dillon, “Single-wall carbon nanotube coating on a pyroelectric detector,” Appl. Opt. 44, 483–488 (2005).
[CrossRef]

Lin, S. Y.

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).

Martin, J. E.

N. P. Fox, P. R. Haycocks, J. E. Martin, and I. Ul-Haq, “A mechanically cooled portable cryogenic radiometer,” Metrologia 32, 581–584 (1995-96).
[CrossRef]

Miyagawa, H.

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Baba, M. Tanemura, and G. Oomi, “Thermal and electrical conduction properties of vertically aligned carbon nanotubes produced by water-assisted chemical vapor deposition,” Carbon 49, 294–298 (2011).
[CrossRef]

Mizuno, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).

Muensit, S.

S. B. Lang, E. Ringgaard, S. Muensit, X. Wu, J. C. Lashley, and Y. Wong, “Thermal diffusivity by laser intensity modulation method (LIMM-TD),” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2608–2616 (2007).

Nakano, T.

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Baba, M. Tanemura, and G. Oomi, “Thermal and electrical conduction properties of vertically aligned carbon nanotubes produced by water-assisted chemical vapor deposition,” Carbon 49, 294–298 (2011).
[CrossRef]

Okamoto, A.

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Baba, M. Tanemura, and G. Oomi, “Thermal and electrical conduction properties of vertically aligned carbon nanotubes produced by water-assisted chemical vapor deposition,” Carbon 49, 294–298 (2011).
[CrossRef]

Oomi, G.

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Baba, M. Tanemura, and G. Oomi, “Thermal and electrical conduction properties of vertically aligned carbon nanotubes produced by water-assisted chemical vapor deposition,” Carbon 49, 294–298 (2011).
[CrossRef]

Pannel, C.

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannel, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14, 916–922 (2003).
[CrossRef]

Quijada, M. A.

M. A. Quijada, J. G. Hagopian, S. Getty, R. E. Kinzer, and E. J. Wollack, “Hemispherical reflectance and emittance properties of carbon nanotube coatings at infrared wavelengths,” Proc. SPIE 8150, 815002 (2001).
[CrossRef]

Rice, P.

J. H. Lehman, R. Deshpande, P. Rice, and A. C. Dillon, “Carbon multi-walled nanotubes grown by HWCVD on a pyroelectric detector,” Infrared Phys. Technol. 47, 246–250 (2006).
[CrossRef]

Ringgaard, E.

S. B. Lang, E. Ringgaard, S. Muensit, X. Wu, J. C. Lashley, and Y. Wong, “Thermal diffusivity by laser intensity modulation method (LIMM-TD),” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2608–2616 (2007).

Rodgers, L. J.

E. Theocharous, F. J. J. Clarke, L. J. Rodgers, and N. P. Fox, “Latest techniques at NPL for the characterization of infrared detectors and materials,” Proc. SPIE 5209, 228–239 (2003).

Sanders, A.

C. J. Chunnilall, J. H. Lehman, E. Theocharous, and A. Sanders, “Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5–50  μm wavelength region,” Carbon 50, 5348–5350 (2012).
[CrossRef]

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, “Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate,” Nano Lett. 10, 3261–3266 (2010).

Tanemura, M.

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Baba, M. Tanemura, and G. Oomi, “Thermal and electrical conduction properties of vertically aligned carbon nanotubes produced by water-assisted chemical vapor deposition,” Carbon 49, 294–298 (2011).
[CrossRef]

Theocharous, E.

C. J. Chunnilall, J. H. Lehman, E. Theocharous, and A. Sanders, “Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5–50  μm wavelength region,” Carbon 50, 5348–5350 (2012).
[CrossRef]

C. J. Chunnilall and E. Theocharous, “Infrared hemispherical reflectance measurements in the 2.5  μm to 50  μm wavelength region using an FT spectrometer,” Metrologia 49, S73–S80 (2012).
[CrossRef]

S. P. Theocharous, E. Theocharous, and J. H. Lehman, “The evaluation of the performance of two pyroelectric detectors with vertically aligned multi-walled carbon nanotube coatings,” Infrared Phys. Technol. 55, 299–305 (2012).
[CrossRef]

E. Theocharous and J. Lehman, “The evaluation of a pyroelectric detector with a sprayed carbon multi-wall nanotube black coating in the infrared,” Infrared Phys. Technol. 54, 34–38 (2011).
[CrossRef]

E. Theocharous, “Absolute linearity measurements on LiTaO3 pyroelectric detectors,” Appl. Opt. 47, 3397–3405 (2008).
[CrossRef]

E. Theocharous, “The establishment of the NPL infrared relative spectral response scale using cavity pyroelectric detectors,” Metrologia 43, S115–S119 (2006).
[CrossRef]

E. Theocharous, F. J. J. Clarke, L. J. Rodgers, and N. P. Fox, “Latest techniques at NPL for the characterization of infrared detectors and materials,” Proc. SPIE 5209, 228–239 (2003).

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannel, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14, 916–922 (2003).
[CrossRef]

Theocharous, S. P.

S. P. Theocharous, E. Theocharous, and J. H. Lehman, “The evaluation of the performance of two pyroelectric detectors with vertically aligned multi-walled carbon nanotube coatings,” Infrared Phys. Technol. 55, 299–305 (2012).
[CrossRef]

Tomanek, D.

S. Berber, Y. Kwon, and D. Tomanek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett. 84, 4613–4616 (2000).
[CrossRef]

Ul-Haq, I.

N. P. Fox, P. R. Haycocks, J. E. Martin, and I. Ul-Haq, “A mechanically cooled portable cryogenic radiometer,” Metrologia 32, 581–584 (1995-96).
[CrossRef]

Wilthan, B.

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, “Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate,” Nano Lett. 10, 3261–3266 (2010).

Wollack, E. J.

M. A. Quijada, J. G. Hagopian, S. Getty, R. E. Kinzer, and E. J. Wollack, “Hemispherical reflectance and emittance properties of carbon nanotube coatings at infrared wavelengths,” Proc. SPIE 8150, 815002 (2001).
[CrossRef]

Wong, Y.

S. B. Lang, E. Ringgaard, S. Muensit, X. Wu, J. C. Lashley, and Y. Wong, “Thermal diffusivity by laser intensity modulation method (LIMM-TD),” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2608–2616 (2007).

Wu, X.

S. B. Lang, E. Ringgaard, S. Muensit, X. Wu, J. C. Lashley, and Y. Wong, “Thermal diffusivity by laser intensity modulation method (LIMM-TD),” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2608–2616 (2007).

Yang, Z. P.

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).

Yasuda, S.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).

Yumura, M.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).

Zeng, J.

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, “Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate,” Nano Lett. 10, 3261–3266 (2010).

Appl. Opt. (4)

Carbon (2)

C. J. Chunnilall, J. H. Lehman, E. Theocharous, and A. Sanders, “Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5–50  μm wavelength region,” Carbon 50, 5348–5350 (2012).
[CrossRef]

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Baba, M. Tanemura, and G. Oomi, “Thermal and electrical conduction properties of vertically aligned carbon nanotubes produced by water-assisted chemical vapor deposition,” Carbon 49, 294–298 (2011).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

S. B. Lang, E. Ringgaard, S. Muensit, X. Wu, J. C. Lashley, and Y. Wong, “Thermal diffusivity by laser intensity modulation method (LIMM-TD),” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2608–2616 (2007).

Infrared Phys. Technol. (3)

S. P. Theocharous, E. Theocharous, and J. H. Lehman, “The evaluation of the performance of two pyroelectric detectors with vertically aligned multi-walled carbon nanotube coatings,” Infrared Phys. Technol. 55, 299–305 (2012).
[CrossRef]

E. Theocharous and J. Lehman, “The evaluation of a pyroelectric detector with a sprayed carbon multi-wall nanotube black coating in the infrared,” Infrared Phys. Technol. 54, 34–38 (2011).
[CrossRef]

J. H. Lehman, R. Deshpande, P. Rice, and A. C. Dillon, “Carbon multi-walled nanotubes grown by HWCVD on a pyroelectric detector,” Infrared Phys. Technol. 47, 246–250 (2006).
[CrossRef]

Meas. Sci. Technol. (1)

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannel, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14, 916–922 (2003).
[CrossRef]

Metrologia (3)

E. Theocharous, “The establishment of the NPL infrared relative spectral response scale using cavity pyroelectric detectors,” Metrologia 43, S115–S119 (2006).
[CrossRef]

C. J. Chunnilall and E. Theocharous, “Infrared hemispherical reflectance measurements in the 2.5  μm to 50  μm wavelength region using an FT spectrometer,” Metrologia 49, S73–S80 (2012).
[CrossRef]

N. P. Fox, P. R. Haycocks, J. E. Martin, and I. Ul-Haq, “A mechanically cooled portable cryogenic radiometer,” Metrologia 32, 581–584 (1995-96).
[CrossRef]

Nano Lett. (2)

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, “Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate,” Nano Lett. 10, 3261–3266 (2010).

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).

Phys. Rev. Lett. (1)

S. Berber, Y. Kwon, and D. Tomanek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett. 84, 4613–4616 (2000).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).

Proc. SPIE (2)

M. A. Quijada, J. G. Hagopian, S. Getty, R. E. Kinzer, and E. J. Wollack, “Hemispherical reflectance and emittance properties of carbon nanotube coatings at infrared wavelengths,” Proc. SPIE 8150, 815002 (2001).
[CrossRef]

E. Theocharous, F. J. J. Clarke, L. J. Rodgers, and N. P. Fox, “Latest techniques at NPL for the characterization of infrared detectors and materials,” Proc. SPIE 5209, 228–239 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Flow chart summarizing the process that was used to fabricate the pyroelectric detector with the VANTA-on-silicon coating.

Fig. 2.
Fig. 2.

Relative spectral responsivity of the VANTA-on-Si pyroelectric detector, normalized at 1 μm.

Fig. 3.
Fig. 3.

Spatial uniformity of response of the test detector at 80 Hz using a 160 μm diameter spot.

Fig. 4.
Fig. 4.

Spatial uniformity of response of the test detector at 20 Hz using a 160 μm diameter spot.

Fig. 5.
Fig. 5.

Spatial uniformity of response of the test detector at 8 Hz using a 160 μm diameter spot.

Fig. 6.
Fig. 6.

Plot of the linearity factor of the VANTA-coated test detector as a function of the lock-in amplifier output when a 2 mm diameter spot was incident on the active area of the test detector. Measurements at 8 and 80 Hz modulation frequencies are shown.

Fig. 7.
Fig. 7.

Normalized output of the VANTA-on-Si-coated pyroelectric detector as a function of modulation frequency. Also shown are the corresponding plots for an uncoated pyroelectric detector and a pyroelectric detector coated with a VANTA coating, but bonded to the pyroelectric crystal using alumina paste.

Fig. 8.
Fig. 8.

Normalized output of a pyroelectric detector coated with a sprayed MWCNT coating, as a function of modulation frequency. Also shown is the corresponding plot for the uncoated pyroelectric detector, for comparison.

Fig. 9.
Fig. 9.

Phase delay measured with a 20 Hz modulation frequency, mapped using a 160 μm diameter spot.

Metrics