Abstract

Scintillation aspects of truncated Bessel beams propagated through atmospheric turbulence are investigated using a numerical wave optics random phase screen simulation method. On-axis, aperture averaged scintillation and scintillation relative to a classical Gaussian beam of equal source power and scintillation per unit received power are evaluated. It is found that in almost all circumstances studied, the zeroth-order Bessel beam will deliver the lowest scintillation. Low aperture averaged scintillation levels are also observed for the fourth-order Bessel beam truncated by a narrower source window. When assessed relative to the scintillation of a Gaussian beam of equal source power, Bessel beams generally have less scintillation, particularly at small receiver aperture sizes and small beam orders. Upon including in this relative performance measure the criteria of per unit received power, this advantageous position of Bessel beams mostly disappears, but zeroth- and first-order Bessel beams continue to offer some advantage for relatively smaller aperture sizes, larger source powers, larger source plane dimensions, and intermediate propagation lengths.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
    [CrossRef]
  2. R. M. Herman and T. A. Wiggins, “Bessel-like beams modulated by arbitrary radial functions,” J. Opt. Soc. Am. A 17, 1021–1032 (2000).
    [CrossRef]
  3. A. G. Sedukhin, “Marginal phase correction of truncated Bessel beams,” J. Opt. Soc. Am. A 17, 1059–1066 (2000).
    [CrossRef]
  4. Y. Li, V. Gurevich, M. Kirchever, J. Katz, and E. Marom, “Propagation of anisotropic Bessel–Gaussian beams: sidelobe control, mode selection, and field depth,” Appl. Opt. 40, 2709–2721 (2001).
    [CrossRef]
  5. J. Gu, D. Zhao, Z. Mei, H. Mao, and H. Xu, “Propagation characteristics of linearly polarized Bessel–Gaussian beams through an annular aperture paraxial ABCD optical system,” Optik 115, 529–532 (2004).
    [CrossRef]
  6. Z. Mei, D. Zhao, X. Wei, F. Jing, and Q. Zhu, “Propagation of Bessel-modulated Gaussian beams through a paraxial ABCD optical system with an annular aperture,” Optik 116, 521–526 (2005).
    [CrossRef]
  7. X. Wang and B. Lü, “The beam propagation factor and far-field distribution of Bessel-modulated Gaussian beams,” Opt. Quantum Electron. 34, 1071–1077 (2002).
    [CrossRef]
  8. Y. Cai and X. Lü, “Propagation of Bessel and Bessel–Gaussian beams through an unapertured and aperture misaligned paraxial optical systems,” Opt. Commun. 274, 1–7 (2007).
    [CrossRef]
  9. C. Zhao, L. Wang, X. Lu, and H. Chen, “Propagation of high-order Bessel–Gaussian beam through a misaligned first-order optical system,” Opt. Laser Technol. 39, 1199–1203 (2007).
    [CrossRef]
  10. H. T. Eyyuboğlu, “Propagation of higher order Bessel–Gaussian beams in turbulence,” Appl. Phys. B 88, 259–265 (2007).
    [CrossRef]
  11. B. Chen, Z. Chen, and J. Pu, “Propagation of partially coherent Bessel–Gaussian beams in turbulent atmosphere,” Opt. Laser Technol. 40, 820–827 (2008).
    [CrossRef]
  12. K. Zhu, G. Zhou, X. Li, X. Zheng, and H. Tang, “Propagation of Bessel–Gaussian beams with optical vortices in turbulent atmosphere,” Opt. Express 16, 21315–21320 (2008).
    [CrossRef]
  13. J. Cang and Y. Zhang, “Axial intensity distribution of truncated Bessel–Gauss beams in turbulent atmosphere,” Optik 121, 239–245 (2010).
    [CrossRef]
  14. K. Zhu, S. Li, Y. Tang, Y. Yu, and H. Tang, “Study on the propagation parameters of Bessel–Gaussian beams carrying optical vortices through atmospheric turbulence,” J. Opt. Soc. Am. A 29, 251–257 (2012).
    [CrossRef]
  15. C. Macaskill and T. E. Ewart, “Computer simulation of two-dimensional random wave propagation,” IMA J. Appl. Math. 33, 1–15 (1984).
    [CrossRef]
  16. J. M. Martin and S. M. Flatte, “Intensity images and statistics from numerical simulation of wave propagation in 3-D random media,” Appl. Opt. 27, 2111–2126 (1988).
    [CrossRef]
  17. M. C. Roggemann, B. M. Welsh, D. Montera, and T. A. Rhoadarmer, “Method for simulating atmospheric turbulence phase effects for multiple time slices and anisoplanatic conditions,” Appl. Opt. 34, 4037–4051 (1995).
    [CrossRef]
  18. W. A. Coles, J. P. Filice, R. G. Frehlich, and M. Yadlowsky, “Simulation of wave propagation in three-dimensional random media,” Appl. Opt. 34, 2089–2101 (1995).
    [CrossRef]
  19. D. H. Nelson, D. L. Walters, E. P. MacKerrow, M. J. Schmitt, C. R. Quick, W. M. Porch, and R. R. Petrin, “Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO2 lidar,” Appl. Opt. 39, 1857–1871 (2000).
    [CrossRef]
  20. A. Belmonte, “Feasibility study for the simulation of beam propagation: consideration of coherent lidar performance,” Appl. Opt. 39, 5426–5445 (2000).
    [CrossRef]
  21. J. D. Schmidt, in Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (SPIE, 2010), Chaps. 6–9.
  22. D. Voelz, in Computational Fourier Optics a MATLAB Tutorial (SPIE, 2011), Chaps. 4 and 5.
  23. X. Xiao and D. Voelz, “Wave optics simulation approach for partial spatially coherent beams,” Opt. Express 14, 6986–6992 (2006).
    [CrossRef]
  24. X. M. Qian, W. Y. Zhu, A. T. Wang, C. Gu, and R. Z. Rao, “Numeric simulation for coherent and partially coherent beam propagation through atmospheric turbulence,” Chin. Phys. Lett. 27, 044214 (2010).
    [CrossRef]
  25. Y. Gu and G. Gbur, “Scintillation of pseudo-Bessel correlated beams in atmospheric turbulence,” J. Opt. Soc. Am. A 27, 2621–2629 (2010).
    [CrossRef]
  26. W. Cheng, J. H. Haus, and Q. Zhan, “Propagation of vector vortex beams through a turbulent atmosphere,” Opt. Express 17, 17829–17836 (2009).
    [CrossRef]
  27. X. Liu and J. Pu, “Investigation on the scintillation reduction of elliptical vortex beams propagating in atmospheric turbulence,” Opt. Express 19, 26444–26450 (2011).
    [CrossRef]
  28. X. Qian, W. Zhu, and R. Rao, “Numerical investigation on propagation effects of pseudo-partially coherent Gaussian Schell-model beams in atmospheric turbulence,” Opt. Express 17, 3782–3791 (2009).
    [CrossRef]
  29. H. T. Eyyuboğlu, E. Sermtlu, Y. Baykal, Y. Cai, and O. Korotkova, “Intensity fluctuations in J-Bessel–Gaussian beams of all orders propagating in turbulent atmosphere,” Appl. Phys. B 93, 605–611 (2008).
    [CrossRef]
  30. D. L. Fried, “Aperture averaging of scintillation,” J. Opt. Soc. Am. 57, 169–175 (1967).
    [CrossRef]
  31. J. H. Churnside, “Aperture averaging of optical scintillations in the turbulent atmosphere,” Appl. Opt. 30, 1982–1994 (1991).
    [CrossRef]
  32. L. C. Andrews and R. L. Phillips, in Laser Beam Propagation through Random Media (SPIE, 2005), Chap. 10.

2012 (1)

2011 (1)

2010 (3)

Y. Gu and G. Gbur, “Scintillation of pseudo-Bessel correlated beams in atmospheric turbulence,” J. Opt. Soc. Am. A 27, 2621–2629 (2010).
[CrossRef]

J. Cang and Y. Zhang, “Axial intensity distribution of truncated Bessel–Gauss beams in turbulent atmosphere,” Optik 121, 239–245 (2010).
[CrossRef]

X. M. Qian, W. Y. Zhu, A. T. Wang, C. Gu, and R. Z. Rao, “Numeric simulation for coherent and partially coherent beam propagation through atmospheric turbulence,” Chin. Phys. Lett. 27, 044214 (2010).
[CrossRef]

2009 (2)

2008 (3)

K. Zhu, G. Zhou, X. Li, X. Zheng, and H. Tang, “Propagation of Bessel–Gaussian beams with optical vortices in turbulent atmosphere,” Opt. Express 16, 21315–21320 (2008).
[CrossRef]

H. T. Eyyuboğlu, E. Sermtlu, Y. Baykal, Y. Cai, and O. Korotkova, “Intensity fluctuations in J-Bessel–Gaussian beams of all orders propagating in turbulent atmosphere,” Appl. Phys. B 93, 605–611 (2008).
[CrossRef]

B. Chen, Z. Chen, and J. Pu, “Propagation of partially coherent Bessel–Gaussian beams in turbulent atmosphere,” Opt. Laser Technol. 40, 820–827 (2008).
[CrossRef]

2007 (3)

Y. Cai and X. Lü, “Propagation of Bessel and Bessel–Gaussian beams through an unapertured and aperture misaligned paraxial optical systems,” Opt. Commun. 274, 1–7 (2007).
[CrossRef]

C. Zhao, L. Wang, X. Lu, and H. Chen, “Propagation of high-order Bessel–Gaussian beam through a misaligned first-order optical system,” Opt. Laser Technol. 39, 1199–1203 (2007).
[CrossRef]

H. T. Eyyuboğlu, “Propagation of higher order Bessel–Gaussian beams in turbulence,” Appl. Phys. B 88, 259–265 (2007).
[CrossRef]

2006 (1)

2005 (1)

Z. Mei, D. Zhao, X. Wei, F. Jing, and Q. Zhu, “Propagation of Bessel-modulated Gaussian beams through a paraxial ABCD optical system with an annular aperture,” Optik 116, 521–526 (2005).
[CrossRef]

2004 (1)

J. Gu, D. Zhao, Z. Mei, H. Mao, and H. Xu, “Propagation characteristics of linearly polarized Bessel–Gaussian beams through an annular aperture paraxial ABCD optical system,” Optik 115, 529–532 (2004).
[CrossRef]

2002 (1)

X. Wang and B. Lü, “The beam propagation factor and far-field distribution of Bessel-modulated Gaussian beams,” Opt. Quantum Electron. 34, 1071–1077 (2002).
[CrossRef]

2001 (1)

2000 (4)

1995 (2)

1991 (1)

1988 (1)

1987 (1)

1984 (1)

C. Macaskill and T. E. Ewart, “Computer simulation of two-dimensional random wave propagation,” IMA J. Appl. Math. 33, 1–15 (1984).
[CrossRef]

1967 (1)

Andrews, L. C.

L. C. Andrews and R. L. Phillips, in Laser Beam Propagation through Random Media (SPIE, 2005), Chap. 10.

Baykal, Y.

H. T. Eyyuboğlu, E. Sermtlu, Y. Baykal, Y. Cai, and O. Korotkova, “Intensity fluctuations in J-Bessel–Gaussian beams of all orders propagating in turbulent atmosphere,” Appl. Phys. B 93, 605–611 (2008).
[CrossRef]

Belmonte, A.

Cai, Y.

H. T. Eyyuboğlu, E. Sermtlu, Y. Baykal, Y. Cai, and O. Korotkova, “Intensity fluctuations in J-Bessel–Gaussian beams of all orders propagating in turbulent atmosphere,” Appl. Phys. B 93, 605–611 (2008).
[CrossRef]

Y. Cai and X. Lü, “Propagation of Bessel and Bessel–Gaussian beams through an unapertured and aperture misaligned paraxial optical systems,” Opt. Commun. 274, 1–7 (2007).
[CrossRef]

Cang, J.

J. Cang and Y. Zhang, “Axial intensity distribution of truncated Bessel–Gauss beams in turbulent atmosphere,” Optik 121, 239–245 (2010).
[CrossRef]

Chen, B.

B. Chen, Z. Chen, and J. Pu, “Propagation of partially coherent Bessel–Gaussian beams in turbulent atmosphere,” Opt. Laser Technol. 40, 820–827 (2008).
[CrossRef]

Chen, H.

C. Zhao, L. Wang, X. Lu, and H. Chen, “Propagation of high-order Bessel–Gaussian beam through a misaligned first-order optical system,” Opt. Laser Technol. 39, 1199–1203 (2007).
[CrossRef]

Chen, Z.

B. Chen, Z. Chen, and J. Pu, “Propagation of partially coherent Bessel–Gaussian beams in turbulent atmosphere,” Opt. Laser Technol. 40, 820–827 (2008).
[CrossRef]

Cheng, W.

Churnside, J. H.

Coles, W. A.

Durnin, J.

Ewart, T. E.

C. Macaskill and T. E. Ewart, “Computer simulation of two-dimensional random wave propagation,” IMA J. Appl. Math. 33, 1–15 (1984).
[CrossRef]

Eyyuboglu, H. T.

H. T. Eyyuboğlu, E. Sermtlu, Y. Baykal, Y. Cai, and O. Korotkova, “Intensity fluctuations in J-Bessel–Gaussian beams of all orders propagating in turbulent atmosphere,” Appl. Phys. B 93, 605–611 (2008).
[CrossRef]

H. T. Eyyuboğlu, “Propagation of higher order Bessel–Gaussian beams in turbulence,” Appl. Phys. B 88, 259–265 (2007).
[CrossRef]

Filice, J. P.

Flatte, S. M.

Frehlich, R. G.

Fried, D. L.

Gbur, G.

Gu, C.

X. M. Qian, W. Y. Zhu, A. T. Wang, C. Gu, and R. Z. Rao, “Numeric simulation for coherent and partially coherent beam propagation through atmospheric turbulence,” Chin. Phys. Lett. 27, 044214 (2010).
[CrossRef]

Gu, J.

J. Gu, D. Zhao, Z. Mei, H. Mao, and H. Xu, “Propagation characteristics of linearly polarized Bessel–Gaussian beams through an annular aperture paraxial ABCD optical system,” Optik 115, 529–532 (2004).
[CrossRef]

Gu, Y.

Gurevich, V.

Haus, J. H.

Herman, R. M.

Jing, F.

Z. Mei, D. Zhao, X. Wei, F. Jing, and Q. Zhu, “Propagation of Bessel-modulated Gaussian beams through a paraxial ABCD optical system with an annular aperture,” Optik 116, 521–526 (2005).
[CrossRef]

Katz, J.

Kirchever, M.

Korotkova, O.

H. T. Eyyuboğlu, E. Sermtlu, Y. Baykal, Y. Cai, and O. Korotkova, “Intensity fluctuations in J-Bessel–Gaussian beams of all orders propagating in turbulent atmosphere,” Appl. Phys. B 93, 605–611 (2008).
[CrossRef]

Li, S.

Li, X.

Li, Y.

Liu, X.

Lu, X.

C. Zhao, L. Wang, X. Lu, and H. Chen, “Propagation of high-order Bessel–Gaussian beam through a misaligned first-order optical system,” Opt. Laser Technol. 39, 1199–1203 (2007).
[CrossRef]

Lü, B.

X. Wang and B. Lü, “The beam propagation factor and far-field distribution of Bessel-modulated Gaussian beams,” Opt. Quantum Electron. 34, 1071–1077 (2002).
[CrossRef]

Lü, X.

Y. Cai and X. Lü, “Propagation of Bessel and Bessel–Gaussian beams through an unapertured and aperture misaligned paraxial optical systems,” Opt. Commun. 274, 1–7 (2007).
[CrossRef]

Macaskill, C.

C. Macaskill and T. E. Ewart, “Computer simulation of two-dimensional random wave propagation,” IMA J. Appl. Math. 33, 1–15 (1984).
[CrossRef]

MacKerrow, E. P.

Mao, H.

J. Gu, D. Zhao, Z. Mei, H. Mao, and H. Xu, “Propagation characteristics of linearly polarized Bessel–Gaussian beams through an annular aperture paraxial ABCD optical system,” Optik 115, 529–532 (2004).
[CrossRef]

Marom, E.

Martin, J. M.

Mei, Z.

Z. Mei, D. Zhao, X. Wei, F. Jing, and Q. Zhu, “Propagation of Bessel-modulated Gaussian beams through a paraxial ABCD optical system with an annular aperture,” Optik 116, 521–526 (2005).
[CrossRef]

J. Gu, D. Zhao, Z. Mei, H. Mao, and H. Xu, “Propagation characteristics of linearly polarized Bessel–Gaussian beams through an annular aperture paraxial ABCD optical system,” Optik 115, 529–532 (2004).
[CrossRef]

Montera, D.

Nelson, D. H.

Petrin, R. R.

Phillips, R. L.

L. C. Andrews and R. L. Phillips, in Laser Beam Propagation through Random Media (SPIE, 2005), Chap. 10.

Porch, W. M.

Pu, J.

X. Liu and J. Pu, “Investigation on the scintillation reduction of elliptical vortex beams propagating in atmospheric turbulence,” Opt. Express 19, 26444–26450 (2011).
[CrossRef]

B. Chen, Z. Chen, and J. Pu, “Propagation of partially coherent Bessel–Gaussian beams in turbulent atmosphere,” Opt. Laser Technol. 40, 820–827 (2008).
[CrossRef]

Qian, X.

Qian, X. M.

X. M. Qian, W. Y. Zhu, A. T. Wang, C. Gu, and R. Z. Rao, “Numeric simulation for coherent and partially coherent beam propagation through atmospheric turbulence,” Chin. Phys. Lett. 27, 044214 (2010).
[CrossRef]

Quick, C. R.

Rao, R.

Rao, R. Z.

X. M. Qian, W. Y. Zhu, A. T. Wang, C. Gu, and R. Z. Rao, “Numeric simulation for coherent and partially coherent beam propagation through atmospheric turbulence,” Chin. Phys. Lett. 27, 044214 (2010).
[CrossRef]

Rhoadarmer, T. A.

Roggemann, M. C.

Schmidt, J. D.

J. D. Schmidt, in Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (SPIE, 2010), Chaps. 6–9.

Schmitt, M. J.

Sedukhin, A. G.

Sermtlu, E.

H. T. Eyyuboğlu, E. Sermtlu, Y. Baykal, Y. Cai, and O. Korotkova, “Intensity fluctuations in J-Bessel–Gaussian beams of all orders propagating in turbulent atmosphere,” Appl. Phys. B 93, 605–611 (2008).
[CrossRef]

Tang, H.

Tang, Y.

Voelz, D.

Walters, D. L.

Wang, A. T.

X. M. Qian, W. Y. Zhu, A. T. Wang, C. Gu, and R. Z. Rao, “Numeric simulation for coherent and partially coherent beam propagation through atmospheric turbulence,” Chin. Phys. Lett. 27, 044214 (2010).
[CrossRef]

Wang, L.

C. Zhao, L. Wang, X. Lu, and H. Chen, “Propagation of high-order Bessel–Gaussian beam through a misaligned first-order optical system,” Opt. Laser Technol. 39, 1199–1203 (2007).
[CrossRef]

Wang, X.

X. Wang and B. Lü, “The beam propagation factor and far-field distribution of Bessel-modulated Gaussian beams,” Opt. Quantum Electron. 34, 1071–1077 (2002).
[CrossRef]

Wei, X.

Z. Mei, D. Zhao, X. Wei, F. Jing, and Q. Zhu, “Propagation of Bessel-modulated Gaussian beams through a paraxial ABCD optical system with an annular aperture,” Optik 116, 521–526 (2005).
[CrossRef]

Welsh, B. M.

Wiggins, T. A.

Xiao, X.

Xu, H.

J. Gu, D. Zhao, Z. Mei, H. Mao, and H. Xu, “Propagation characteristics of linearly polarized Bessel–Gaussian beams through an annular aperture paraxial ABCD optical system,” Optik 115, 529–532 (2004).
[CrossRef]

Yadlowsky, M.

Yu, Y.

Zhan, Q.

Zhang, Y.

J. Cang and Y. Zhang, “Axial intensity distribution of truncated Bessel–Gauss beams in turbulent atmosphere,” Optik 121, 239–245 (2010).
[CrossRef]

Zhao, C.

C. Zhao, L. Wang, X. Lu, and H. Chen, “Propagation of high-order Bessel–Gaussian beam through a misaligned first-order optical system,” Opt. Laser Technol. 39, 1199–1203 (2007).
[CrossRef]

Zhao, D.

Z. Mei, D. Zhao, X. Wei, F. Jing, and Q. Zhu, “Propagation of Bessel-modulated Gaussian beams through a paraxial ABCD optical system with an annular aperture,” Optik 116, 521–526 (2005).
[CrossRef]

J. Gu, D. Zhao, Z. Mei, H. Mao, and H. Xu, “Propagation characteristics of linearly polarized Bessel–Gaussian beams through an annular aperture paraxial ABCD optical system,” Optik 115, 529–532 (2004).
[CrossRef]

Zheng, X.

Zhou, G.

Zhu, K.

Zhu, Q.

Z. Mei, D. Zhao, X. Wei, F. Jing, and Q. Zhu, “Propagation of Bessel-modulated Gaussian beams through a paraxial ABCD optical system with an annular aperture,” Optik 116, 521–526 (2005).
[CrossRef]

Zhu, W.

Zhu, W. Y.

X. M. Qian, W. Y. Zhu, A. T. Wang, C. Gu, and R. Z. Rao, “Numeric simulation for coherent and partially coherent beam propagation through atmospheric turbulence,” Chin. Phys. Lett. 27, 044214 (2010).
[CrossRef]

Appl. Opt. (7)

Appl. Phys. B (2)

H. T. Eyyuboğlu, “Propagation of higher order Bessel–Gaussian beams in turbulence,” Appl. Phys. B 88, 259–265 (2007).
[CrossRef]

H. T. Eyyuboğlu, E. Sermtlu, Y. Baykal, Y. Cai, and O. Korotkova, “Intensity fluctuations in J-Bessel–Gaussian beams of all orders propagating in turbulent atmosphere,” Appl. Phys. B 93, 605–611 (2008).
[CrossRef]

Chin. Phys. Lett. (1)

X. M. Qian, W. Y. Zhu, A. T. Wang, C. Gu, and R. Z. Rao, “Numeric simulation for coherent and partially coherent beam propagation through atmospheric turbulence,” Chin. Phys. Lett. 27, 044214 (2010).
[CrossRef]

IMA J. Appl. Math. (1)

C. Macaskill and T. E. Ewart, “Computer simulation of two-dimensional random wave propagation,” IMA J. Appl. Math. 33, 1–15 (1984).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (5)

Opt. Commun. (1)

Y. Cai and X. Lü, “Propagation of Bessel and Bessel–Gaussian beams through an unapertured and aperture misaligned paraxial optical systems,” Opt. Commun. 274, 1–7 (2007).
[CrossRef]

Opt. Express (5)

Opt. Laser Technol. (2)

C. Zhao, L. Wang, X. Lu, and H. Chen, “Propagation of high-order Bessel–Gaussian beam through a misaligned first-order optical system,” Opt. Laser Technol. 39, 1199–1203 (2007).
[CrossRef]

B. Chen, Z. Chen, and J. Pu, “Propagation of partially coherent Bessel–Gaussian beams in turbulent atmosphere,” Opt. Laser Technol. 40, 820–827 (2008).
[CrossRef]

Opt. Quantum Electron. (1)

X. Wang and B. Lü, “The beam propagation factor and far-field distribution of Bessel-modulated Gaussian beams,” Opt. Quantum Electron. 34, 1071–1077 (2002).
[CrossRef]

Optik (3)

J. Cang and Y. Zhang, “Axial intensity distribution of truncated Bessel–Gauss beams in turbulent atmosphere,” Optik 121, 239–245 (2010).
[CrossRef]

J. Gu, D. Zhao, Z. Mei, H. Mao, and H. Xu, “Propagation characteristics of linearly polarized Bessel–Gaussian beams through an annular aperture paraxial ABCD optical system,” Optik 115, 529–532 (2004).
[CrossRef]

Z. Mei, D. Zhao, X. Wei, F. Jing, and Q. Zhu, “Propagation of Bessel-modulated Gaussian beams through a paraxial ABCD optical system with an annular aperture,” Optik 116, 521–526 (2005).
[CrossRef]

Other (3)

J. D. Schmidt, in Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (SPIE, 2010), Chaps. 6–9.

D. Voelz, in Computational Fourier Optics a MATLAB Tutorial (SPIE, 2011), Chaps. 4 and 5.

L. C. Andrews and R. L. Phillips, in Laser Beam Propagation through Random Media (SPIE, 2005), Chap. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Intensity evolution of two truncated Bessel beams with S=10cm, n=0, 4, aB=2cm1 at L=0, 1, 3, 5 km.

Fig. 2.
Fig. 2.

Intensity evolution of two truncated Bessel beams with S=40cm, n=0, 4, aB=0.4cm1 at L=0, 1, 3, 5 km.

Fig. 3.
Fig. 3.

On-axis scintillation of various Bessel beams against propagation distance at n=0.

Fig. 4.
Fig. 4.

On-axis scintillation of various Bessel beams against propagation distance at n=1.

Fig. 5.
Fig. 5.

Aperture averaged scintillation of various Bessel beams against aperture radius at S=10cm, L=3km.

Fig. 6.
Fig. 6.

Aperture averaged scintillation of various Bessel beams against aperture radius at S=40cm, L=3km.

Fig. 7.
Fig. 7.

Aperture averaged scintillation of Bessel beams relative to a Gaussian beam of equal source power.

Fig. 8.
Fig. 8.

Aperture averaged scintillation of Bessel beams per unit received power relative to a Gaussian beam of equal source power.

Tables (1)

Tables Icon

Table 1. List of Equal Power Beams

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ur(r,L)=jexp(j2πL/λ)λL×us(s)exp[jπλL(rs)2]d2s,
ur(r,L)=F1{F[us(s)]H(f)}
H(f)=exp[jπL(2λλ|f|2)].
um+1[rm+1,(m+1)L/M]=F1(F{um(rm,mL/M)exp[jϕ(rm)]}H(fm)),
ϕ(rm)=F1[G(fm)Φϕ0.5(fm)]
Φϕ(f)=0.1421LCn2L011/3exp(1.1265l02|f|2)λ2(L02|f|2+1)11/6,
us(s)=Jn(aBs)exp(jnφ),
S/2sxS/2,S/2syS/2s=(sx2+sy2),φ=tan1(sy/sx).
b(r,L)=[ut(r,L)ut*(r,L)]2ut(r,L)ut*(r,L)21=It2(r,L)It(r,L)21,
b(L)=[0Ra02πrIt(r,L)drdθ]20Ra02πrIt(r,L)drdθ21.
bP(L)=b(L)0Ra02πrIt(r,L)drdθ.
bR(L)=bB(L)bG(L),bPR(L)=bPB(L)bPG(L).

Metrics