Abstract

Four potential laser-induced fluorescence (LIF) tracers, 1-phenyloctane, 1-phenyldecane, 1-methylnaphthalene, and 2-methylnaphthalene, are characterized for diesel engine applications. These tracers, embedded in the diesel primary reference fuels n-C16H34 and iso-C16H34, match the relevant physical properties of commercial diesel fuel much better than the commonly used toluene/iso-octane/n-heptane tracer-fuel system does. The temperature and pressure dependencies of the fluorescence intensities and spectra were measured in a flow cell in nitrogen for each candidate tracer molecule. The results show that the signal intensities of the methylnaphthalenes are about two orders of magnitude higher than for 1-phenyloctane and 1-phenyldecane and show a strong temperature but no pressure, dependence. An analysis of the fluorescence spectrum of 1-methylnaphthalene shows that it also can be used for two-color detection LIF thermometry by choosing appropriate optical filters.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
    [CrossRef]
  2. C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
    [CrossRef]
  3. M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91, 669–675 (2008).
    [CrossRef]
  4. M. Löffler, F. Beyrau, and A. Leipertz, “Acetone laser-induced fluorescence behavior for the simultaneous quantification of temperature and residual gas distribution in fired spark-ignition engines,” Appl. Opt. 49, 37–49 (2010).
    [CrossRef]
  5. R. Devillers, G. Bruneaux, and C. Schulz, “Investigation of toluene LIF at high pressure and high temperature in an optical engine,” Appl. Phys. B 96, 735–739 (2009).
    [CrossRef]
  6. D. A. Rothamer, J. A. Snyder, R. K. Hanson, and R. R. Steeper, “Optimization of a tracer-based PLIF diagnostic for simultaneous imaging of EGR and temperature in IC engines,” Appl. Phys. B 99, 371–384 (2010).
    [CrossRef]
  7. B. Williams, P. Ewart, X. Wang, R. Stone, H. Ma, H. Walmsley, R. Cracknell, R. Stevens, D. Richardson, H. Fu, and S. Wallace, “Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: effects of residual exhaust gas on quantitative PLIF,” Combust. Flame 157, 1866–1878 (2010).
    [CrossRef]
  8. P. Koch, M. Löffler, M. Wensing, and A. Leipertz, “Study of the mixture formation processes inside a modern direct-injection gasoline engine,” Int. J. Engine Res. 11, 455–471 (2010).
    [CrossRef]
  9. M. Berckmüller, N. P. Tait, R. D. Lockett, D. A. Greenhalgh, K. Ishii, Y. Urata, H. Umiyama, and K. Yoshida, “In-cylinder crank angle resolved imaging of fuel concentration in a firing spark-ignition-engine using planar laser-induced flouresence,” Proc. Combust. Inst. 25, 151–156 (1994).
  10. J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst. 34, 3645–3652 (2013).
    [CrossRef]
  11. W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperatures,” Appl. Phys. B 80, 777–784 (2005).
    [CrossRef]
  12. W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6, 2940–2945 (2004).
    [CrossRef]
  13. A. P. Fröba, F. Rabenstein, K.-U. Münch, and A. Leipertz, “Mixture of triethylamine TEA and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines,” Combust. Flame 112, 199–209 (1998).
    [CrossRef]
  14. R. P. C. Zegers, M. Yu, C. Bekdemir, N. J. Dam, C. C. M. Luijten, and L. P. H. De Goey, “Temperature measurements of the gas-phase during surrogate diesel injection using two-color toluene LIF,” Appl. Phys. B 112, 7–23 (2013).
    [CrossRef]
  15. B. Petersen, P. C. Miles, and D. Sahoo, “Equivalence ratio distributions in a light-duty diesel engine operating under partially premixed conditions,” SAE Int. J. Engines 5, 526–537 (2012).
    [CrossRef]
  16. M. P. B. Musculus, T. Lachaux, L. M. Pickett, and A. Idicheria, “End-of-injection over-mixing and unburned hydrocarbon emissions in low-temperature-combustion diesel engines,” SAE Technical Papers Series (2007).
  17. R. Fuchs, L. Krenzer, and J. Gaube, “Excess properties of binary mixtures composed of a polar component and an alkane,” Ber. Bunsenges. Phys. Chem. 88, 642–649 (1984).
    [CrossRef]
  18. S. Shen and I. Nagata, “Prediction of excess enthalpies of ketone-alkane systems from infinite dilution activity coefficients,” Thermochim. Acta 258, 19–31 (1995).
    [CrossRef]
  19. J.-F. Le Coz and T. Baritaud, “Application of laser induced fluorescence for measuring the thickness of evaporating gasoline liquid films,” Developments in Laser Techniques and Applications to Fluid Mechanics (Springer-Verlag, Berlin, 1996), pp. 115–131.
  20. B. Han and R. Steeper, “Examination of iso-octane/ketone mixtures for quantitative LIF measurements in a DISI engine,” SAE Technical Papers Series (2002).
  21. Fluidat on the net V 1.39/6.18—massflow, and physical property calculator, online available at: www.fluidat.com (2013).
  22. M. Davy, P. Williams, D. Han, and R. Steeper, “Evaporation characteristics of the 3-pentanone–isooctane binary system,” Exp. Fluids 35, 92–99 (2003).
  23. T. E. Daubert and R. P. Danner, Physical and Thermodynamic Properties of Pure Chemicals: Data Compilation (Taylor & Francis, 1989).
  24. R. C. Weast, CRC Handbook of Chemistry and Physics, 70th ed. (CRC Press, 1989).
  25. T. R. Lynch, Process Chemistry of Lubricant Base Stocks (CRC Press, 2008).
  26. S. A. Kaiser and M. B. Long, “Quantitative planar laser-induced fluorescence of naphthalenes as fuel tracers,” Proc. Combust. Inst. 30, 1555–1563 (2005).
    [CrossRef]
  27. M. Orain, P. Baranger, B. Rossow, and F. Grisch, “Fluorescence spectroscopy of naphtalene at high temperatures and pressures: implications for fuel-concentration measurements,” Appl. Phys. B 102, 163–172 (2011).
    [CrossRef]
  28. S. Faust, G. Tea, T. Dreier, and C. Schulz, “Temperature, pressure, and bath gas composition dependence of fluorescence spectra and fluorescence lifetimes of toluene and naphthalene,” Appl. Phys. B 110, 81–93 (2013).
    [CrossRef]
  29. G. Tea, G. Bruneaux, J. T. Kashdan, and C. Schulz, “Unburned gas temperature measurements in a surrogate diesel jet via two-color toluene-LIF imaging,” Proc. Combust. Inst. 33, 783–790 (2011).
    [CrossRef]
  30. J.-P. Leininger, F. Lorant, C. Minot, and F. Behar, “Mechanisms of 1-methylnaphthalene pyrolysis in a batch reactor,” Energy Fuels 20, 2518–2530 (2006).
    [CrossRef]

2013 (3)

J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst. 34, 3645–3652 (2013).
[CrossRef]

R. P. C. Zegers, M. Yu, C. Bekdemir, N. J. Dam, C. C. M. Luijten, and L. P. H. De Goey, “Temperature measurements of the gas-phase during surrogate diesel injection using two-color toluene LIF,” Appl. Phys. B 112, 7–23 (2013).
[CrossRef]

S. Faust, G. Tea, T. Dreier, and C. Schulz, “Temperature, pressure, and bath gas composition dependence of fluorescence spectra and fluorescence lifetimes of toluene and naphthalene,” Appl. Phys. B 110, 81–93 (2013).
[CrossRef]

2012 (1)

B. Petersen, P. C. Miles, and D. Sahoo, “Equivalence ratio distributions in a light-duty diesel engine operating under partially premixed conditions,” SAE Int. J. Engines 5, 526–537 (2012).
[CrossRef]

2011 (2)

G. Tea, G. Bruneaux, J. T. Kashdan, and C. Schulz, “Unburned gas temperature measurements in a surrogate diesel jet via two-color toluene-LIF imaging,” Proc. Combust. Inst. 33, 783–790 (2011).
[CrossRef]

M. Orain, P. Baranger, B. Rossow, and F. Grisch, “Fluorescence spectroscopy of naphtalene at high temperatures and pressures: implications for fuel-concentration measurements,” Appl. Phys. B 102, 163–172 (2011).
[CrossRef]

2010 (4)

M. Löffler, F. Beyrau, and A. Leipertz, “Acetone laser-induced fluorescence behavior for the simultaneous quantification of temperature and residual gas distribution in fired spark-ignition engines,” Appl. Opt. 49, 37–49 (2010).
[CrossRef]

D. A. Rothamer, J. A. Snyder, R. K. Hanson, and R. R. Steeper, “Optimization of a tracer-based PLIF diagnostic for simultaneous imaging of EGR and temperature in IC engines,” Appl. Phys. B 99, 371–384 (2010).
[CrossRef]

B. Williams, P. Ewart, X. Wang, R. Stone, H. Ma, H. Walmsley, R. Cracknell, R. Stevens, D. Richardson, H. Fu, and S. Wallace, “Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: effects of residual exhaust gas on quantitative PLIF,” Combust. Flame 157, 1866–1878 (2010).
[CrossRef]

P. Koch, M. Löffler, M. Wensing, and A. Leipertz, “Study of the mixture formation processes inside a modern direct-injection gasoline engine,” Int. J. Engine Res. 11, 455–471 (2010).
[CrossRef]

2009 (1)

R. Devillers, G. Bruneaux, and C. Schulz, “Investigation of toluene LIF at high pressure and high temperature in an optical engine,” Appl. Phys. B 96, 735–739 (2009).
[CrossRef]

2008 (1)

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91, 669–675 (2008).
[CrossRef]

2006 (1)

J.-P. Leininger, F. Lorant, C. Minot, and F. Behar, “Mechanisms of 1-methylnaphthalene pyrolysis in a batch reactor,” Energy Fuels 20, 2518–2530 (2006).
[CrossRef]

2005 (3)

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperatures,” Appl. Phys. B 80, 777–784 (2005).
[CrossRef]

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
[CrossRef]

S. A. Kaiser and M. B. Long, “Quantitative planar laser-induced fluorescence of naphthalenes as fuel tracers,” Proc. Combust. Inst. 30, 1555–1563 (2005).
[CrossRef]

2004 (1)

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6, 2940–2945 (2004).
[CrossRef]

2003 (1)

M. Davy, P. Williams, D. Han, and R. Steeper, “Evaporation characteristics of the 3-pentanone–isooctane binary system,” Exp. Fluids 35, 92–99 (2003).

2000 (1)

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[CrossRef]

1998 (1)

A. P. Fröba, F. Rabenstein, K.-U. Münch, and A. Leipertz, “Mixture of triethylamine TEA and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines,” Combust. Flame 112, 199–209 (1998).
[CrossRef]

1995 (1)

S. Shen and I. Nagata, “Prediction of excess enthalpies of ketone-alkane systems from infinite dilution activity coefficients,” Thermochim. Acta 258, 19–31 (1995).
[CrossRef]

1994 (1)

M. Berckmüller, N. P. Tait, R. D. Lockett, D. A. Greenhalgh, K. Ishii, Y. Urata, H. Umiyama, and K. Yoshida, “In-cylinder crank angle resolved imaging of fuel concentration in a firing spark-ignition-engine using planar laser-induced flouresence,” Proc. Combust. Inst. 25, 151–156 (1994).

1984 (1)

R. Fuchs, L. Krenzer, and J. Gaube, “Excess properties of binary mixtures composed of a polar component and an alkane,” Ber. Bunsenges. Phys. Chem. 88, 642–649 (1984).
[CrossRef]

Baranger, P.

M. Orain, P. Baranger, B. Rossow, and F. Grisch, “Fluorescence spectroscopy of naphtalene at high temperatures and pressures: implications for fuel-concentration measurements,” Appl. Phys. B 102, 163–172 (2011).
[CrossRef]

Baritaud, T.

J.-F. Le Coz and T. Baritaud, “Application of laser induced fluorescence for measuring the thickness of evaporating gasoline liquid films,” Developments in Laser Techniques and Applications to Fluid Mechanics (Springer-Verlag, Berlin, 1996), pp. 115–131.

Behar, F.

J.-P. Leininger, F. Lorant, C. Minot, and F. Behar, “Mechanisms of 1-methylnaphthalene pyrolysis in a batch reactor,” Energy Fuels 20, 2518–2530 (2006).
[CrossRef]

Bekdemir, C.

R. P. C. Zegers, M. Yu, C. Bekdemir, N. J. Dam, C. C. M. Luijten, and L. P. H. De Goey, “Temperature measurements of the gas-phase during surrogate diesel injection using two-color toluene LIF,” Appl. Phys. B 112, 7–23 (2013).
[CrossRef]

Berckmüller, M.

M. Berckmüller, N. P. Tait, R. D. Lockett, D. A. Greenhalgh, K. Ishii, Y. Urata, H. Umiyama, and K. Yoshida, “In-cylinder crank angle resolved imaging of fuel concentration in a firing spark-ignition-engine using planar laser-induced flouresence,” Proc. Combust. Inst. 25, 151–156 (1994).

Beyrau, F.

Bruneaux, G.

G. Tea, G. Bruneaux, J. T. Kashdan, and C. Schulz, “Unburned gas temperature measurements in a surrogate diesel jet via two-color toluene-LIF imaging,” Proc. Combust. Inst. 33, 783–790 (2011).
[CrossRef]

R. Devillers, G. Bruneaux, and C. Schulz, “Investigation of toluene LIF at high pressure and high temperature in an optical engine,” Appl. Phys. B 96, 735–739 (2009).
[CrossRef]

Cracknell, R.

B. Williams, P. Ewart, X. Wang, R. Stone, H. Ma, H. Walmsley, R. Cracknell, R. Stevens, D. Richardson, H. Fu, and S. Wallace, “Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: effects of residual exhaust gas on quantitative PLIF,” Combust. Flame 157, 1866–1878 (2010).
[CrossRef]

Dam, N. J.

R. P. C. Zegers, M. Yu, C. Bekdemir, N. J. Dam, C. C. M. Luijten, and L. P. H. De Goey, “Temperature measurements of the gas-phase during surrogate diesel injection using two-color toluene LIF,” Appl. Phys. B 112, 7–23 (2013).
[CrossRef]

Danner, R. P.

T. E. Daubert and R. P. Danner, Physical and Thermodynamic Properties of Pure Chemicals: Data Compilation (Taylor & Francis, 1989).

Daubert, T. E.

T. E. Daubert and R. P. Danner, Physical and Thermodynamic Properties of Pure Chemicals: Data Compilation (Taylor & Francis, 1989).

Davy, M.

M. Davy, P. Williams, D. Han, and R. Steeper, “Evaporation characteristics of the 3-pentanone–isooctane binary system,” Exp. Fluids 35, 92–99 (2003).

De Goey, L. P. H.

R. P. C. Zegers, M. Yu, C. Bekdemir, N. J. Dam, C. C. M. Luijten, and L. P. H. De Goey, “Temperature measurements of the gas-phase during surrogate diesel injection using two-color toluene LIF,” Appl. Phys. B 112, 7–23 (2013).
[CrossRef]

Devillers, R.

R. Devillers, G. Bruneaux, and C. Schulz, “Investigation of toluene LIF at high pressure and high temperature in an optical engine,” Appl. Phys. B 96, 735–739 (2009).
[CrossRef]

Dreier, T.

S. Faust, G. Tea, T. Dreier, and C. Schulz, “Temperature, pressure, and bath gas composition dependence of fluorescence spectra and fluorescence lifetimes of toluene and naphthalene,” Appl. Phys. B 110, 81–93 (2013).
[CrossRef]

Einecke, S.

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[CrossRef]

Ewart, P.

B. Williams, P. Ewart, X. Wang, R. Stone, H. Ma, H. Walmsley, R. Cracknell, R. Stevens, D. Richardson, H. Fu, and S. Wallace, “Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: effects of residual exhaust gas on quantitative PLIF,” Combust. Flame 157, 1866–1878 (2010).
[CrossRef]

Faust, S.

S. Faust, G. Tea, T. Dreier, and C. Schulz, “Temperature, pressure, and bath gas composition dependence of fluorescence spectra and fluorescence lifetimes of toluene and naphthalene,” Appl. Phys. B 110, 81–93 (2013).
[CrossRef]

Fröba, A. P.

A. P. Fröba, F. Rabenstein, K.-U. Münch, and A. Leipertz, “Mixture of triethylamine TEA and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines,” Combust. Flame 112, 199–209 (1998).
[CrossRef]

Fu, H.

B. Williams, P. Ewart, X. Wang, R. Stone, H. Ma, H. Walmsley, R. Cracknell, R. Stevens, D. Richardson, H. Fu, and S. Wallace, “Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: effects of residual exhaust gas on quantitative PLIF,” Combust. Flame 157, 1866–1878 (2010).
[CrossRef]

Fuchs, R.

R. Fuchs, L. Krenzer, and J. Gaube, “Excess properties of binary mixtures composed of a polar component and an alkane,” Ber. Bunsenges. Phys. Chem. 88, 642–649 (1984).
[CrossRef]

Gaube, J.

R. Fuchs, L. Krenzer, and J. Gaube, “Excess properties of binary mixtures composed of a polar component and an alkane,” Ber. Bunsenges. Phys. Chem. 88, 642–649 (1984).
[CrossRef]

Greenhalgh, D. A.

M. Berckmüller, N. P. Tait, R. D. Lockett, D. A. Greenhalgh, K. Ishii, Y. Urata, H. Umiyama, and K. Yoshida, “In-cylinder crank angle resolved imaging of fuel concentration in a firing spark-ignition-engine using planar laser-induced flouresence,” Proc. Combust. Inst. 25, 151–156 (1994).

Grisch, F.

M. Orain, P. Baranger, B. Rossow, and F. Grisch, “Fluorescence spectroscopy of naphtalene at high temperatures and pressures: implications for fuel-concentration measurements,” Appl. Phys. B 102, 163–172 (2011).
[CrossRef]

Han, B.

B. Han and R. Steeper, “Examination of iso-octane/ketone mixtures for quantitative LIF measurements in a DISI engine,” SAE Technical Papers Series (2002).

Han, D.

M. Davy, P. Williams, D. Han, and R. Steeper, “Evaporation characteristics of the 3-pentanone–isooctane binary system,” Exp. Fluids 35, 92–99 (2003).

Hanson, R. K.

D. A. Rothamer, J. A. Snyder, R. K. Hanson, and R. R. Steeper, “Optimization of a tracer-based PLIF diagnostic for simultaneous imaging of EGR and temperature in IC engines,” Appl. Phys. B 99, 371–384 (2010).
[CrossRef]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperatures,” Appl. Phys. B 80, 777–784 (2005).
[CrossRef]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6, 2940–2945 (2004).
[CrossRef]

Idicheria, A.

M. P. B. Musculus, T. Lachaux, L. M. Pickett, and A. Idicheria, “End-of-injection over-mixing and unburned hydrocarbon emissions in low-temperature-combustion diesel engines,” SAE Technical Papers Series (2007).

Ishii, K.

M. Berckmüller, N. P. Tait, R. D. Lockett, D. A. Greenhalgh, K. Ishii, Y. Urata, H. Umiyama, and K. Yoshida, “In-cylinder crank angle resolved imaging of fuel concentration in a firing spark-ignition-engine using planar laser-induced flouresence,” Proc. Combust. Inst. 25, 151–156 (1994).

Kaiser, S. A.

S. A. Kaiser and M. B. Long, “Quantitative planar laser-induced fluorescence of naphthalenes as fuel tracers,” Proc. Combust. Inst. 30, 1555–1563 (2005).
[CrossRef]

Kashdan, J. T.

G. Tea, G. Bruneaux, J. T. Kashdan, and C. Schulz, “Unburned gas temperature measurements in a surrogate diesel jet via two-color toluene-LIF imaging,” Proc. Combust. Inst. 33, 783–790 (2011).
[CrossRef]

Koban, W.

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperatures,” Appl. Phys. B 80, 777–784 (2005).
[CrossRef]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6, 2940–2945 (2004).
[CrossRef]

Koch, J. D.

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperatures,” Appl. Phys. B 80, 777–784 (2005).
[CrossRef]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6, 2940–2945 (2004).
[CrossRef]

Koch, P.

P. Koch, M. Löffler, M. Wensing, and A. Leipertz, “Study of the mixture formation processes inside a modern direct-injection gasoline engine,” Int. J. Engine Res. 11, 455–471 (2010).
[CrossRef]

Krenzer, L.

R. Fuchs, L. Krenzer, and J. Gaube, “Excess properties of binary mixtures composed of a polar component and an alkane,” Ber. Bunsenges. Phys. Chem. 88, 642–649 (1984).
[CrossRef]

Lachaux, T.

M. P. B. Musculus, T. Lachaux, L. M. Pickett, and A. Idicheria, “End-of-injection over-mixing and unburned hydrocarbon emissions in low-temperature-combustion diesel engines,” SAE Technical Papers Series (2007).

Le Coz, J.-F.

J.-F. Le Coz and T. Baritaud, “Application of laser induced fluorescence for measuring the thickness of evaporating gasoline liquid films,” Developments in Laser Techniques and Applications to Fluid Mechanics (Springer-Verlag, Berlin, 1996), pp. 115–131.

Leininger, J.-P.

J.-P. Leininger, F. Lorant, C. Minot, and F. Behar, “Mechanisms of 1-methylnaphthalene pyrolysis in a batch reactor,” Energy Fuels 20, 2518–2530 (2006).
[CrossRef]

Leipertz, A.

J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst. 34, 3645–3652 (2013).
[CrossRef]

P. Koch, M. Löffler, M. Wensing, and A. Leipertz, “Study of the mixture formation processes inside a modern direct-injection gasoline engine,” Int. J. Engine Res. 11, 455–471 (2010).
[CrossRef]

M. Löffler, F. Beyrau, and A. Leipertz, “Acetone laser-induced fluorescence behavior for the simultaneous quantification of temperature and residual gas distribution in fired spark-ignition engines,” Appl. Opt. 49, 37–49 (2010).
[CrossRef]

A. P. Fröba, F. Rabenstein, K.-U. Münch, and A. Leipertz, “Mixture of triethylamine TEA and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines,” Combust. Flame 112, 199–209 (1998).
[CrossRef]

Lockett, R. D.

M. Berckmüller, N. P. Tait, R. D. Lockett, D. A. Greenhalgh, K. Ishii, Y. Urata, H. Umiyama, and K. Yoshida, “In-cylinder crank angle resolved imaging of fuel concentration in a firing spark-ignition-engine using planar laser-induced flouresence,” Proc. Combust. Inst. 25, 151–156 (1994).

Löffler, M.

P. Koch, M. Löffler, M. Wensing, and A. Leipertz, “Study of the mixture formation processes inside a modern direct-injection gasoline engine,” Int. J. Engine Res. 11, 455–471 (2010).
[CrossRef]

M. Löffler, F. Beyrau, and A. Leipertz, “Acetone laser-induced fluorescence behavior for the simultaneous quantification of temperature and residual gas distribution in fired spark-ignition engines,” Appl. Opt. 49, 37–49 (2010).
[CrossRef]

Long, M. B.

S. A. Kaiser and M. B. Long, “Quantitative planar laser-induced fluorescence of naphthalenes as fuel tracers,” Proc. Combust. Inst. 30, 1555–1563 (2005).
[CrossRef]

Lorant, F.

J.-P. Leininger, F. Lorant, C. Minot, and F. Behar, “Mechanisms of 1-methylnaphthalene pyrolysis in a batch reactor,” Energy Fuels 20, 2518–2530 (2006).
[CrossRef]

Luijten, C. C. M.

R. P. C. Zegers, M. Yu, C. Bekdemir, N. J. Dam, C. C. M. Luijten, and L. P. H. De Goey, “Temperature measurements of the gas-phase during surrogate diesel injection using two-color toluene LIF,” Appl. Phys. B 112, 7–23 (2013).
[CrossRef]

Luong, M.

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91, 669–675 (2008).
[CrossRef]

Lynch, T. R.

T. R. Lynch, Process Chemistry of Lubricant Base Stocks (CRC Press, 2008).

Ma, H.

B. Williams, P. Ewart, X. Wang, R. Stone, H. Ma, H. Walmsley, R. Cracknell, R. Stevens, D. Richardson, H. Fu, and S. Wallace, “Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: effects of residual exhaust gas on quantitative PLIF,” Combust. Flame 157, 1866–1878 (2010).
[CrossRef]

Miles, P. C.

B. Petersen, P. C. Miles, and D. Sahoo, “Equivalence ratio distributions in a light-duty diesel engine operating under partially premixed conditions,” SAE Int. J. Engines 5, 526–537 (2012).
[CrossRef]

Minot, C.

J.-P. Leininger, F. Lorant, C. Minot, and F. Behar, “Mechanisms of 1-methylnaphthalene pyrolysis in a batch reactor,” Energy Fuels 20, 2518–2530 (2006).
[CrossRef]

Münch, K.-U.

A. P. Fröba, F. Rabenstein, K.-U. Münch, and A. Leipertz, “Mixture of triethylamine TEA and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines,” Combust. Flame 112, 199–209 (1998).
[CrossRef]

Musculus, M. P. B.

M. P. B. Musculus, T. Lachaux, L. M. Pickett, and A. Idicheria, “End-of-injection over-mixing and unburned hydrocarbon emissions in low-temperature-combustion diesel engines,” SAE Technical Papers Series (2007).

Nagata, I.

S. Shen and I. Nagata, “Prediction of excess enthalpies of ketone-alkane systems from infinite dilution activity coefficients,” Thermochim. Acta 258, 19–31 (1995).
[CrossRef]

Orain, M.

M. Orain, P. Baranger, B. Rossow, and F. Grisch, “Fluorescence spectroscopy of naphtalene at high temperatures and pressures: implications for fuel-concentration measurements,” Appl. Phys. B 102, 163–172 (2011).
[CrossRef]

Petersen, B.

B. Petersen, P. C. Miles, and D. Sahoo, “Equivalence ratio distributions in a light-duty diesel engine operating under partially premixed conditions,” SAE Int. J. Engines 5, 526–537 (2012).
[CrossRef]

Pickett, L. M.

M. P. B. Musculus, T. Lachaux, L. M. Pickett, and A. Idicheria, “End-of-injection over-mixing and unburned hydrocarbon emissions in low-temperature-combustion diesel engines,” SAE Technical Papers Series (2007).

Rabenstein, F.

A. P. Fröba, F. Rabenstein, K.-U. Münch, and A. Leipertz, “Mixture of triethylamine TEA and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines,” Combust. Flame 112, 199–209 (1998).
[CrossRef]

Richardson, D.

B. Williams, P. Ewart, X. Wang, R. Stone, H. Ma, H. Walmsley, R. Cracknell, R. Stevens, D. Richardson, H. Fu, and S. Wallace, “Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: effects of residual exhaust gas on quantitative PLIF,” Combust. Flame 157, 1866–1878 (2010).
[CrossRef]

Rossow, B.

M. Orain, P. Baranger, B. Rossow, and F. Grisch, “Fluorescence spectroscopy of naphtalene at high temperatures and pressures: implications for fuel-concentration measurements,” Appl. Phys. B 102, 163–172 (2011).
[CrossRef]

Rothamer, D. A.

D. A. Rothamer, J. A. Snyder, R. K. Hanson, and R. R. Steeper, “Optimization of a tracer-based PLIF diagnostic for simultaneous imaging of EGR and temperature in IC engines,” Appl. Phys. B 99, 371–384 (2010).
[CrossRef]

Sahoo, D.

B. Petersen, P. C. Miles, and D. Sahoo, “Equivalence ratio distributions in a light-duty diesel engine operating under partially premixed conditions,” SAE Int. J. Engines 5, 526–537 (2012).
[CrossRef]

Schulz, C.

S. Faust, G. Tea, T. Dreier, and C. Schulz, “Temperature, pressure, and bath gas composition dependence of fluorescence spectra and fluorescence lifetimes of toluene and naphthalene,” Appl. Phys. B 110, 81–93 (2013).
[CrossRef]

G. Tea, G. Bruneaux, J. T. Kashdan, and C. Schulz, “Unburned gas temperature measurements in a surrogate diesel jet via two-color toluene-LIF imaging,” Proc. Combust. Inst. 33, 783–790 (2011).
[CrossRef]

R. Devillers, G. Bruneaux, and C. Schulz, “Investigation of toluene LIF at high pressure and high temperature in an optical engine,” Appl. Phys. B 96, 735–739 (2009).
[CrossRef]

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91, 669–675 (2008).
[CrossRef]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperatures,” Appl. Phys. B 80, 777–784 (2005).
[CrossRef]

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
[CrossRef]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6, 2940–2945 (2004).
[CrossRef]

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[CrossRef]

Shen, S.

S. Shen and I. Nagata, “Prediction of excess enthalpies of ketone-alkane systems from infinite dilution activity coefficients,” Thermochim. Acta 258, 19–31 (1995).
[CrossRef]

Sick, V.

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91, 669–675 (2008).
[CrossRef]

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
[CrossRef]

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[CrossRef]

Snyder, J. A.

D. A. Rothamer, J. A. Snyder, R. K. Hanson, and R. R. Steeper, “Optimization of a tracer-based PLIF diagnostic for simultaneous imaging of EGR and temperature in IC engines,” Appl. Phys. B 99, 371–384 (2010).
[CrossRef]

Steeper, R.

M. Davy, P. Williams, D. Han, and R. Steeper, “Evaporation characteristics of the 3-pentanone–isooctane binary system,” Exp. Fluids 35, 92–99 (2003).

B. Han and R. Steeper, “Examination of iso-octane/ketone mixtures for quantitative LIF measurements in a DISI engine,” SAE Technical Papers Series (2002).

Steeper, R. R.

D. A. Rothamer, J. A. Snyder, R. K. Hanson, and R. R. Steeper, “Optimization of a tracer-based PLIF diagnostic for simultaneous imaging of EGR and temperature in IC engines,” Appl. Phys. B 99, 371–384 (2010).
[CrossRef]

Stevens, R.

B. Williams, P. Ewart, X. Wang, R. Stone, H. Ma, H. Walmsley, R. Cracknell, R. Stevens, D. Richardson, H. Fu, and S. Wallace, “Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: effects of residual exhaust gas on quantitative PLIF,” Combust. Flame 157, 1866–1878 (2010).
[CrossRef]

Stone, R.

B. Williams, P. Ewart, X. Wang, R. Stone, H. Ma, H. Walmsley, R. Cracknell, R. Stevens, D. Richardson, H. Fu, and S. Wallace, “Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: effects of residual exhaust gas on quantitative PLIF,” Combust. Flame 157, 1866–1878 (2010).
[CrossRef]

Tait, N. P.

M. Berckmüller, N. P. Tait, R. D. Lockett, D. A. Greenhalgh, K. Ishii, Y. Urata, H. Umiyama, and K. Yoshida, “In-cylinder crank angle resolved imaging of fuel concentration in a firing spark-ignition-engine using planar laser-induced flouresence,” Proc. Combust. Inst. 25, 151–156 (1994).

Tea, G.

S. Faust, G. Tea, T. Dreier, and C. Schulz, “Temperature, pressure, and bath gas composition dependence of fluorescence spectra and fluorescence lifetimes of toluene and naphthalene,” Appl. Phys. B 110, 81–93 (2013).
[CrossRef]

G. Tea, G. Bruneaux, J. T. Kashdan, and C. Schulz, “Unburned gas temperature measurements in a surrogate diesel jet via two-color toluene-LIF imaging,” Proc. Combust. Inst. 33, 783–790 (2011).
[CrossRef]

Trost, J.

J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst. 34, 3645–3652 (2013).
[CrossRef]

Umiyama, H.

M. Berckmüller, N. P. Tait, R. D. Lockett, D. A. Greenhalgh, K. Ishii, Y. Urata, H. Umiyama, and K. Yoshida, “In-cylinder crank angle resolved imaging of fuel concentration in a firing spark-ignition-engine using planar laser-induced flouresence,” Proc. Combust. Inst. 25, 151–156 (1994).

Urata, Y.

M. Berckmüller, N. P. Tait, R. D. Lockett, D. A. Greenhalgh, K. Ishii, Y. Urata, H. Umiyama, and K. Yoshida, “In-cylinder crank angle resolved imaging of fuel concentration in a firing spark-ignition-engine using planar laser-induced flouresence,” Proc. Combust. Inst. 25, 151–156 (1994).

Wallace, S.

B. Williams, P. Ewart, X. Wang, R. Stone, H. Ma, H. Walmsley, R. Cracknell, R. Stevens, D. Richardson, H. Fu, and S. Wallace, “Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: effects of residual exhaust gas on quantitative PLIF,” Combust. Flame 157, 1866–1878 (2010).
[CrossRef]

Walmsley, H.

B. Williams, P. Ewart, X. Wang, R. Stone, H. Ma, H. Walmsley, R. Cracknell, R. Stevens, D. Richardson, H. Fu, and S. Wallace, “Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: effects of residual exhaust gas on quantitative PLIF,” Combust. Flame 157, 1866–1878 (2010).
[CrossRef]

Wang, X.

B. Williams, P. Ewart, X. Wang, R. Stone, H. Ma, H. Walmsley, R. Cracknell, R. Stevens, D. Richardson, H. Fu, and S. Wallace, “Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: effects of residual exhaust gas on quantitative PLIF,” Combust. Flame 157, 1866–1878 (2010).
[CrossRef]

Weast, R. C.

R. C. Weast, CRC Handbook of Chemistry and Physics, 70th ed. (CRC Press, 1989).

Wensing, M.

P. Koch, M. Löffler, M. Wensing, and A. Leipertz, “Study of the mixture formation processes inside a modern direct-injection gasoline engine,” Int. J. Engine Res. 11, 455–471 (2010).
[CrossRef]

Williams, B.

B. Williams, P. Ewart, X. Wang, R. Stone, H. Ma, H. Walmsley, R. Cracknell, R. Stevens, D. Richardson, H. Fu, and S. Wallace, “Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: effects of residual exhaust gas on quantitative PLIF,” Combust. Flame 157, 1866–1878 (2010).
[CrossRef]

Williams, P.

M. Davy, P. Williams, D. Han, and R. Steeper, “Evaporation characteristics of the 3-pentanone–isooctane binary system,” Exp. Fluids 35, 92–99 (2003).

Yoshida, K.

M. Berckmüller, N. P. Tait, R. D. Lockett, D. A. Greenhalgh, K. Ishii, Y. Urata, H. Umiyama, and K. Yoshida, “In-cylinder crank angle resolved imaging of fuel concentration in a firing spark-ignition-engine using planar laser-induced flouresence,” Proc. Combust. Inst. 25, 151–156 (1994).

Yu, M.

R. P. C. Zegers, M. Yu, C. Bekdemir, N. J. Dam, C. C. M. Luijten, and L. P. H. De Goey, “Temperature measurements of the gas-phase during surrogate diesel injection using two-color toluene LIF,” Appl. Phys. B 112, 7–23 (2013).
[CrossRef]

Zegers, R. P. C.

R. P. C. Zegers, M. Yu, C. Bekdemir, N. J. Dam, C. C. M. Luijten, and L. P. H. De Goey, “Temperature measurements of the gas-phase during surrogate diesel injection using two-color toluene LIF,” Appl. Phys. B 112, 7–23 (2013).
[CrossRef]

Zhang, R.

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91, 669–675 (2008).
[CrossRef]

Zigan, L.

J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst. 34, 3645–3652 (2013).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (8)

M. Orain, P. Baranger, B. Rossow, and F. Grisch, “Fluorescence spectroscopy of naphtalene at high temperatures and pressures: implications for fuel-concentration measurements,” Appl. Phys. B 102, 163–172 (2011).
[CrossRef]

S. Faust, G. Tea, T. Dreier, and C. Schulz, “Temperature, pressure, and bath gas composition dependence of fluorescence spectra and fluorescence lifetimes of toluene and naphthalene,” Appl. Phys. B 110, 81–93 (2013).
[CrossRef]

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[CrossRef]

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91, 669–675 (2008).
[CrossRef]

R. Devillers, G. Bruneaux, and C. Schulz, “Investigation of toluene LIF at high pressure and high temperature in an optical engine,” Appl. Phys. B 96, 735–739 (2009).
[CrossRef]

D. A. Rothamer, J. A. Snyder, R. K. Hanson, and R. R. Steeper, “Optimization of a tracer-based PLIF diagnostic for simultaneous imaging of EGR and temperature in IC engines,” Appl. Phys. B 99, 371–384 (2010).
[CrossRef]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperatures,” Appl. Phys. B 80, 777–784 (2005).
[CrossRef]

R. P. C. Zegers, M. Yu, C. Bekdemir, N. J. Dam, C. C. M. Luijten, and L. P. H. De Goey, “Temperature measurements of the gas-phase during surrogate diesel injection using two-color toluene LIF,” Appl. Phys. B 112, 7–23 (2013).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (1)

R. Fuchs, L. Krenzer, and J. Gaube, “Excess properties of binary mixtures composed of a polar component and an alkane,” Ber. Bunsenges. Phys. Chem. 88, 642–649 (1984).
[CrossRef]

Combust. Flame (2)

B. Williams, P. Ewart, X. Wang, R. Stone, H. Ma, H. Walmsley, R. Cracknell, R. Stevens, D. Richardson, H. Fu, and S. Wallace, “Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: effects of residual exhaust gas on quantitative PLIF,” Combust. Flame 157, 1866–1878 (2010).
[CrossRef]

A. P. Fröba, F. Rabenstein, K.-U. Münch, and A. Leipertz, “Mixture of triethylamine TEA and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines,” Combust. Flame 112, 199–209 (1998).
[CrossRef]

Energy Fuels (1)

J.-P. Leininger, F. Lorant, C. Minot, and F. Behar, “Mechanisms of 1-methylnaphthalene pyrolysis in a batch reactor,” Energy Fuels 20, 2518–2530 (2006).
[CrossRef]

Exp. Fluids (1)

M. Davy, P. Williams, D. Han, and R. Steeper, “Evaporation characteristics of the 3-pentanone–isooctane binary system,” Exp. Fluids 35, 92–99 (2003).

Int. J. Engine Res. (1)

P. Koch, M. Löffler, M. Wensing, and A. Leipertz, “Study of the mixture formation processes inside a modern direct-injection gasoline engine,” Int. J. Engine Res. 11, 455–471 (2010).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6, 2940–2945 (2004).
[CrossRef]

Proc. Combust. Inst. (4)

M. Berckmüller, N. P. Tait, R. D. Lockett, D. A. Greenhalgh, K. Ishii, Y. Urata, H. Umiyama, and K. Yoshida, “In-cylinder crank angle resolved imaging of fuel concentration in a firing spark-ignition-engine using planar laser-induced flouresence,” Proc. Combust. Inst. 25, 151–156 (1994).

J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst. 34, 3645–3652 (2013).
[CrossRef]

S. A. Kaiser and M. B. Long, “Quantitative planar laser-induced fluorescence of naphthalenes as fuel tracers,” Proc. Combust. Inst. 30, 1555–1563 (2005).
[CrossRef]

G. Tea, G. Bruneaux, J. T. Kashdan, and C. Schulz, “Unburned gas temperature measurements in a surrogate diesel jet via two-color toluene-LIF imaging,” Proc. Combust. Inst. 33, 783–790 (2011).
[CrossRef]

Prog. Energy Combust. Sci. (1)

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
[CrossRef]

SAE Int. J. Engines (1)

B. Petersen, P. C. Miles, and D. Sahoo, “Equivalence ratio distributions in a light-duty diesel engine operating under partially premixed conditions,” SAE Int. J. Engines 5, 526–537 (2012).
[CrossRef]

Thermochim. Acta (1)

S. Shen and I. Nagata, “Prediction of excess enthalpies of ketone-alkane systems from infinite dilution activity coefficients,” Thermochim. Acta 258, 19–31 (1995).
[CrossRef]

Other (7)

J.-F. Le Coz and T. Baritaud, “Application of laser induced fluorescence for measuring the thickness of evaporating gasoline liquid films,” Developments in Laser Techniques and Applications to Fluid Mechanics (Springer-Verlag, Berlin, 1996), pp. 115–131.

B. Han and R. Steeper, “Examination of iso-octane/ketone mixtures for quantitative LIF measurements in a DISI engine,” SAE Technical Papers Series (2002).

Fluidat on the net V 1.39/6.18—massflow, and physical property calculator, online available at: www.fluidat.com (2013).

T. E. Daubert and R. P. Danner, Physical and Thermodynamic Properties of Pure Chemicals: Data Compilation (Taylor & Francis, 1989).

R. C. Weast, CRC Handbook of Chemistry and Physics, 70th ed. (CRC Press, 1989).

T. R. Lynch, Process Chemistry of Lubricant Base Stocks (CRC Press, 2008).

M. P. B. Musculus, T. Lachaux, L. M. Pickett, and A. Idicheria, “End-of-injection over-mixing and unburned hydrocarbon emissions in low-temperature-combustion diesel engines,” SAE Technical Papers Series (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Sketch of the high temperature calibration cell HTC2 with two stage heater, mixing section, exhaust gas cooler and thermocouples (designed and constructed by ESYTEC GmbH, Erlangen).

Fig. 2.
Fig. 2.

Optical setup of the fluorescence spectrum measurement.

Fig. 3.
Fig. 3.

Averaged fluorescence image of PO at 473 K and 0.5 MPa including ROI for value calculation.

Fig. 4.
Fig. 4.

Fluorescence signal intensity of 1MN and 2MN with 266 nm excitation at different temperatures and pressures in the flow cell; measured data are normalized to 1MN at 473 K and 0.5 MPa, literature data [27] are normalized to 490 K and 0.1 MPa.

Fig. 5.
Fig. 5.

Fluorescence signal intensity of PO and PD with 266 nm excitation at different temperatures and pressures in the flow cell; normalized to 1MN at 473 K and 0.5 MPa.

Fig. 6.
Fig. 6.

Fluorescence spectrum of 1MN at different temperatures and pressures; measured data are normalized to their maximum value, literature data [27] are normalized to its value at 333.5 nm.

Fig. 7.
Fig. 7.

Ratio of the normalized fluorescence signal intensity of 1MN for different filter combinations over temperature; each filter combination is normalized to its value at 473 K.

Tables (2)

Tables Icon

Table 1. Summary of Physical Properties of Different PRFs and Tracers. Data taken froma,b,c,d,e,f

Tables Icon

Table 2. Ratio of the Normalized Fluorescence Intensity of 1MN for Different Filter Combinations

Metrics