Abstract

Motivated by the increasing importance of adaptive optics (AO) systems for improving the real resolution of large ground telescopes, and by the need of testing the AO system performance in realistic working conditions, in this paper we address the problem of simulating the turbulence effect on ground telescope observations at high resolution. The procedure presented here generalizes the multiscale stochastic approach introduced in our earlier paper [Appl. Opt. 50, 4124 (2011)], with respect to the previous solution, a relevant computational time reduction is obtained by exploiting a local spatial principal component analysis (PCA) representation of the turbulence. Furthermore, the turbulence at low resolution is modeled as a moving average (MA) process, while previously [Appl. Opt. 50, 4124 (2011)] the wind velocity was restricted to be directed along one of the two spatial axes, the use of such MA model allows the turbulence to evolve indifferently in all the directions. In our simulations, the proposed procedure reproduces the theoretical statistical characteristics of the turbulent phase with good accuracy.

© 2013 Optical Society of America

Full Article  |  PDF Article
Related Articles
Fast simulation of a kolmogorov phase screen

Cressida M. Harding, Rachel A. Johnston, and Richard G. Lane
Appl. Opt. 38(11) 2161-2170 (1999)

Method for simulating atmospheric turbulence phase effects for multiple time slices and anisoplanatic conditions

Michael C. Roggemann, Byron M. Welsh, Dennis Montera, and Troy A. Rhoadarmer
Appl. Opt. 34(20) 4037-4051 (1995)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (41)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription