Abstract

A two-color absorption spectroscopy strategy has been developed for measuring the column density and density-weighted path-average temperature of the absorbing species in nonuniform gases. This strategy uses two transitions with strengths that scale nearly linearly with temperature. In addition, measured lineshapes are used to accurately model absorbance spectra. As a result, the column density and density-weighted path-average temperature of the absorbing species can be inferred from a comparison of signals measured across a nonuniform line of sight (LOS) with simulated signals calculated using a uniform LOS. This strategy is demonstrated with simulations of water-vapor absorption across a nonuniform LOS with temperature and composition gradients comparable to those in hydrogen–air diffusion flames. In this demonstration, both the column density and density-weighted path-average temperature of water vapor are recovered to within 0.5%.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Hanson, “Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems,” Proc. Combust. Inst. 33, 1–40 (2011).
    [CrossRef]
  2. S. T. Sanders, D. W. Mattison, J. B. Jeffries, and R. K. Hanson, “Time-of-flight diode-laser velocimeter using a locally seeded atomic absorber: application in a pulse detonation engine,” Shock Waves 12, 435–441 (2003).
    [CrossRef]
  3. D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: sensor development and initial demonstration,” Proc. Combust. Inst. 31, 791–798 (2007).
    [CrossRef]
  4. A. Farooq, J. B. Jeffries, and R. K. Hanson, “In situ combustion measurements of H2O and temperature near 2.5  μm using tunable diode laser absorption,” Meas. Sci. Technol. 19, 075604 (2008).
    [CrossRef]
  5. G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems,” Appl. Phys. B 80, 617–625 (2005).
    [CrossRef]
  6. M. Schoenung and R. K. Hanson, “CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1980).
    [CrossRef]
  7. I. A. Schultz, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “TDL absorption sensor for in situ determination of combustion progress in scramjet ground testing,” in 28th Aerodynamic Measurement Technology, Ground Testing, and Flight Testing Conference (American Institute of Aeronautics and Astronautics, 2012), paper AIAA 2012-2654.
  8. L. S. Chang, C. L. Strand, J. B. Jeffries, R. K. Hanson, G. S. Diskin, R. L. Gaffney, and D. P. Capriotti, “Supersonic mass flux measurements via tunable diode laser absorption and non-uniform flow modeling,” in 49th AIAA Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, 2011), paper AIAA 2011-1093.
  9. F. Li, X. Yu, W. Cai, and L. Ma, “Uncertainty in velocity measurement based on diode-laser absorption in nonuniform flows,” Appl. Opt. 51, 4788–4797 (2012).
    [CrossRef]
  10. J. M. Seitzman and B. T. Scully, “Broadband infrared absorption sensor for high-pressure combustor control,” J. Propul. Power 16, 994–1001 (2000).
    [CrossRef]
  11. J. T. C. Liu, G. B. Rieker, J. B. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701–6711 (2005).
    [CrossRef]
  12. J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3  μm diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
    [CrossRef]
  13. X. Ouyang and P. L. Varghese, “Line-of-sight absorption measurements of high temperature gases with thermal and concentration boundary layers,” Appl. Opt. 28, 3979–3984 (1989).
    [CrossRef]
  14. E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, and R. K. Hanson, “Diode-laser sensors for real-time control of pulsed combustion systems,” AIAA J. 37, 732–737 (1999).
    [CrossRef]
  15. T. I. Palaghita and J. M. Seitzman, “Control of temperature nonuniformity based on line-of-sight absorption,” in 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference 883 (American Institute of Aeronautics and Astronautics, 2004), paper AIAA 2004-4163.
  16. S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, “Diode-laser absorption sensor for line-of-sight temperature distributions,” Appl. Opt. 40, 4404–4415 (2001).
    [CrossRef]
  17. X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurement of non-uniform temperature distributions using line-of-sight absorption spectroscopy,” AIAA J. 45, 411–419 (2007).
    [CrossRef]
  18. M. R. Gruber, C. D. Carter, M. Ryan, G. B. Rieker, J. B. Jeffries, R. K. Hanson, J. T. C. Liu, and T. Mathur, “Laser-based measurements of OH, temperature, and water vapor concentration in a hydrocarbon-fueled scramjet,” in 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (American Institute of Aeronautics and Astronautics, 2008), paper AIAA 2008-5070.
  19. H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Diode laser measurements of temperature-dependent collisional-narrowing and broadening parameters of Ar-perturbed H2O transitions at 1391.7 and 1397.8  nm,” J. Quant. Spectrosc. Radiat. Transfer 109, 132–143 (2008).
    [CrossRef]
  20. D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
    [CrossRef]
  21. P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803–5815 (1999).
    [CrossRef]
  22. G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48, 5546–5560 (2009).
    [CrossRef]
  23. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
    [CrossRef]
  24. D. T. Cassidy and J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185–1190 (1982).
    [CrossRef]
  25. H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052–1061 (2006).
    [CrossRef]
  26. X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B 81, 711–722 (2005).
    [CrossRef]
  27. K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B 110, 497–508 (2013).
    [CrossRef]
  28. C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, and R. K. Hanson, “Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes,” Appl. Opt. (to be published).
  29. L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
    [CrossRef]
  30. X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurements of spectral parameters of water-vapour transitions near 1388 and 1345  nm for accurate simulation of high-pressure absorption spectra,” Meas. Sci. Technol. 18, 1185–1194 (2007).
    [CrossRef]

2013

K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B 110, 497–508 (2013).
[CrossRef]

2012

2011

R. K. Hanson, “Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems,” Proc. Combust. Inst. 33, 1–40 (2011).
[CrossRef]

2010

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

2009

2008

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Diode laser measurements of temperature-dependent collisional-narrowing and broadening parameters of Ar-perturbed H2O transitions at 1391.7 and 1397.8  nm,” J. Quant. Spectrosc. Radiat. Transfer 109, 132–143 (2008).
[CrossRef]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “In situ combustion measurements of H2O and temperature near 2.5  μm using tunable diode laser absorption,” Meas. Sci. Technol. 19, 075604 (2008).
[CrossRef]

2007

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: sensor development and initial demonstration,” Proc. Combust. Inst. 31, 791–798 (2007).
[CrossRef]

X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurement of non-uniform temperature distributions using line-of-sight absorption spectroscopy,” AIAA J. 45, 411–419 (2007).
[CrossRef]

X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurements of spectral parameters of water-vapour transitions near 1388 and 1345  nm for accurate simulation of high-pressure absorption spectra,” Meas. Sci. Technol. 18, 1185–1194 (2007).
[CrossRef]

2006

2005

X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B 81, 711–722 (2005).
[CrossRef]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems,” Appl. Phys. B 80, 617–625 (2005).
[CrossRef]

J. T. C. Liu, G. B. Rieker, J. B. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701–6711 (2005).
[CrossRef]

2003

S. T. Sanders, D. W. Mattison, J. B. Jeffries, and R. K. Hanson, “Time-of-flight diode-laser velocimeter using a locally seeded atomic absorber: application in a pulse detonation engine,” Shock Waves 12, 435–441 (2003).
[CrossRef]

2001

2000

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3  μm diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

J. M. Seitzman and B. T. Scully, “Broadband infrared absorption sensor for high-pressure combustor control,” J. Propul. Power 16, 994–1001 (2000).
[CrossRef]

1999

E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, and R. K. Hanson, “Diode-laser sensors for real-time control of pulsed combustion systems,” AIAA J. 37, 732–737 (1999).
[CrossRef]

P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803–5815 (1999).
[CrossRef]

1992

1989

1982

1980

M. Schoenung and R. K. Hanson, “CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1980).
[CrossRef]

Axner, O.

Baer, D. S.

E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, and R. K. Hanson, “Diode-laser sensors for real-time control of pulsed combustion systems,” AIAA J. 37, 732–737 (1999).
[CrossRef]

Barber, R. J.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Bomse, D. S.

Cai, W.

Capriotti, D. P.

L. S. Chang, C. L. Strand, J. B. Jeffries, R. K. Hanson, G. S. Diskin, R. L. Gaffney, and D. P. Capriotti, “Supersonic mass flux measurements via tunable diode laser absorption and non-uniform flow modeling,” in 49th AIAA Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, 2011), paper AIAA 2011-1093.

Carter, C. D.

J. T. C. Liu, G. B. Rieker, J. B. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701–6711 (2005).
[CrossRef]

M. R. Gruber, C. D. Carter, M. Ryan, G. B. Rieker, J. B. Jeffries, R. K. Hanson, J. T. C. Liu, and T. Mathur, “Laser-based measurements of OH, temperature, and water vapor concentration in a hydrocarbon-fueled scramjet,” in 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (American Institute of Aeronautics and Astronautics, 2008), paper AIAA 2008-5070.

Cassidy, D. T.

Chang, L. S.

L. S. Chang, C. L. Strand, J. B. Jeffries, R. K. Hanson, G. S. Diskin, R. L. Gaffney, and D. P. Capriotti, “Supersonic mass flux measurements via tunable diode laser absorption and non-uniform flow modeling,” in 49th AIAA Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, 2011), paper AIAA 2011-1093.

Chao, X.

K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B 110, 497–508 (2013).
[CrossRef]

Connolly, J. C.

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3  μm diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

De Zilwa, S.

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: sensor development and initial demonstration,” Proc. Combust. Inst. 31, 791–798 (2007).
[CrossRef]

Dec, J. E.

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: sensor development and initial demonstration,” Proc. Combust. Inst. 31, 791–798 (2007).
[CrossRef]

Diskin, G. S.

L. S. Chang, C. L. Strand, J. B. Jeffries, R. K. Hanson, G. S. Diskin, R. L. Gaffney, and D. P. Capriotti, “Supersonic mass flux measurements via tunable diode laser absorption and non-uniform flow modeling,” in 49th AIAA Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, 2011), paper AIAA 2011-1093.

Dothe, H.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Farooq, A.

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Diode laser measurements of temperature-dependent collisional-narrowing and broadening parameters of Ar-perturbed H2O transitions at 1391.7 and 1397.8  nm,” J. Quant. Spectrosc. Radiat. Transfer 109, 132–143 (2008).
[CrossRef]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “In situ combustion measurements of H2O and temperature near 2.5  μm using tunable diode laser absorption,” Meas. Sci. Technol. 19, 075604 (2008).
[CrossRef]

Furlong, E. R.

E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, and R. K. Hanson, “Diode-laser sensors for real-time control of pulsed combustion systems,” AIAA J. 37, 732–737 (1999).
[CrossRef]

Gaffney, R. L.

L. S. Chang, C. L. Strand, J. B. Jeffries, R. K. Hanson, G. S. Diskin, R. L. Gaffney, and D. P. Capriotti, “Supersonic mass flux measurements via tunable diode laser absorption and non-uniform flow modeling,” in 49th AIAA Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, 2011), paper AIAA 2011-1093.

Gamache, R. R.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Garbuzov, D. Z.

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3  μm diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

Goldenstein, C. S.

I. A. Schultz, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “TDL absorption sensor for in situ determination of combustion progress in scramjet ground testing,” in 28th Aerodynamic Measurement Technology, Ground Testing, and Flight Testing Conference (American Institute of Aeronautics and Astronautics, 2012), paper AIAA 2012-2654.

C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, and R. K. Hanson, “Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes,” Appl. Opt. (to be published).

Goldman, A.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Gordon, I. E.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Gruber, M. R.

J. T. C. Liu, G. B. Rieker, J. B. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701–6711 (2005).
[CrossRef]

M. R. Gruber, C. D. Carter, M. Ryan, G. B. Rieker, J. B. Jeffries, R. K. Hanson, J. T. C. Liu, and T. Mathur, “Laser-based measurements of OH, temperature, and water vapor concentration in a hydrocarbon-fueled scramjet,” in 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (American Institute of Aeronautics and Astronautics, 2008), paper AIAA 2008-5070.

Hanson, R. K.

K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B 110, 497–508 (2013).
[CrossRef]

R. K. Hanson, “Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems,” Proc. Combust. Inst. 33, 1–40 (2011).
[CrossRef]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48, 5546–5560 (2009).
[CrossRef]

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Diode laser measurements of temperature-dependent collisional-narrowing and broadening parameters of Ar-perturbed H2O transitions at 1391.7 and 1397.8  nm,” J. Quant. Spectrosc. Radiat. Transfer 109, 132–143 (2008).
[CrossRef]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “In situ combustion measurements of H2O and temperature near 2.5  μm using tunable diode laser absorption,” Meas. Sci. Technol. 19, 075604 (2008).
[CrossRef]

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: sensor development and initial demonstration,” Proc. Combust. Inst. 31, 791–798 (2007).
[CrossRef]

X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurement of non-uniform temperature distributions using line-of-sight absorption spectroscopy,” AIAA J. 45, 411–419 (2007).
[CrossRef]

X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurements of spectral parameters of water-vapour transitions near 1388 and 1345  nm for accurate simulation of high-pressure absorption spectra,” Meas. Sci. Technol. 18, 1185–1194 (2007).
[CrossRef]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052–1061 (2006).
[CrossRef]

X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B 81, 711–722 (2005).
[CrossRef]

J. T. C. Liu, G. B. Rieker, J. B. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701–6711 (2005).
[CrossRef]

S. T. Sanders, D. W. Mattison, J. B. Jeffries, and R. K. Hanson, “Time-of-flight diode-laser velocimeter using a locally seeded atomic absorber: application in a pulse detonation engine,” Shock Waves 12, 435–441 (2003).
[CrossRef]

S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, “Diode-laser absorption sensor for line-of-sight temperature distributions,” Appl. Opt. 40, 4404–4415 (2001).
[CrossRef]

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3  μm diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, and R. K. Hanson, “Diode-laser sensors for real-time control of pulsed combustion systems,” AIAA J. 37, 732–737 (1999).
[CrossRef]

M. Schoenung and R. K. Hanson, “CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1980).
[CrossRef]

I. A. Schultz, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “TDL absorption sensor for in situ determination of combustion progress in scramjet ground testing,” in 28th Aerodynamic Measurement Technology, Ground Testing, and Flight Testing Conference (American Institute of Aeronautics and Astronautics, 2012), paper AIAA 2012-2654.

L. S. Chang, C. L. Strand, J. B. Jeffries, R. K. Hanson, G. S. Diskin, R. L. Gaffney, and D. P. Capriotti, “Supersonic mass flux measurements via tunable diode laser absorption and non-uniform flow modeling,” in 49th AIAA Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, 2011), paper AIAA 2011-1093.

M. R. Gruber, C. D. Carter, M. Ryan, G. B. Rieker, J. B. Jeffries, R. K. Hanson, J. T. C. Liu, and T. Mathur, “Laser-based measurements of OH, temperature, and water vapor concentration in a hydrocarbon-fueled scramjet,” in 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (American Institute of Aeronautics and Astronautics, 2008), paper AIAA 2008-5070.

C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, and R. K. Hanson, “Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes,” Appl. Opt. (to be published).

Hwang, W.

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: sensor development and initial demonstration,” Proc. Combust. Inst. 31, 791–798 (2007).
[CrossRef]

Jeffries, J. B.

K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B 110, 497–508 (2013).
[CrossRef]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48, 5546–5560 (2009).
[CrossRef]

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Diode laser measurements of temperature-dependent collisional-narrowing and broadening parameters of Ar-perturbed H2O transitions at 1391.7 and 1397.8  nm,” J. Quant. Spectrosc. Radiat. Transfer 109, 132–143 (2008).
[CrossRef]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “In situ combustion measurements of H2O and temperature near 2.5  μm using tunable diode laser absorption,” Meas. Sci. Technol. 19, 075604 (2008).
[CrossRef]

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: sensor development and initial demonstration,” Proc. Combust. Inst. 31, 791–798 (2007).
[CrossRef]

X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurement of non-uniform temperature distributions using line-of-sight absorption spectroscopy,” AIAA J. 45, 411–419 (2007).
[CrossRef]

X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurements of spectral parameters of water-vapour transitions near 1388 and 1345  nm for accurate simulation of high-pressure absorption spectra,” Meas. Sci. Technol. 18, 1185–1194 (2007).
[CrossRef]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052–1061 (2006).
[CrossRef]

X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B 81, 711–722 (2005).
[CrossRef]

J. T. C. Liu, G. B. Rieker, J. B. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701–6711 (2005).
[CrossRef]

S. T. Sanders, D. W. Mattison, J. B. Jeffries, and R. K. Hanson, “Time-of-flight diode-laser velocimeter using a locally seeded atomic absorber: application in a pulse detonation engine,” Shock Waves 12, 435–441 (2003).
[CrossRef]

S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, “Diode-laser absorption sensor for line-of-sight temperature distributions,” Appl. Opt. 40, 4404–4415 (2001).
[CrossRef]

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3  μm diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

L. S. Chang, C. L. Strand, J. B. Jeffries, R. K. Hanson, G. S. Diskin, R. L. Gaffney, and D. P. Capriotti, “Supersonic mass flux measurements via tunable diode laser absorption and non-uniform flow modeling,” in 49th AIAA Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, 2011), paper AIAA 2011-1093.

I. A. Schultz, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “TDL absorption sensor for in situ determination of combustion progress in scramjet ground testing,” in 28th Aerodynamic Measurement Technology, Ground Testing, and Flight Testing Conference (American Institute of Aeronautics and Astronautics, 2012), paper AIAA 2012-2654.

M. R. Gruber, C. D. Carter, M. Ryan, G. B. Rieker, J. B. Jeffries, R. K. Hanson, J. T. C. Liu, and T. Mathur, “Laser-based measurements of OH, temperature, and water vapor concentration in a hydrocarbon-fueled scramjet,” in 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (American Institute of Aeronautics and Astronautics, 2008), paper AIAA 2008-5070.

C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, and R. K. Hanson, “Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes,” Appl. Opt. (to be published).

Kluczynski, P.

Kosterev, A. A.

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems,” Appl. Phys. B 80, 617–625 (2005).
[CrossRef]

Li, F.

Li, H.

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Diode laser measurements of temperature-dependent collisional-narrowing and broadening parameters of Ar-perturbed H2O transitions at 1391.7 and 1397.8  nm,” J. Quant. Spectrosc. Radiat. Transfer 109, 132–143 (2008).
[CrossRef]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052–1061 (2006).
[CrossRef]

Liu, J. T. C.

J. T. C. Liu, G. B. Rieker, J. B. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701–6711 (2005).
[CrossRef]

M. R. Gruber, C. D. Carter, M. Ryan, G. B. Rieker, J. B. Jeffries, R. K. Hanson, J. T. C. Liu, and T. Mathur, “Laser-based measurements of OH, temperature, and water vapor concentration in a hydrocarbon-fueled scramjet,” in 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (American Institute of Aeronautics and Astronautics, 2008), paper AIAA 2008-5070.

Liu, X.

X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurements of spectral parameters of water-vapour transitions near 1388 and 1345  nm for accurate simulation of high-pressure absorption spectra,” Meas. Sci. Technol. 18, 1185–1194 (2007).
[CrossRef]

X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurement of non-uniform temperature distributions using line-of-sight absorption spectroscopy,” AIAA J. 45, 411–419 (2007).
[CrossRef]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052–1061 (2006).
[CrossRef]

Ma, L.

Maiorov, M.

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3  μm diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

Mathur, T.

J. T. C. Liu, G. B. Rieker, J. B. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701–6711 (2005).
[CrossRef]

M. R. Gruber, C. D. Carter, M. Ryan, G. B. Rieker, J. B. Jeffries, R. K. Hanson, J. T. C. Liu, and T. Mathur, “Laser-based measurements of OH, temperature, and water vapor concentration in a hydrocarbon-fueled scramjet,” in 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (American Institute of Aeronautics and Astronautics, 2008), paper AIAA 2008-5070.

Mattison, D. W.

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: sensor development and initial demonstration,” Proc. Combust. Inst. 31, 791–798 (2007).
[CrossRef]

S. T. Sanders, D. W. Mattison, J. B. Jeffries, and R. K. Hanson, “Time-of-flight diode-laser velocimeter using a locally seeded atomic absorber: application in a pulse detonation engine,” Shock Waves 12, 435–441 (2003).
[CrossRef]

Mihalcea, R. M.

E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, and R. K. Hanson, “Diode-laser sensors for real-time control of pulsed combustion systems,” AIAA J. 37, 732–737 (1999).
[CrossRef]

Ouyang, X.

Palaghita, T. I.

T. I. Palaghita and J. M. Seitzman, “Control of temperature nonuniformity based on line-of-sight absorption,” in 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference 883 (American Institute of Aeronautics and Astronautics, 2004), paper AIAA 2004-4163.

Perevalov, V. I.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Reid, J.

Rieker, G. B.

Rothman, L. S.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Ryan, M.

M. R. Gruber, C. D. Carter, M. Ryan, G. B. Rieker, J. B. Jeffries, R. K. Hanson, J. T. C. Liu, and T. Mathur, “Laser-based measurements of OH, temperature, and water vapor concentration in a hydrocarbon-fueled scramjet,” in 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (American Institute of Aeronautics and Astronautics, 2008), paper AIAA 2008-5070.

Sanders, S. T.

S. T. Sanders, D. W. Mattison, J. B. Jeffries, and R. K. Hanson, “Time-of-flight diode-laser velocimeter using a locally seeded atomic absorber: application in a pulse detonation engine,” Shock Waves 12, 435–441 (2003).
[CrossRef]

S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, “Diode-laser absorption sensor for line-of-sight temperature distributions,” Appl. Opt. 40, 4404–4415 (2001).
[CrossRef]

Schoenung, M.

M. Schoenung and R. K. Hanson, “CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1980).
[CrossRef]

Schultz, I. A.

I. A. Schultz, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “TDL absorption sensor for in situ determination of combustion progress in scramjet ground testing,” in 28th Aerodynamic Measurement Technology, Ground Testing, and Flight Testing Conference (American Institute of Aeronautics and Astronautics, 2012), paper AIAA 2012-2654.

C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, and R. K. Hanson, “Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes,” Appl. Opt. (to be published).

Scully, B. T.

J. M. Seitzman and B. T. Scully, “Broadband infrared absorption sensor for high-pressure combustor control,” J. Propul. Power 16, 994–1001 (2000).
[CrossRef]

Seitzman, J. M.

J. M. Seitzman and B. T. Scully, “Broadband infrared absorption sensor for high-pressure combustor control,” J. Propul. Power 16, 994–1001 (2000).
[CrossRef]

T. I. Palaghita and J. M. Seitzman, “Control of temperature nonuniformity based on line-of-sight absorption,” in 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference 883 (American Institute of Aeronautics and Astronautics, 2004), paper AIAA 2004-4163.

Silver, J. A.

Sjoberg, M.

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: sensor development and initial demonstration,” Proc. Combust. Inst. 31, 791–798 (2007).
[CrossRef]

Stanton, A. C.

Steeper, R. R.

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: sensor development and initial demonstration,” Proc. Combust. Inst. 31, 791–798 (2007).
[CrossRef]

Strand, C. L.

L. S. Chang, C. L. Strand, J. B. Jeffries, R. K. Hanson, G. S. Diskin, R. L. Gaffney, and D. P. Capriotti, “Supersonic mass flux measurements via tunable diode laser absorption and non-uniform flow modeling,” in 49th AIAA Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, 2011), paper AIAA 2011-1093.

C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, and R. K. Hanson, “Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes,” Appl. Opt. (to be published).

Sun, K.

K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B 110, 497–508 (2013).
[CrossRef]

C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, and R. K. Hanson, “Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes,” Appl. Opt. (to be published).

Sur, R.

K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B 110, 497–508 (2013).
[CrossRef]

Tashkun, S. A.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Tennyson, J.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Tittel, F. K.

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems,” Appl. Phys. B 80, 617–625 (2005).
[CrossRef]

Varghese, P. L.

Wang, J.

S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, “Diode-laser absorption sensor for line-of-sight temperature distributions,” Appl. Opt. 40, 4404–4415 (2001).
[CrossRef]

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3  μm diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

Webber, M. E.

E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, and R. K. Hanson, “Diode-laser sensors for real-time control of pulsed combustion systems,” AIAA J. 37, 732–737 (1999).
[CrossRef]

Wysocki, G.

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems,” Appl. Phys. B 80, 617–625 (2005).
[CrossRef]

Yu, X.

Zhou, X.

X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B 81, 711–722 (2005).
[CrossRef]

AIAA J.

E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, and R. K. Hanson, “Diode-laser sensors for real-time control of pulsed combustion systems,” AIAA J. 37, 732–737 (1999).
[CrossRef]

X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurement of non-uniform temperature distributions using line-of-sight absorption spectroscopy,” AIAA J. 45, 411–419 (2007).
[CrossRef]

Appl. Opt.

D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
[CrossRef]

P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803–5815 (1999).
[CrossRef]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48, 5546–5560 (2009).
[CrossRef]

J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
[CrossRef]

D. T. Cassidy and J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185–1190 (1982).
[CrossRef]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052–1061 (2006).
[CrossRef]

X. Ouyang and P. L. Varghese, “Line-of-sight absorption measurements of high temperature gases with thermal and concentration boundary layers,” Appl. Opt. 28, 3979–3984 (1989).
[CrossRef]

S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, “Diode-laser absorption sensor for line-of-sight temperature distributions,” Appl. Opt. 40, 4404–4415 (2001).
[CrossRef]

F. Li, X. Yu, W. Cai, and L. Ma, “Uncertainty in velocity measurement based on diode-laser absorption in nonuniform flows,” Appl. Opt. 51, 4788–4797 (2012).
[CrossRef]

J. T. C. Liu, G. B. Rieker, J. B. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701–6711 (2005).
[CrossRef]

Appl. Phys. B

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems,” Appl. Phys. B 80, 617–625 (2005).
[CrossRef]

X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B 81, 711–722 (2005).
[CrossRef]

K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B 110, 497–508 (2013).
[CrossRef]

Combust. Sci. Technol.

M. Schoenung and R. K. Hanson, “CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1980).
[CrossRef]

J. Propul. Power

J. M. Seitzman and B. T. Scully, “Broadband infrared absorption sensor for high-pressure combustor control,” J. Propul. Power 16, 994–1001 (2000).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Diode laser measurements of temperature-dependent collisional-narrowing and broadening parameters of Ar-perturbed H2O transitions at 1391.7 and 1397.8  nm,” J. Quant. Spectrosc. Radiat. Transfer 109, 132–143 (2008).
[CrossRef]

Meas. Sci. Technol.

X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurements of spectral parameters of water-vapour transitions near 1388 and 1345  nm for accurate simulation of high-pressure absorption spectra,” Meas. Sci. Technol. 18, 1185–1194 (2007).
[CrossRef]

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3  μm diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “In situ combustion measurements of H2O and temperature near 2.5  μm using tunable diode laser absorption,” Meas. Sci. Technol. 19, 075604 (2008).
[CrossRef]

Proc. Combust. Inst.

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: sensor development and initial demonstration,” Proc. Combust. Inst. 31, 791–798 (2007).
[CrossRef]

R. K. Hanson, “Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems,” Proc. Combust. Inst. 33, 1–40 (2011).
[CrossRef]

Shock Waves

S. T. Sanders, D. W. Mattison, J. B. Jeffries, and R. K. Hanson, “Time-of-flight diode-laser velocimeter using a locally seeded atomic absorber: application in a pulse detonation engine,” Shock Waves 12, 435–441 (2003).
[CrossRef]

Other

I. A. Schultz, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “TDL absorption sensor for in situ determination of combustion progress in scramjet ground testing,” in 28th Aerodynamic Measurement Technology, Ground Testing, and Flight Testing Conference (American Institute of Aeronautics and Astronautics, 2012), paper AIAA 2012-2654.

L. S. Chang, C. L. Strand, J. B. Jeffries, R. K. Hanson, G. S. Diskin, R. L. Gaffney, and D. P. Capriotti, “Supersonic mass flux measurements via tunable diode laser absorption and non-uniform flow modeling,” in 49th AIAA Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, 2011), paper AIAA 2011-1093.

T. I. Palaghita and J. M. Seitzman, “Control of temperature nonuniformity based on line-of-sight absorption,” in 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference 883 (American Institute of Aeronautics and Astronautics, 2004), paper AIAA 2004-4163.

M. R. Gruber, C. D. Carter, M. Ryan, G. B. Rieker, J. B. Jeffries, R. K. Hanson, J. T. C. Liu, and T. Mathur, “Laser-based measurements of OH, temperature, and water vapor concentration in a hydrocarbon-fueled scramjet,” in 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (American Institute of Aeronautics and Astronautics, 2008), paper AIAA 2008-5070.

C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, and R. K. Hanson, “Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes,” Appl. Opt. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Water mole fraction distribution (left) for simulating path-integrated absorbance spectrum of a single water-vapor transition (right) using two strategies. The path-integrated absorbance spectrum represents a simulated direct-absorption measurement. Here, the H2O column density cannot be accurately determined from a comparison of the peak of the path-integrated spectrum with that of simulations performed using path-average gas conditions and a uniform LOS.

Fig. 2.
Fig. 2.

Linestrength curves shown for H2O with prenormalized units of cm1/moleculecm2. The transition lower-state energy sets the temperature dependence of transition linestrength at a given temperature. The linestrength curve is characterized by two regions of near-linear temperature dependence and one region of near temperature independence.

Fig. 3.
Fig. 3.

Maximum error in the linear fit (i.e. linear-linestrength approximation) reaches a local minimum at two values of lower-state energy: EL and EH. The error in the linear-linestrength approximation is approximately seven times smaller at EL and EH than at EC (the location corresponding to the most-constant linestrength). Results shown are for water vapor.

Fig. 4.
Fig. 4.

Maximum error in the linear-linestrength approximation decreases nearly exponentially as the mean temperature increases for H2O transitions with a lower-state energy equal to EL (left) and EH (right). The values of EL and EH increase with the mean temperature.

Fig. 5.
Fig. 5.

Simulated absorbance spectrum for a single water-vapor transition for a LOS with the nonuniform water mole fraction distribution shown in Fig. 1 (left). The best-fit Voigt profile accurately replicates the path-integrated absorbance spectrum shown.

Fig. 6.
Fig. 6.

Temperature and water mole fraction distributions across simulated LOS. The path-average water mole fraction is 0.08, the path-average temperature is 1185 K, and T¯nH2O is 1390 K.

Fig. 7.
Fig. 7.

Simulated absorbance spectra for two water-vapor transitions chosen according to the new strategy presented in the previous section. Simulations were performed with a uniform pressure of 1 atm and with the temperature and water mole fraction distributions shown in Fig. 6. The residual shown is between various simulation techniques and the path-integrated spectra. Simulations with water number-density-weighted path-average conditions overpredict peak absorbance by nearly 20%. Absorbance spectra simulated with path-average conditions and effective lineshapes matches path-integrated spectra to within 0.5% (left) and 1.3% (right).

Fig. 8.
Fig. 8.

Simulated WMS-2f/1f spectra for two water-vapor transitions chosen according new strategy presented in the previous section. Simulations were performed with a uniform pressure of 1 atm and with the temperature and water mole fraction distributions shown in Fig. 6. The residual shown is between various simulation techniques and the path-integrated spectra. Simulations with path-average conditions overpredict WMS-2f/1f signals by 20%. Simulated WMS-2f/1f spectra with path-average conditions and effective lineshapes match path-integrated spectra to within 0.2% (left) and 0.4% (right).

Fig. 9.
Fig. 9.

Linestrength normalization convention alters the temperature dependence of a given transition’s linestrength. The number-density-normalized linestrength convention leads to a broader linestrength profile that peaks at a higher temperature.

Fig. 10.
Fig. 10.

Contour lines of constant maximum percent error in the linear-linestrength approximation for H2O transitions with lower-state energy of EL (left) and EH (right) as a function of the mean temperature and size of the temperature range. The maximum percent error in the linear-linestrength approximation decreases as the mean temperature increases and as the size of the temperature range decreases. The linear-linestrength approximation is accurate to within 2.5% of the mean linestrength over the majority of temperature space shown.

Fig. 11.
Fig. 11.

Range of percent error in linestrength approximations as a function of mean temperature for a temperature range of 500 K and a ±100K uncertainty in the mean temperature. Despite ±100K uncertainty in mean temperature, the linear-linestrength approximation using H2O transitions with E=EL(Tmean) or EH(Tmean) remains accurate to within 2.5% of the corresponding mean linestrength for mean temperatures greater than 1000 K. For a temperature range of 500 K and a ±100K uncertainty in the mean temperature, linear-linestrength approximation with E=EH(Tmean) is 3.5 to 6.25 times less sensitive to uncertainty in mean temperature than the constant-linestrength approximation with E=EC(Tmean).

Tables (1)

Tables Icon

Table 1. Types of LOS Nonuniformities and Required Sensor Design Components for Lineshape-Independent and -Dependent Measurement Strategies

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

(ItIo)=exp(αv).
αv=0LSn(T)niϕv(v,T,P,χ)dl,
Sn(T)=Sn(To)Q(To)Q(T)exp[hcEk(1T1To)][1exp(hcvokT)][1exp(hcvokTo)]1,
Aαvdv=0LSn(T)nidl,
A=Sn(T)niL.
R2λ,AA2A1=Sn,2(T)niLSn,1(T)niL=Sn,2(T)Sn,1(T).
Ni0Lnidl.
Δvc=2Pγ=2Pjχjγj,
ΔvD=2ln2ΔvD=7.162×107voT/M.
R2λ,αα2α1=A2ϕv,2(v2,T,P,χ)A1ϕv,1(v1,T,P,χ).
2f/1f1ioπππ0LSn(T)niϕv(vo+acosθ)dlcos(2θ)dθ.
2f/1f1ioπSn(T)niLππϕv(vo+acosθ)cos(2θ)dθ=AG{ϕv(T,P,X,v),a,io}.
A=Sn(T)0Lnidl=Sn(T)Ni.
S1(T)=m1T+b2andS2(T)=m2T+b2,
R2λ,AA2A1=0L(m2T+b2)nidl0L(m1T+b1)nidl=m20LTnidl+b20Lnidlm10LTnidl+b10Lnidl.
T¯ni0LTnidl0Lnidl,
R2λ,A=m2T¯ni+b2m1T¯ni+b1.
R2λ,SS2(T)S1(T)=m2T+b2m1T+b1.
Ni0Lnidl=AS(T¯ni)=AS(Tmeasured).
αv=Aψv.
2f/1fAioπππψv(vo+acosθ)cos(2θ)dθ.
αv=0LSp(T)Piϕv(v,T,P,χ)dl,
A=0LSp(T)Pidl,
Sp(T)[cm2/atm]Sn(T)[cm1/moleculescm2]T.
T¯Pi0LTPidl0LPidl.
T¯χi0LTχidl0Lχidl.
T¯0LTdl0Ldl.
δi0LPidl=AS(T¯Pi)=AS(Tmeasured).

Metrics