J. J. Gil, I. S. Jose, and R. Ossikovski, “Serial–parallel decompositions of Mueller matrices,” J. Opt. Soc. Am. A 30, 32–50 (2013).

[CrossRef]

A. Zakeri, M. H. Miran Baygi, and K. Madanipour, “Polarization characterization of biological tissues using Stokes vector decomposition,” J. Mod. Opt. 60, 987–992 (2013).

[CrossRef]

N. Ortega Quijano and J. L. Arce Diego, “Mueller matrix differential decomposition,” Opt. Lett. 36, 1942–1944 (2011).

[CrossRef]

N. Ortega Quijano and J. L. Arce Diego, “Depolarizing differential Mueller matrices,” Opt. Lett. 36, 2429–2431 (2011).

[CrossRef]

N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16, 110801 (2011).

[CrossRef]

F. Fanjul Velez, N. Ortega Quijano, and J. L. Arce Diego, “Polarimetry group theory analysis in biological tissue phantoms by Mueller coherency matrix,” Opt. Commun. 283, 4525–4530 (2010).

[CrossRef]

S. Firdous, M. Atif, and M. Nawaz, “Study of blood malignancy in vitro for the diagnosis and treatment of blood diseases using polarimetery and microscopy,” Lasers Eng. 19, 291–305 (2010).

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues,” Opt. Commun. 283, 1200–1208 (2010).

[CrossRef]

R. Ossikovski, “Alternative depolarization criteria for Mueller matrices,” J. Opt. Soc. Am. A 27, 808–814 (2010).

[CrossRef]

F. Boulvert, G. Le Brun, B. L. Jeune, J. Cariou, and L. Martin, “Decomposition algorithm of an experimental Mueller matrix,” Opt. Commun. 282, 692–704 (2009).

[CrossRef]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: a Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys. 105, 102023 (2009).

[CrossRef]

M. F. G. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt. 14, 014029 (2009).

[CrossRef]

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophoton. 2, 145–156 (2009).

R. Ossikovski, “Analysis of depolarizing Mueller matrices through a symmetric decomposition,” J. Opt. Soc. Am. A 26, 1109–1118 (2009).

[CrossRef]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13, 044036 (2008).

[CrossRef]

F. Verstraete, J. Dehaene, and B. De Moor, “Lorentz singular value decomposition and its applications to pure states of three qubits,” Phys. Rev. A 65, 032308 (2002).

[CrossRef]

S. R. Cloude and E. Pottier, “Concept of polarization entropy in optical scattering,” Opt. Eng. 34, 1599–1610 (1995).

[CrossRef]

R. Sridhar and R. Simon, “Normal form for Mueller matrices in polarization optics,” J. Mod. Opt. 41, 1903–1915 (1994).

[CrossRef]

Z. F. Xing, “On the deterministic and non-deterministic Mueller matrix,” J. Mod. Opt. 39, 461–484 (1992).

[CrossRef]

C. Brosseau, “Polarization transfer and entropy transformation,” Optik 88, 109–117 (1991).

S. R. Cloude, “Conditions for the physical realizability of matrix operators in polarimetry,” Proc. SPIE 1166, 177–185 (1989).

C. Brosseau, “Entropy and polarization optics: degree of polarization of a mixture of partially polarized plane waves,” Optik 79, 117–122 (1988).

S. R. Cloude, “Group theory and polarization algebra,” Optik 75, 26–36 (1986).

N. Ortega Quijano and J. L. Arce Diego, “Mueller matrix differential decomposition,” Opt. Lett. 36, 1942–1944 (2011).

[CrossRef]

N. Ortega Quijano and J. L. Arce Diego, “Depolarizing differential Mueller matrices,” Opt. Lett. 36, 2429–2431 (2011).

[CrossRef]

F. Fanjul Velez, N. Ortega Quijano, and J. L. Arce Diego, “Polarimetry group theory analysis in biological tissue phantoms by Mueller coherency matrix,” Opt. Commun. 283, 4525–4530 (2010).

[CrossRef]

S. Firdous, M. Atif, and M. Nawaz, “Study of blood malignancy in vitro for the diagnosis and treatment of blood diseases using polarimetery and microscopy,” Lasers Eng. 19, 291–305 (2010).

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).

F. Boulvert, G. Le Brun, B. L. Jeune, J. Cariou, and L. Martin, “Decomposition algorithm of an experimental Mueller matrix,” Opt. Commun. 282, 692–704 (2009).

[CrossRef]

C. Brosseau, “Polarization transfer and entropy transformation,” Optik 88, 109–117 (1991).

C. Brosseau, “Entropy and polarization optics: degree of polarization of a mixture of partially polarized plane waves,” Optik 79, 117–122 (1988).

F. Boulvert, G. Le Brun, B. L. Jeune, J. Cariou, and L. Martin, “Decomposition algorithm of an experimental Mueller matrix,” Opt. Commun. 282, 692–704 (2009).

[CrossRef]

S. Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996).

[CrossRef]

R. A. Chipman, “Polarimetry,” in Handbook of Optics Vol II, Devices, Measurements, and Properties, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw-Hill, 1995), Part 3, Chap. 15, pp. 22.1–22.37.

S. R. Cloude and E. Pottier, “Concept of polarization entropy in optical scattering,” Opt. Eng. 34, 1599–1610 (1995).

[CrossRef]

S. R. Cloude, “Conditions for the physical realizability of matrix operators in polarimetry,” Proc. SPIE 1166, 177–185 (1989).

S. R. Cloude, “Group theory and polarization algebra,” Optik 75, 26–36 (1986).

F. Verstraete, J. Dehaene, and B. De Moor, “Lorentz singular value decomposition and its applications to pure states of three qubits,” Phys. Rev. A 65, 032308 (2002).

[CrossRef]

F. Verstraete, J. Dehaene, and B. De Moor, “Lorentz singular value decomposition and its applications to pure states of three qubits,” Phys. Rev. A 65, 032308 (2002).

[CrossRef]

F. Fanjul Velez, N. Ortega Quijano, and J. L. Arce Diego, “Polarimetry group theory analysis in biological tissue phantoms by Mueller coherency matrix,” Opt. Commun. 283, 4525–4530 (2010).

[CrossRef]

S. Firdous, M. Atif, and M. Nawaz, “Study of blood malignancy in vitro for the diagnosis and treatment of blood diseases using polarimetery and microscopy,” Lasers Eng. 19, 291–305 (2010).

N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16, 110801 (2011).

[CrossRef]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues,” Opt. Commun. 283, 1200–1208 (2010).

[CrossRef]

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophoton. 2, 145–156 (2009).

M. F. G. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt. 14, 014029 (2009).

[CrossRef]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: a Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys. 105, 102023 (2009).

[CrossRef]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13, 044036 (2008).

[CrossRef]

S. Manhas, M. K. Swami, P. Buddhiwant, N. Ghosh, P. K. Gupta, and K. Singh, “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry,” Opt. Express 14, 190–202 (2006).

[CrossRef]

J. J. Gil, I. S. Jose, and R. Ossikovski, “Serial–parallel decompositions of Mueller matrices,” J. Opt. Soc. Am. A 30, 32–50 (2013).

[CrossRef]

J. J. Gil, “Polarimetric characterization of light and media,” EPJ Appl. Phys. 40, 1–47 (2007).

J. J. Gil, “Characteristic properties of Mueller matrices,” J. Opt. Soc. Am. A 17, 328–334 (2000).

[CrossRef]

F. Boulvert, G. Le Brun, B. L. Jeune, J. Cariou, and L. Martin, “Decomposition algorithm of an experimental Mueller matrix,” Opt. Commun. 282, 692–704 (2009).

[CrossRef]

P. Lancaster and M. Tismenetsky, The Theory of Matrices (Academic, 1985), Chap. 5, p. 192.

F. Boulvert, G. Le Brun, B. L. Jeune, J. Cariou, and L. Martin, “Decomposition algorithm of an experimental Mueller matrix,” Opt. Commun. 282, 692–704 (2009).

[CrossRef]

S. J. Leon, Linear Algebra with Applications (Macmillan, 1996).

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophoton. 2, 145–156 (2009).

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophoton. 2, 145–156 (2009).

A. Zakeri, M. H. Miran Baygi, and K. Madanipour, “Polarization characterization of biological tissues using Stokes vector decomposition,” J. Mod. Opt. 60, 987–992 (2013).

[CrossRef]

F. Boulvert, G. Le Brun, B. L. Jeune, J. Cariou, and L. Martin, “Decomposition algorithm of an experimental Mueller matrix,” Opt. Commun. 282, 692–704 (2009).

[CrossRef]

A. Zakeri, M. H. Miran Baygi, and K. Madanipour, “Polarization characterization of biological tissues using Stokes vector decomposition,” J. Mod. Opt. 60, 987–992 (2013).

[CrossRef]

M. F. G. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt. 14, 014029 (2009).

[CrossRef]

S. Firdous, M. Atif, and M. Nawaz, “Study of blood malignancy in vitro for the diagnosis and treatment of blood diseases using polarimetery and microscopy,” Lasers Eng. 19, 291–305 (2010).

N. Ortega Quijano and J. L. Arce Diego, “Mueller matrix differential decomposition,” Opt. Lett. 36, 1942–1944 (2011).

[CrossRef]

N. Ortega Quijano and J. L. Arce Diego, “Depolarizing differential Mueller matrices,” Opt. Lett. 36, 2429–2431 (2011).

[CrossRef]

F. Fanjul Velez, N. Ortega Quijano, and J. L. Arce Diego, “Polarimetry group theory analysis in biological tissue phantoms by Mueller coherency matrix,” Opt. Commun. 283, 4525–4530 (2010).

[CrossRef]

J. J. Gil, I. S. Jose, and R. Ossikovski, “Serial–parallel decompositions of Mueller matrices,” J. Opt. Soc. Am. A 30, 32–50 (2013).

[CrossRef]

R. Ossikovski, “Alternative depolarization criteria for Mueller matrices,” J. Opt. Soc. Am. A 27, 808–814 (2010).

[CrossRef]

R. Ossikovski, “Analysis of depolarizing Mueller matrices through a symmetric decomposition,” J. Opt. Soc. Am. A 26, 1109–1118 (2009).

[CrossRef]

R. Ossikovski, A. De Martino, and S. Guyot, “Forward and reverse product decompositions of depolarizing Mueller matrices,” Opt. Lett. 32, 689–691 (2007).

[CrossRef]

S. R. Cloude and E. Pottier, “Concept of polarization entropy in optical scattering,” Opt. Eng. 34, 1599–1610 (1995).

[CrossRef]

R. Sridhar and R. Simon, “Normal form for Mueller matrices in polarization optics,” J. Mod. Opt. 41, 1903–1915 (1994).

[CrossRef]

R. Sridhar and R. Simon, “Normal form for Mueller matrices in polarization optics,” J. Mod. Opt. 41, 1903–1915 (1994).

[CrossRef]

P. Lancaster and M. Tismenetsky, The Theory of Matrices (Academic, 1985), Chap. 5, p. 192.

F. Verstraete, J. Dehaene, and B. De Moor, “Lorentz singular value decomposition and its applications to pure states of three qubits,” Phys. Rev. A 65, 032308 (2002).

[CrossRef]

N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16, 110801 (2011).

[CrossRef]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues,” Opt. Commun. 283, 1200–1208 (2010).

[CrossRef]

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophoton. 2, 145–156 (2009).

M. F. G. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt. 14, 014029 (2009).

[CrossRef]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: a Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys. 105, 102023 (2009).

[CrossRef]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13, 044036 (2008).

[CrossRef]

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophoton. 2, 145–156 (2009).

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophoton. 2, 145–156 (2009).

M. F. G. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt. 14, 014029 (2009).

[CrossRef]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues,” Opt. Commun. 283, 1200–1208 (2010).

[CrossRef]

M. F. G. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt. 14, 014029 (2009).

[CrossRef]

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophoton. 2, 145–156 (2009).

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: a Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys. 105, 102023 (2009).

[CrossRef]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13, 044036 (2008).

[CrossRef]

Z. F. Xing, “On the deterministic and non-deterministic Mueller matrix,” J. Mod. Opt. 39, 461–484 (1992).

[CrossRef]

A. Zakeri, M. H. Miran Baygi, and K. Madanipour, “Polarization characterization of biological tissues using Stokes vector decomposition,” J. Mod. Opt. 60, 987–992 (2013).

[CrossRef]

J. J. Gil, “Polarimetric characterization of light and media,” EPJ Appl. Phys. 40, 1–47 (2007).

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: a Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys. 105, 102023 (2009).

[CrossRef]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13, 044036 (2008).

[CrossRef]

N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16, 110801 (2011).

[CrossRef]

M. F. G. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt. 14, 014029 (2009).

[CrossRef]

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophoton. 2, 145–156 (2009).

A. Zakeri, M. H. Miran Baygi, and K. Madanipour, “Polarization characterization of biological tissues using Stokes vector decomposition,” J. Mod. Opt. 60, 987–992 (2013).

[CrossRef]

Z. F. Xing, “On the deterministic and non-deterministic Mueller matrix,” J. Mod. Opt. 39, 461–484 (1992).

[CrossRef]

R. Sridhar and R. Simon, “Normal form for Mueller matrices in polarization optics,” J. Mod. Opt. 41, 1903–1915 (1994).

[CrossRef]

J. J. Gil, I. S. Jose, and R. Ossikovski, “Serial–parallel decompositions of Mueller matrices,” J. Opt. Soc. Am. A 30, 32–50 (2013).

[CrossRef]

S. Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996).

[CrossRef]

R. Ossikovski, “Analysis of depolarizing Mueller matrices through a symmetric decomposition,” J. Opt. Soc. Am. A 26, 1109–1118 (2009).

[CrossRef]

R. Ossikovski, “Alternative depolarization criteria for Mueller matrices,” J. Opt. Soc. Am. A 27, 808–814 (2010).

[CrossRef]

J. J. Gil, “Characteristic properties of Mueller matrices,” J. Opt. Soc. Am. A 17, 328–334 (2000).

[CrossRef]

S. Firdous, M. Atif, and M. Nawaz, “Study of blood malignancy in vitro for the diagnosis and treatment of blood diseases using polarimetery and microscopy,” Lasers Eng. 19, 291–305 (2010).

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues,” Opt. Commun. 283, 1200–1208 (2010).

[CrossRef]

F. Fanjul Velez, N. Ortega Quijano, and J. L. Arce Diego, “Polarimetry group theory analysis in biological tissue phantoms by Mueller coherency matrix,” Opt. Commun. 283, 4525–4530 (2010).

[CrossRef]

F. Boulvert, G. Le Brun, B. L. Jeune, J. Cariou, and L. Martin, “Decomposition algorithm of an experimental Mueller matrix,” Opt. Commun. 282, 692–704 (2009).

[CrossRef]

S. R. Cloude and E. Pottier, “Concept of polarization entropy in optical scattering,” Opt. Eng. 34, 1599–1610 (1995).

[CrossRef]

N. Ortega Quijano and J. L. Arce Diego, “Mueller matrix differential decomposition,” Opt. Lett. 36, 1942–1944 (2011).

[CrossRef]

N. Ortega Quijano and J. L. Arce Diego, “Depolarizing differential Mueller matrices,” Opt. Lett. 36, 2429–2431 (2011).

[CrossRef]

T. A. Germer, “Realizable differential matrices for depolarizing media,” Opt. Lett. 37, 921–923 (2012).

[CrossRef]

R. Ossikovski, A. De Martino, and S. Guyot, “Forward and reverse product decompositions of depolarizing Mueller matrices,” Opt. Lett. 32, 689–691 (2007).

[CrossRef]

C. Brosseau, “Entropy and polarization optics: degree of polarization of a mixture of partially polarized plane waves,” Optik 79, 117–122 (1988).

C. Brosseau, “Polarization transfer and entropy transformation,” Optik 88, 109–117 (1991).

S. R. Cloude, “Group theory and polarization algebra,” Optik 75, 26–36 (1986).

F. Verstraete, J. Dehaene, and B. De Moor, “Lorentz singular value decomposition and its applications to pure states of three qubits,” Phys. Rev. A 65, 032308 (2002).

[CrossRef]

S. R. Cloude, “Conditions for the physical realizability of matrix operators in polarimetry,” Proc. SPIE 1166, 177–185 (1989).

R. A. Chipman, “Polarimetry,” in Handbook of Optics Vol II, Devices, Measurements, and Properties, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw-Hill, 1995), Part 3, Chap. 15, pp. 22.1–22.37.

P. Lancaster and M. Tismenetsky, The Theory of Matrices (Academic, 1985), Chap. 5, p. 192.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).

S. J. Leon, Linear Algebra with Applications (Macmillan, 1996).