Abstract

The remounting accuracy of optical components between measurement and polishing affects the polishing results, especially for small polishing footprint processes such as magnetorheological jet polishing (MJP). In this paper, two important remounting errors (translation and rotation errors) are discussed, and a masking method is proposed to correct these errors. A mathematical model that describes the relationship between remounting errors and reference points is constructed. A mask is created to provide reference points on a sample because such points are important for identifying remounting errors. The remounting errors are then used as bases in correcting the parameters used for actual polishing. Experiments are conducted on a K9 optical sample to validate the proposed approach. After the reference points are obtained by measuring the mask on the sample, the remounting errors are derived. The translation errors are 5.61 mm in the X direction and 6.08 mm in the Y direction; the rotation error is 4.1°. Deviations from the desired positions are eliminated and the desired surface smoothness is obtained after parameter correction. Results indicate that the proposed method is suitable for high-precision polishing.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Dunn and D. D. Walker, “Pseudo-random tool paths for CNC sub-aperture polishing and other applications,” Opt. Express 16, 18942–18949 (2008).
    [CrossRef]
  2. O. W. Fähnle, “Abrasive jet polishing approaches to the manufacture of micro-optics with complex shapes,” in Imaging and Applied Optics Technical Papers, OSA Technical Digest (online) (Optical Society of America, 2012), paper OM3D.4.
  3. C. Y. Shi, J. H. Yuan, F. Wu, and Y. J. Wan, “Ultra-precision figuring using submerged jet polishing,” Chin. Opt. Lett. 9, 092201 (2011).
    [CrossRef]
  4. W. I. Kordonski and A. B. Shorey, “Magnetorheological (MR) jet finishing technology,” J. Intell. Mater. Syst. Struct. 18, 1127–1130 (2007).
    [CrossRef]
  5. M. Tricard, W. I. Kordonski, and A. B. Shorey, “Magnetorheological jet finishing of conformal, freeform and steep concave optics,” Ann. CIRP 55, 309–312 (2006).
  6. T. Wang, H. B. Cheng, Z. C. Dong, and H. Y. Tam, “Removal character of vertical jet polishing with eccentric rotation motion using magnetorheological fluid,” J. Mater. Process. Technol. 213, 1532–1537 (2013).
    [CrossRef]
  7. W. I. Kordonski, A. B. Shorey, and M. Tricard, “Magnetorheological jet (MR Jet) finishing technology,” J. Fluids Eng. 128, 20–26 (2006).
    [CrossRef]
  8. H. H. van Brug, M. Groeneveld, S. M. Booij, and J. J. M. Braat, “In-process measurements of material removal in fluid jet polishing,” Proc. SPIE 4778, 243–250 (2002).
    [CrossRef]
  9. S. M. Booij, O. W. Fähnle, and J. J. M. Braat, “Shaping with fluid jet polishing by footprint optimization,” Appl. Opt. 43, 67–69 (2004).
    [CrossRef]
  10. R. A. Jones, “Computer simulation of smoothing during computer-controlled optical polishing,” Appl. Opt. 34, 1162–1169 (1995).
    [CrossRef]
  11. W. A. C. M. Messelink, R. Waeger, T. Wons, M. Meeder, K. C. Heiniger, and O. W. Fähnle, “Prepolishing and finishing of optical surfaces using fluid jet polishing,” Proc. SPIE 5869, 586908 (2005).
    [CrossRef]
  12. H. Y. Tam and H. B. Cheng, “An investigation of the effects of the tool path on the removal of material in polishing,” J. Mater. Process. Technol. 210, 807–818 (2010).
    [CrossRef]

2013

T. Wang, H. B. Cheng, Z. C. Dong, and H. Y. Tam, “Removal character of vertical jet polishing with eccentric rotation motion using magnetorheological fluid,” J. Mater. Process. Technol. 213, 1532–1537 (2013).
[CrossRef]

2011

2010

H. Y. Tam and H. B. Cheng, “An investigation of the effects of the tool path on the removal of material in polishing,” J. Mater. Process. Technol. 210, 807–818 (2010).
[CrossRef]

2008

2007

W. I. Kordonski and A. B. Shorey, “Magnetorheological (MR) jet finishing technology,” J. Intell. Mater. Syst. Struct. 18, 1127–1130 (2007).
[CrossRef]

2006

M. Tricard, W. I. Kordonski, and A. B. Shorey, “Magnetorheological jet finishing of conformal, freeform and steep concave optics,” Ann. CIRP 55, 309–312 (2006).

W. I. Kordonski, A. B. Shorey, and M. Tricard, “Magnetorheological jet (MR Jet) finishing technology,” J. Fluids Eng. 128, 20–26 (2006).
[CrossRef]

2005

W. A. C. M. Messelink, R. Waeger, T. Wons, M. Meeder, K. C. Heiniger, and O. W. Fähnle, “Prepolishing and finishing of optical surfaces using fluid jet polishing,” Proc. SPIE 5869, 586908 (2005).
[CrossRef]

2004

2002

H. H. van Brug, M. Groeneveld, S. M. Booij, and J. J. M. Braat, “In-process measurements of material removal in fluid jet polishing,” Proc. SPIE 4778, 243–250 (2002).
[CrossRef]

1995

Booij, S. M.

S. M. Booij, O. W. Fähnle, and J. J. M. Braat, “Shaping with fluid jet polishing by footprint optimization,” Appl. Opt. 43, 67–69 (2004).
[CrossRef]

H. H. van Brug, M. Groeneveld, S. M. Booij, and J. J. M. Braat, “In-process measurements of material removal in fluid jet polishing,” Proc. SPIE 4778, 243–250 (2002).
[CrossRef]

Braat, J. J. M.

S. M. Booij, O. W. Fähnle, and J. J. M. Braat, “Shaping with fluid jet polishing by footprint optimization,” Appl. Opt. 43, 67–69 (2004).
[CrossRef]

H. H. van Brug, M. Groeneveld, S. M. Booij, and J. J. M. Braat, “In-process measurements of material removal in fluid jet polishing,” Proc. SPIE 4778, 243–250 (2002).
[CrossRef]

Cheng, H. B.

T. Wang, H. B. Cheng, Z. C. Dong, and H. Y. Tam, “Removal character of vertical jet polishing with eccentric rotation motion using magnetorheological fluid,” J. Mater. Process. Technol. 213, 1532–1537 (2013).
[CrossRef]

H. Y. Tam and H. B. Cheng, “An investigation of the effects of the tool path on the removal of material in polishing,” J. Mater. Process. Technol. 210, 807–818 (2010).
[CrossRef]

Dong, Z. C.

T. Wang, H. B. Cheng, Z. C. Dong, and H. Y. Tam, “Removal character of vertical jet polishing with eccentric rotation motion using magnetorheological fluid,” J. Mater. Process. Technol. 213, 1532–1537 (2013).
[CrossRef]

Dunn, C. R.

Fähnle, O. W.

W. A. C. M. Messelink, R. Waeger, T. Wons, M. Meeder, K. C. Heiniger, and O. W. Fähnle, “Prepolishing and finishing of optical surfaces using fluid jet polishing,” Proc. SPIE 5869, 586908 (2005).
[CrossRef]

S. M. Booij, O. W. Fähnle, and J. J. M. Braat, “Shaping with fluid jet polishing by footprint optimization,” Appl. Opt. 43, 67–69 (2004).
[CrossRef]

O. W. Fähnle, “Abrasive jet polishing approaches to the manufacture of micro-optics with complex shapes,” in Imaging and Applied Optics Technical Papers, OSA Technical Digest (online) (Optical Society of America, 2012), paper OM3D.4.

Groeneveld, M.

H. H. van Brug, M. Groeneveld, S. M. Booij, and J. J. M. Braat, “In-process measurements of material removal in fluid jet polishing,” Proc. SPIE 4778, 243–250 (2002).
[CrossRef]

Heiniger, K. C.

W. A. C. M. Messelink, R. Waeger, T. Wons, M. Meeder, K. C. Heiniger, and O. W. Fähnle, “Prepolishing and finishing of optical surfaces using fluid jet polishing,” Proc. SPIE 5869, 586908 (2005).
[CrossRef]

Jones, R. A.

Kordonski, W. I.

W. I. Kordonski and A. B. Shorey, “Magnetorheological (MR) jet finishing technology,” J. Intell. Mater. Syst. Struct. 18, 1127–1130 (2007).
[CrossRef]

W. I. Kordonski, A. B. Shorey, and M. Tricard, “Magnetorheological jet (MR Jet) finishing technology,” J. Fluids Eng. 128, 20–26 (2006).
[CrossRef]

M. Tricard, W. I. Kordonski, and A. B. Shorey, “Magnetorheological jet finishing of conformal, freeform and steep concave optics,” Ann. CIRP 55, 309–312 (2006).

Meeder, M.

W. A. C. M. Messelink, R. Waeger, T. Wons, M. Meeder, K. C. Heiniger, and O. W. Fähnle, “Prepolishing and finishing of optical surfaces using fluid jet polishing,” Proc. SPIE 5869, 586908 (2005).
[CrossRef]

Messelink, W. A. C. M.

W. A. C. M. Messelink, R. Waeger, T. Wons, M. Meeder, K. C. Heiniger, and O. W. Fähnle, “Prepolishing and finishing of optical surfaces using fluid jet polishing,” Proc. SPIE 5869, 586908 (2005).
[CrossRef]

Shi, C. Y.

Shorey, A. B.

W. I. Kordonski and A. B. Shorey, “Magnetorheological (MR) jet finishing technology,” J. Intell. Mater. Syst. Struct. 18, 1127–1130 (2007).
[CrossRef]

M. Tricard, W. I. Kordonski, and A. B. Shorey, “Magnetorheological jet finishing of conformal, freeform and steep concave optics,” Ann. CIRP 55, 309–312 (2006).

W. I. Kordonski, A. B. Shorey, and M. Tricard, “Magnetorheological jet (MR Jet) finishing technology,” J. Fluids Eng. 128, 20–26 (2006).
[CrossRef]

Tam, H. Y.

T. Wang, H. B. Cheng, Z. C. Dong, and H. Y. Tam, “Removal character of vertical jet polishing with eccentric rotation motion using magnetorheological fluid,” J. Mater. Process. Technol. 213, 1532–1537 (2013).
[CrossRef]

H. Y. Tam and H. B. Cheng, “An investigation of the effects of the tool path on the removal of material in polishing,” J. Mater. Process. Technol. 210, 807–818 (2010).
[CrossRef]

Tricard, M.

W. I. Kordonski, A. B. Shorey, and M. Tricard, “Magnetorheological jet (MR Jet) finishing technology,” J. Fluids Eng. 128, 20–26 (2006).
[CrossRef]

M. Tricard, W. I. Kordonski, and A. B. Shorey, “Magnetorheological jet finishing of conformal, freeform and steep concave optics,” Ann. CIRP 55, 309–312 (2006).

van Brug, H. H.

H. H. van Brug, M. Groeneveld, S. M. Booij, and J. J. M. Braat, “In-process measurements of material removal in fluid jet polishing,” Proc. SPIE 4778, 243–250 (2002).
[CrossRef]

Waeger, R.

W. A. C. M. Messelink, R. Waeger, T. Wons, M. Meeder, K. C. Heiniger, and O. W. Fähnle, “Prepolishing and finishing of optical surfaces using fluid jet polishing,” Proc. SPIE 5869, 586908 (2005).
[CrossRef]

Walker, D. D.

Wan, Y. J.

Wang, T.

T. Wang, H. B. Cheng, Z. C. Dong, and H. Y. Tam, “Removal character of vertical jet polishing with eccentric rotation motion using magnetorheological fluid,” J. Mater. Process. Technol. 213, 1532–1537 (2013).
[CrossRef]

Wons, T.

W. A. C. M. Messelink, R. Waeger, T. Wons, M. Meeder, K. C. Heiniger, and O. W. Fähnle, “Prepolishing and finishing of optical surfaces using fluid jet polishing,” Proc. SPIE 5869, 586908 (2005).
[CrossRef]

Wu, F.

Yuan, J. H.

Ann. CIRP

M. Tricard, W. I. Kordonski, and A. B. Shorey, “Magnetorheological jet finishing of conformal, freeform and steep concave optics,” Ann. CIRP 55, 309–312 (2006).

Appl. Opt.

Chin. Opt. Lett.

J. Fluids Eng.

W. I. Kordonski, A. B. Shorey, and M. Tricard, “Magnetorheological jet (MR Jet) finishing technology,” J. Fluids Eng. 128, 20–26 (2006).
[CrossRef]

J. Intell. Mater. Syst. Struct.

W. I. Kordonski and A. B. Shorey, “Magnetorheological (MR) jet finishing technology,” J. Intell. Mater. Syst. Struct. 18, 1127–1130 (2007).
[CrossRef]

J. Mater. Process. Technol.

T. Wang, H. B. Cheng, Z. C. Dong, and H. Y. Tam, “Removal character of vertical jet polishing with eccentric rotation motion using magnetorheological fluid,” J. Mater. Process. Technol. 213, 1532–1537 (2013).
[CrossRef]

H. Y. Tam and H. B. Cheng, “An investigation of the effects of the tool path on the removal of material in polishing,” J. Mater. Process. Technol. 210, 807–818 (2010).
[CrossRef]

Opt. Express

Proc. SPIE

W. A. C. M. Messelink, R. Waeger, T. Wons, M. Meeder, K. C. Heiniger, and O. W. Fähnle, “Prepolishing and finishing of optical surfaces using fluid jet polishing,” Proc. SPIE 5869, 586908 (2005).
[CrossRef]

H. H. van Brug, M. Groeneveld, S. M. Booij, and J. J. M. Braat, “In-process measurements of material removal in fluid jet polishing,” Proc. SPIE 4778, 243–250 (2002).
[CrossRef]

Other

O. W. Fähnle, “Abrasive jet polishing approaches to the manufacture of micro-optics with complex shapes,” in Imaging and Applied Optics Technical Papers, OSA Technical Digest (online) (Optical Society of America, 2012), paper OM3D.4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Remounting errors in optical manufacturing.

Fig. 2.
Fig. 2.

Flow chart of the whole process.

Fig. 3.
Fig. 3.

Mask is used to provide reference points on the sample. (a) Reference points provided by the mask and (b) the process for measuring the reference points.

Fig. 4.
Fig. 4.

Approach to identifying mask edges in the polishing coordinate system.

Fig. 5.
Fig. 5.

Small circular masks on the sample for positioning.

Fig. 6.
Fig. 6.

Interferograms of (a) the initial sample shape and (b) the footprint of a nozzle.

Fig. 7.
Fig. 7.

Masks for calibration. (a) Mask with a quadrilateral hole. (b) Masked data for obtaining the measurement coordinate system. (c) Calibrated initial data and theoretical path.

Fig. 8.
Fig. 8.

Theoretical and corrected parameters for polishing.

Fig. 9.
Fig. 9.

Final sample shape. (a) Simulation result without using the masking method. (b) Actual polishing result using the masking method.

Tables (2)

Tables Icon

Table 1. Step Points on each Edge of the Mask

Tables Icon

Table 2. Parameters of the Polishing Process

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E(x,y)=R(x,y)**D(x,y)=R(xx,yy)·D(x,y)dxdy,
E(x,y)=ijR(xxi,yyj)·D(xi,yj)=ijRij·D(xi,yj),
Ea(x,y)=ijR((xΔxi)xi,(yΔyj)yj)·D(xi,yj)=ijRaij·D(xi,yj),
ΔE=EEa=ij(RijRaij)·D(xi,yj)=ijΔRij·D(xi,yj),
pg=T1·T2·p,
pg=(xg,yg,1)T;p=(x,y,1)TT1=[10δx01δy001]T2=[cosδθsinδθ0sinδθcosδθ1001].
{xg=xcosδθ+ysinδθ+δxyg=xsinδθ+ycosδθ+δy.
yg=axg+b
N(xg,yg)=yg(axg+b).
{anNn2=2nNnxgn=0bnNn2=2nNn=0,
{l1:0.0674xg+21.2995=yg;l2:18.3426xg364.142=yg;l3:0.0752xg8.36=yg;l4:21.2994xg+200.209=yg;.
δx=5.61mm,δy=6.08mmandδθ=4.1°.

Metrics