Abstract

A method to suppress the polarization-fluctuation-induced drift in a resonator fiber-optic gyro is proposed in this paper. By inserting one in-line polarizer whose polarization extinction ratio is 30 dB into a polarization-maintaining fiber resonator with 0° polarization-axis splices, the unwanted resonance is introduced to high loss and therefore the ratio of the resonance height of the desired eigen-states of polarization (ESOP) to the unwanted ESOP is 74 dB theoretically; thus the polarization-fluctuation-induced drift is adequately suppressed. The new scheme has excellent operability and high temperature stability simultaneously. Compared to the resonator with twin 90° polarization-axis rotated splices, this scheme does not need precise length difference control. This work is of great importance in the research on resonator integrated optic gyros.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Hotate, “Fiber-optic gyros,” in Optical Fiber Sensors, Applications, Analysis, and Future Trends, J. Dakin and B. Culshaw, eds. (Artech, 1997), pp. 167–206.
  2. K. Takiguchi and K. Hotate, “Partially digital-feedback scheme and evaluation of optical Kerr-effect induced bias in optical passive ring-resonator gyro,” IEEE Photon. Technol. Lett. 3, 679–681 (1991).
    [Crossref]
  3. D. M. Shupe, “Thermally induced nonreciprocity in the fiber-optic interferometer,” Appl. Opt. 19, 654–655 (1980).
    [Crossref]
  4. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Eigenstate of polarization in a fiber ring resonator and its effect in an optical passive ring-resonator gyro,” Appl. Opt. 25, 2606–2612 (1986).
    [Crossref]
  5. G. A. Sanders, R. B. Smith, and G. F. Rouse, “Novel polarization-rotating fiber resonator for rotation sensing applications,” Proc. SPIE 1169, 373–381 (1989).
    [Crossref]
  6. L. K. Strandjord and G. A. Sanders, “Resonator fiber optic gyro employing a polarization-rotating resonator,” Proc. SPIE 1585, 163–172 (1991).
    [Crossref]
  7. X. Wang, Z. He, and K. Hotate, “Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator with twin 90° polarization-axis rotated splices,” Opt. Express 18, 1677–1683 (2010).
    [Crossref]
  8. H. Ma, X. Yu, and Z. Jin, “Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator integrating in-line polarizers,” Opt. Lett. 37, 3342–3344 (2012).
    [Crossref]
  9. N. Barbour and G. Schmidt, “Inertial sensor technology trends,” IEEE Sens. J. 1, 332–339 (2001).
    [Crossref]
  10. M. A. Guillén-Torres, E. Cretu, N. A. F. Jaeger, and L. Chrostowski, “Ring resonator optical gyroscopes—parameter optimization and robustness analysis,” J. Lightwave Technol. 30, 1802–1817 (2012).
    [Crossref]
  11. D. Kalantarov and C. P. Search, “Effect of input–output coupling on the sensitivity of coupled resonator optical waveguide gyroscopes,” J. Opt. Soc. Am. B 30, 377–381 (2013).
    [Crossref]
  12. G. A. Sanders, N. Demma, G. F. Rouse, and R. B. Smith, “Evaluation of polarization maintaining fiber resonator for rotation sensing applications,” in Optical Fiber Sensors, Vol. 2 of OSA Technical Digest Series (Optical Society of America, 1988), pp. 409–412.
  13. X. Wang, Z. He, and K. Hotate, “Automated suppression of polarization-fluctuation in resonator fiber optic gyro by a resonator with twin 90° polarization-axis rotated splices—theoretical analysis,” Proc. SPIE 7653, 76533H1 (2010).
    [Crossref]
  14. M. Lei, L. Feng, Y. Zhi, H. Liu, and N. Su, “Experiments on resonator micro-optic gyro using external cavity laser diode,” Opt. Eng. 51, 104602 (2012).
    [Crossref]

2013 (1)

2012 (3)

2010 (2)

X. Wang, Z. He, and K. Hotate, “Automated suppression of polarization-fluctuation in resonator fiber optic gyro by a resonator with twin 90° polarization-axis rotated splices—theoretical analysis,” Proc. SPIE 7653, 76533H1 (2010).
[Crossref]

X. Wang, Z. He, and K. Hotate, “Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator with twin 90° polarization-axis rotated splices,” Opt. Express 18, 1677–1683 (2010).
[Crossref]

2001 (1)

N. Barbour and G. Schmidt, “Inertial sensor technology trends,” IEEE Sens. J. 1, 332–339 (2001).
[Crossref]

1991 (2)

L. K. Strandjord and G. A. Sanders, “Resonator fiber optic gyro employing a polarization-rotating resonator,” Proc. SPIE 1585, 163–172 (1991).
[Crossref]

K. Takiguchi and K. Hotate, “Partially digital-feedback scheme and evaluation of optical Kerr-effect induced bias in optical passive ring-resonator gyro,” IEEE Photon. Technol. Lett. 3, 679–681 (1991).
[Crossref]

1989 (1)

G. A. Sanders, R. B. Smith, and G. F. Rouse, “Novel polarization-rotating fiber resonator for rotation sensing applications,” Proc. SPIE 1169, 373–381 (1989).
[Crossref]

1986 (1)

1980 (1)

Barbour, N.

N. Barbour and G. Schmidt, “Inertial sensor technology trends,” IEEE Sens. J. 1, 332–339 (2001).
[Crossref]

Chrostowski, L.

Cretu, E.

Demma, N.

G. A. Sanders, N. Demma, G. F. Rouse, and R. B. Smith, “Evaluation of polarization maintaining fiber resonator for rotation sensing applications,” in Optical Fiber Sensors, Vol. 2 of OSA Technical Digest Series (Optical Society of America, 1988), pp. 409–412.

Feng, L.

M. Lei, L. Feng, Y. Zhi, H. Liu, and N. Su, “Experiments on resonator micro-optic gyro using external cavity laser diode,” Opt. Eng. 51, 104602 (2012).
[Crossref]

Guillén-Torres, M. A.

He, Z.

X. Wang, Z. He, and K. Hotate, “Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator with twin 90° polarization-axis rotated splices,” Opt. Express 18, 1677–1683 (2010).
[Crossref]

X. Wang, Z. He, and K. Hotate, “Automated suppression of polarization-fluctuation in resonator fiber optic gyro by a resonator with twin 90° polarization-axis rotated splices—theoretical analysis,” Proc. SPIE 7653, 76533H1 (2010).
[Crossref]

Higashiguchi, M.

Hotate, K.

X. Wang, Z. He, and K. Hotate, “Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator with twin 90° polarization-axis rotated splices,” Opt. Express 18, 1677–1683 (2010).
[Crossref]

X. Wang, Z. He, and K. Hotate, “Automated suppression of polarization-fluctuation in resonator fiber optic gyro by a resonator with twin 90° polarization-axis rotated splices—theoretical analysis,” Proc. SPIE 7653, 76533H1 (2010).
[Crossref]

K. Takiguchi and K. Hotate, “Partially digital-feedback scheme and evaluation of optical Kerr-effect induced bias in optical passive ring-resonator gyro,” IEEE Photon. Technol. Lett. 3, 679–681 (1991).
[Crossref]

K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Eigenstate of polarization in a fiber ring resonator and its effect in an optical passive ring-resonator gyro,” Appl. Opt. 25, 2606–2612 (1986).
[Crossref]

K. Hotate, “Fiber-optic gyros,” in Optical Fiber Sensors, Applications, Analysis, and Future Trends, J. Dakin and B. Culshaw, eds. (Artech, 1997), pp. 167–206.

Iwatsuki, K.

Jaeger, N. A. F.

Jin, Z.

Kalantarov, D.

Lei, M.

M. Lei, L. Feng, Y. Zhi, H. Liu, and N. Su, “Experiments on resonator micro-optic gyro using external cavity laser diode,” Opt. Eng. 51, 104602 (2012).
[Crossref]

Liu, H.

M. Lei, L. Feng, Y. Zhi, H. Liu, and N. Su, “Experiments on resonator micro-optic gyro using external cavity laser diode,” Opt. Eng. 51, 104602 (2012).
[Crossref]

Ma, H.

Rouse, G. F.

G. A. Sanders, R. B. Smith, and G. F. Rouse, “Novel polarization-rotating fiber resonator for rotation sensing applications,” Proc. SPIE 1169, 373–381 (1989).
[Crossref]

G. A. Sanders, N. Demma, G. F. Rouse, and R. B. Smith, “Evaluation of polarization maintaining fiber resonator for rotation sensing applications,” in Optical Fiber Sensors, Vol. 2 of OSA Technical Digest Series (Optical Society of America, 1988), pp. 409–412.

Sanders, G. A.

L. K. Strandjord and G. A. Sanders, “Resonator fiber optic gyro employing a polarization-rotating resonator,” Proc. SPIE 1585, 163–172 (1991).
[Crossref]

G. A. Sanders, R. B. Smith, and G. F. Rouse, “Novel polarization-rotating fiber resonator for rotation sensing applications,” Proc. SPIE 1169, 373–381 (1989).
[Crossref]

G. A. Sanders, N. Demma, G. F. Rouse, and R. B. Smith, “Evaluation of polarization maintaining fiber resonator for rotation sensing applications,” in Optical Fiber Sensors, Vol. 2 of OSA Technical Digest Series (Optical Society of America, 1988), pp. 409–412.

Schmidt, G.

N. Barbour and G. Schmidt, “Inertial sensor technology trends,” IEEE Sens. J. 1, 332–339 (2001).
[Crossref]

Search, C. P.

Shupe, D. M.

Smith, R. B.

G. A. Sanders, R. B. Smith, and G. F. Rouse, “Novel polarization-rotating fiber resonator for rotation sensing applications,” Proc. SPIE 1169, 373–381 (1989).
[Crossref]

G. A. Sanders, N. Demma, G. F. Rouse, and R. B. Smith, “Evaluation of polarization maintaining fiber resonator for rotation sensing applications,” in Optical Fiber Sensors, Vol. 2 of OSA Technical Digest Series (Optical Society of America, 1988), pp. 409–412.

Strandjord, L. K.

L. K. Strandjord and G. A. Sanders, “Resonator fiber optic gyro employing a polarization-rotating resonator,” Proc. SPIE 1585, 163–172 (1991).
[Crossref]

Su, N.

M. Lei, L. Feng, Y. Zhi, H. Liu, and N. Su, “Experiments on resonator micro-optic gyro using external cavity laser diode,” Opt. Eng. 51, 104602 (2012).
[Crossref]

Takiguchi, K.

K. Takiguchi and K. Hotate, “Partially digital-feedback scheme and evaluation of optical Kerr-effect induced bias in optical passive ring-resonator gyro,” IEEE Photon. Technol. Lett. 3, 679–681 (1991).
[Crossref]

Wang, X.

X. Wang, Z. He, and K. Hotate, “Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator with twin 90° polarization-axis rotated splices,” Opt. Express 18, 1677–1683 (2010).
[Crossref]

X. Wang, Z. He, and K. Hotate, “Automated suppression of polarization-fluctuation in resonator fiber optic gyro by a resonator with twin 90° polarization-axis rotated splices—theoretical analysis,” Proc. SPIE 7653, 76533H1 (2010).
[Crossref]

Yu, X.

Zhi, Y.

M. Lei, L. Feng, Y. Zhi, H. Liu, and N. Su, “Experiments on resonator micro-optic gyro using external cavity laser diode,” Opt. Eng. 51, 104602 (2012).
[Crossref]

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (1)

K. Takiguchi and K. Hotate, “Partially digital-feedback scheme and evaluation of optical Kerr-effect induced bias in optical passive ring-resonator gyro,” IEEE Photon. Technol. Lett. 3, 679–681 (1991).
[Crossref]

IEEE Sens. J. (1)

N. Barbour and G. Schmidt, “Inertial sensor technology trends,” IEEE Sens. J. 1, 332–339 (2001).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Eng. (1)

M. Lei, L. Feng, Y. Zhi, H. Liu, and N. Su, “Experiments on resonator micro-optic gyro using external cavity laser diode,” Opt. Eng. 51, 104602 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (3)

G. A. Sanders, R. B. Smith, and G. F. Rouse, “Novel polarization-rotating fiber resonator for rotation sensing applications,” Proc. SPIE 1169, 373–381 (1989).
[Crossref]

L. K. Strandjord and G. A. Sanders, “Resonator fiber optic gyro employing a polarization-rotating resonator,” Proc. SPIE 1585, 163–172 (1991).
[Crossref]

X. Wang, Z. He, and K. Hotate, “Automated suppression of polarization-fluctuation in resonator fiber optic gyro by a resonator with twin 90° polarization-axis rotated splices—theoretical analysis,” Proc. SPIE 7653, 76533H1 (2010).
[Crossref]

Other (2)

G. A. Sanders, N. Demma, G. F. Rouse, and R. B. Smith, “Evaluation of polarization maintaining fiber resonator for rotation sensing applications,” in Optical Fiber Sensors, Vol. 2 of OSA Technical Digest Series (Optical Society of America, 1988), pp. 409–412.

K. Hotate, “Fiber-optic gyros,” in Optical Fiber Sensors, Applications, Analysis, and Future Trends, J. Dakin and B. Culshaw, eds. (Artech, 1997), pp. 167–206.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Basic configuration of resonator with in-line polarizer. C, PM fiber coupler; P, in-line polarizer; F, PM fiber; L, PM fiber with length of Li, i=1, 2, 3, 4; and FRR, fiber ring resonator.

Fig. 2.
Fig. 2.

Simulation of the resonant curves (a) under the condition of the resonator without in-line polarizer and (b) under the condition of the resonator with in-line polarizer.

Fig. 3.
Fig. 3.

Resonant curves of the resonator with an in-line polarizer when the phase separation between the two ESOPs is 0°.

Fig. 4.
Fig. 4.

Experimental setup of R-FOG with a resonator integrating one in-line polarizer. FL, fiber laser; PM, phase modulator; C, coupler; ISO, isolator; and PD, photodetector.

Fig. 5.
Fig. 5.

Measured resonant curve at different incident polarization angles.

Fig. 6.
Fig. 6.

Measured resonant curve at different temperature (a) under the condition that the resonator is in room temperature and (b) under the condition that the resonator is heated.

Fig. 7.
Fig. 7.

Demodulation curve of R-FOG.

Fig. 8.
Fig. 8.

Rotation test result of the R-FOG prototype.

Fig. 9.
Fig. 9.

Static test result of the R-FOG prototype.

Metrics