Abstract

Novel optical alignment techniques to perform precise alignment of a typical pixelated 4f optical system are presented in this paper. These techniques use optical multiplexed matched filters, which were designed using a simple, efficient iterative optimization algorithm, known as direct binary search. Three alignment challenges are identified: positioning, focusing, and magnification. The first two alignments were performed using the optical multiplexed matched filtering technique, and the last one was performed using a new optical arrangement. Experimental results of the new alignment techniques and a simple optical pattern recognition problem to demonstrate the benefits of the new alignment techniques are also presented. Two pixelated, electrically addressed spatial light modulators (128×128 pixels and one pixel width is 80 μm) were used to represent the input and filter planes. The results clearly show that the new alignment techniques allow the 4f system to be aligned to a precision of 80 μm in the xy direction and 0.716 mm in the z direction.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Manivannan and M. A. A. Neil, “Optical correlator-neural network hybrid systems for many pattern recognition,” in 8th International Symposium on Intelligent Systems and Informatics (SISY), Subotica, 2010.
  2. B. V. K. V. Kumar, A. Mahalanobis, and R. D. Juday, Correlation Pattern Recognition (Cambridge University, 2005).
  3. B. V. K. V. Kumar, M. Savvides, C. Xie, K. Venkataramani, J. Thornton, and A. Mahalanobis, “Biometric verification with correlation filters,” Appl. Opt. 43, 391–402 (2004).
    [CrossRef]
  4. J. C. Pizolato and L. G. Neto, “Phase-only optical encryption based on the zeroth-order phase-contrast technique,” Opt. Eng. 48, 098201 (2009).
    [CrossRef]
  5. P. C. Mogensen and J. Gluckstad, “A phase-based optical encryption system with polarisation encoding,” Opt. Commun. 173, 177–183 (2000).
    [CrossRef]
  6. A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photon. 1, 589–636 (2009).
    [CrossRef]
  7. O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97, 1128–1148 (2009).
    [CrossRef]
  8. C.-J. Cheng and M.-L. Chen, “Polarization encoding for optical encryption using twisted nematic crystal spatial light modulators,” Opt. Commun. 237, 45–52 (2004).
    [CrossRef]
  9. Y. Takaki and T. Kurihara, “Improving viewing region of 4f optical systems for holographic displays,” Opt. Express 19, 17621–17631 (2011).
    [CrossRef]
  10. T. Manzur, J. Zeller, and S. Serati, “Optical correlator based target detection, recognition, classification, and tracking,” Appl. Opt. 51, 4976–4983 (2012).
    [CrossRef]
  11. C. Henderson, D. G. Leyva, and T. D. Wilkinson, “Free-space optical interconnect using an FLC SLM for active beam steering and wave front correction,” J. Lightwave Technol. 24, 1989–1997 (2006).
    [CrossRef]
  12. J. Chou, K. Yu, T. Bakhishev, D. Horsley, R. Walmsley, S. Mathai, M. Tan, S.-Y. Wang, V. Subramanian, and M. Wu, “Rotational optical alignment for array based free space board-to-board optical interconnect with zero power hold,” in IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Wanchai, Hong Kong, 2010.
  13. A. V. Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inform. Theory 10, 139–145 (1964).
    [CrossRef]
  14. N. Manivannan, M. Neil, and W. Balachandran, “Optical correlator-neural networks hybrid system for automatic angle measurement of two-dimensional objects,” Opt. Eng. 51, 057201 (2012).
    [CrossRef]
  15. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  16. N. Manivannan, M. A. A. Neil, and E. G. S. Paige, “Optical correlator architecture for the identification of many patterns with a multiplexed filter,” Proc. SPIE 3073, 488 (1997).
    [CrossRef]
  17. S. Munshi, V. Bery, and A. Gupta, “Hybrid digital-optical correlation employing a chirp-encoded simulated-annealing-based rotation-invariant and distortion-tolerant filter,” Appl. Opt. 46, 4304–4319 (2007).
    [CrossRef]
  18. H. Chen, Generation of Beams Specified in Three Dimensions Using Diffractive Optical Elements (University of Oxford, 1995).
  19. N. Manivannan, Multiplexed Matched Filters for Optical Pattern Recognition (University of Oxford, 1997).

2012 (2)

N. Manivannan, M. Neil, and W. Balachandran, “Optical correlator-neural networks hybrid system for automatic angle measurement of two-dimensional objects,” Opt. Eng. 51, 057201 (2012).
[CrossRef]

T. Manzur, J. Zeller, and S. Serati, “Optical correlator based target detection, recognition, classification, and tracking,” Appl. Opt. 51, 4976–4983 (2012).
[CrossRef]

2011 (1)

2009 (3)

A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photon. 1, 589–636 (2009).
[CrossRef]

O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97, 1128–1148 (2009).
[CrossRef]

J. C. Pizolato and L. G. Neto, “Phase-only optical encryption based on the zeroth-order phase-contrast technique,” Opt. Eng. 48, 098201 (2009).
[CrossRef]

2007 (1)

2006 (1)

2004 (2)

B. V. K. V. Kumar, M. Savvides, C. Xie, K. Venkataramani, J. Thornton, and A. Mahalanobis, “Biometric verification with correlation filters,” Appl. Opt. 43, 391–402 (2004).
[CrossRef]

C.-J. Cheng and M.-L. Chen, “Polarization encoding for optical encryption using twisted nematic crystal spatial light modulators,” Opt. Commun. 237, 45–52 (2004).
[CrossRef]

2000 (1)

P. C. Mogensen and J. Gluckstad, “A phase-based optical encryption system with polarisation encoding,” Opt. Commun. 173, 177–183 (2000).
[CrossRef]

1997 (1)

N. Manivannan, M. A. A. Neil, and E. G. S. Paige, “Optical correlator architecture for the identification of many patterns with a multiplexed filter,” Proc. SPIE 3073, 488 (1997).
[CrossRef]

1964 (1)

A. V. Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inform. Theory 10, 139–145 (1964).
[CrossRef]

Alfalou, A.

Bakhishev, T.

J. Chou, K. Yu, T. Bakhishev, D. Horsley, R. Walmsley, S. Mathai, M. Tan, S.-Y. Wang, V. Subramanian, and M. Wu, “Rotational optical alignment for array based free space board-to-board optical interconnect with zero power hold,” in IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Wanchai, Hong Kong, 2010.

Balachandran, W.

N. Manivannan, M. Neil, and W. Balachandran, “Optical correlator-neural networks hybrid system for automatic angle measurement of two-dimensional objects,” Opt. Eng. 51, 057201 (2012).
[CrossRef]

Bery, V.

Brosseau, C.

Chen, H.

H. Chen, Generation of Beams Specified in Three Dimensions Using Diffractive Optical Elements (University of Oxford, 1995).

Chen, M.-L.

C.-J. Cheng and M.-L. Chen, “Polarization encoding for optical encryption using twisted nematic crystal spatial light modulators,” Opt. Commun. 237, 45–52 (2004).
[CrossRef]

Cheng, C.-J.

C.-J. Cheng and M.-L. Chen, “Polarization encoding for optical encryption using twisted nematic crystal spatial light modulators,” Opt. Commun. 237, 45–52 (2004).
[CrossRef]

Chou, J.

J. Chou, K. Yu, T. Bakhishev, D. Horsley, R. Walmsley, S. Mathai, M. Tan, S.-Y. Wang, V. Subramanian, and M. Wu, “Rotational optical alignment for array based free space board-to-board optical interconnect with zero power hold,” in IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Wanchai, Hong Kong, 2010.

Gluckstad, J.

P. C. Mogensen and J. Gluckstad, “A phase-based optical encryption system with polarisation encoding,” Opt. Commun. 173, 177–183 (2000).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Gupta, A.

Henderson, C.

Horsley, D.

J. Chou, K. Yu, T. Bakhishev, D. Horsley, R. Walmsley, S. Mathai, M. Tan, S.-Y. Wang, V. Subramanian, and M. Wu, “Rotational optical alignment for array based free space board-to-board optical interconnect with zero power hold,” in IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Wanchai, Hong Kong, 2010.

Javidi, B.

O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97, 1128–1148 (2009).
[CrossRef]

Juday, R. D.

B. V. K. V. Kumar, A. Mahalanobis, and R. D. Juday, Correlation Pattern Recognition (Cambridge University, 2005).

Kumar, B. V. K. V.

Kurihara, T.

Leyva, D. G.

Lugt, A. V.

A. V. Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inform. Theory 10, 139–145 (1964).
[CrossRef]

Mahalanobis, A.

Manivannan, N.

N. Manivannan, M. Neil, and W. Balachandran, “Optical correlator-neural networks hybrid system for automatic angle measurement of two-dimensional objects,” Opt. Eng. 51, 057201 (2012).
[CrossRef]

N. Manivannan, M. A. A. Neil, and E. G. S. Paige, “Optical correlator architecture for the identification of many patterns with a multiplexed filter,” Proc. SPIE 3073, 488 (1997).
[CrossRef]

N. Manivannan, Multiplexed Matched Filters for Optical Pattern Recognition (University of Oxford, 1997).

N. Manivannan and M. A. A. Neil, “Optical correlator-neural network hybrid systems for many pattern recognition,” in 8th International Symposium on Intelligent Systems and Informatics (SISY), Subotica, 2010.

Manzur, T.

Mathai, S.

J. Chou, K. Yu, T. Bakhishev, D. Horsley, R. Walmsley, S. Mathai, M. Tan, S.-Y. Wang, V. Subramanian, and M. Wu, “Rotational optical alignment for array based free space board-to-board optical interconnect with zero power hold,” in IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Wanchai, Hong Kong, 2010.

Matoba, O.

O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97, 1128–1148 (2009).
[CrossRef]

Millan, M. S.

O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97, 1128–1148 (2009).
[CrossRef]

Mogensen, P. C.

P. C. Mogensen and J. Gluckstad, “A phase-based optical encryption system with polarisation encoding,” Opt. Commun. 173, 177–183 (2000).
[CrossRef]

Munshi, S.

Neil, M.

N. Manivannan, M. Neil, and W. Balachandran, “Optical correlator-neural networks hybrid system for automatic angle measurement of two-dimensional objects,” Opt. Eng. 51, 057201 (2012).
[CrossRef]

Neil, M. A. A.

N. Manivannan, M. A. A. Neil, and E. G. S. Paige, “Optical correlator architecture for the identification of many patterns with a multiplexed filter,” Proc. SPIE 3073, 488 (1997).
[CrossRef]

N. Manivannan and M. A. A. Neil, “Optical correlator-neural network hybrid systems for many pattern recognition,” in 8th International Symposium on Intelligent Systems and Informatics (SISY), Subotica, 2010.

Neto, L. G.

J. C. Pizolato and L. G. Neto, “Phase-only optical encryption based on the zeroth-order phase-contrast technique,” Opt. Eng. 48, 098201 (2009).
[CrossRef]

Nomura, T.

O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97, 1128–1148 (2009).
[CrossRef]

Paige, E. G. S.

N. Manivannan, M. A. A. Neil, and E. G. S. Paige, “Optical correlator architecture for the identification of many patterns with a multiplexed filter,” Proc. SPIE 3073, 488 (1997).
[CrossRef]

Perez-Cabre, E.

O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97, 1128–1148 (2009).
[CrossRef]

Pizolato, J. C.

J. C. Pizolato and L. G. Neto, “Phase-only optical encryption based on the zeroth-order phase-contrast technique,” Opt. Eng. 48, 098201 (2009).
[CrossRef]

Savvides, M.

Serati, S.

Subramanian, V.

J. Chou, K. Yu, T. Bakhishev, D. Horsley, R. Walmsley, S. Mathai, M. Tan, S.-Y. Wang, V. Subramanian, and M. Wu, “Rotational optical alignment for array based free space board-to-board optical interconnect with zero power hold,” in IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Wanchai, Hong Kong, 2010.

Takaki, Y.

Tan, M.

J. Chou, K. Yu, T. Bakhishev, D. Horsley, R. Walmsley, S. Mathai, M. Tan, S.-Y. Wang, V. Subramanian, and M. Wu, “Rotational optical alignment for array based free space board-to-board optical interconnect with zero power hold,” in IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Wanchai, Hong Kong, 2010.

Thornton, J.

Venkataramani, K.

Walmsley, R.

J. Chou, K. Yu, T. Bakhishev, D. Horsley, R. Walmsley, S. Mathai, M. Tan, S.-Y. Wang, V. Subramanian, and M. Wu, “Rotational optical alignment for array based free space board-to-board optical interconnect with zero power hold,” in IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Wanchai, Hong Kong, 2010.

Wang, S.-Y.

J. Chou, K. Yu, T. Bakhishev, D. Horsley, R. Walmsley, S. Mathai, M. Tan, S.-Y. Wang, V. Subramanian, and M. Wu, “Rotational optical alignment for array based free space board-to-board optical interconnect with zero power hold,” in IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Wanchai, Hong Kong, 2010.

Wilkinson, T. D.

Wu, M.

J. Chou, K. Yu, T. Bakhishev, D. Horsley, R. Walmsley, S. Mathai, M. Tan, S.-Y. Wang, V. Subramanian, and M. Wu, “Rotational optical alignment for array based free space board-to-board optical interconnect with zero power hold,” in IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Wanchai, Hong Kong, 2010.

Xie, C.

Yu, K.

J. Chou, K. Yu, T. Bakhishev, D. Horsley, R. Walmsley, S. Mathai, M. Tan, S.-Y. Wang, V. Subramanian, and M. Wu, “Rotational optical alignment for array based free space board-to-board optical interconnect with zero power hold,” in IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Wanchai, Hong Kong, 2010.

Zeller, J.

Adv. Opt. Photon. (1)

Appl. Opt. (3)

IEEE Trans. Inform. Theory (1)

A. V. Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inform. Theory 10, 139–145 (1964).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (2)

P. C. Mogensen and J. Gluckstad, “A phase-based optical encryption system with polarisation encoding,” Opt. Commun. 173, 177–183 (2000).
[CrossRef]

C.-J. Cheng and M.-L. Chen, “Polarization encoding for optical encryption using twisted nematic crystal spatial light modulators,” Opt. Commun. 237, 45–52 (2004).
[CrossRef]

Opt. Eng. (2)

J. C. Pizolato and L. G. Neto, “Phase-only optical encryption based on the zeroth-order phase-contrast technique,” Opt. Eng. 48, 098201 (2009).
[CrossRef]

N. Manivannan, M. Neil, and W. Balachandran, “Optical correlator-neural networks hybrid system for automatic angle measurement of two-dimensional objects,” Opt. Eng. 51, 057201 (2012).
[CrossRef]

Opt. Express (1)

Proc. IEEE (1)

O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97, 1128–1148 (2009).
[CrossRef]

Proc. SPIE (1)

N. Manivannan, M. A. A. Neil, and E. G. S. Paige, “Optical correlator architecture for the identification of many patterns with a multiplexed filter,” Proc. SPIE 3073, 488 (1997).
[CrossRef]

Other (6)

H. Chen, Generation of Beams Specified in Three Dimensions Using Diffractive Optical Elements (University of Oxford, 1995).

N. Manivannan, Multiplexed Matched Filters for Optical Pattern Recognition (University of Oxford, 1997).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

J. Chou, K. Yu, T. Bakhishev, D. Horsley, R. Walmsley, S. Mathai, M. Tan, S.-Y. Wang, V. Subramanian, and M. Wu, “Rotational optical alignment for array based free space board-to-board optical interconnect with zero power hold,” in IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Wanchai, Hong Kong, 2010.

N. Manivannan and M. A. A. Neil, “Optical correlator-neural network hybrid systems for many pattern recognition,” in 8th International Symposium on Intelligent Systems and Informatics (SISY), Subotica, 2010.

B. V. K. V. Kumar, A. Mahalanobis, and R. D. Juday, Correlation Pattern Recognition (Cambridge University, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic of a typical optical 4f system.

Fig. 2.
Fig. 2.

4f system with imaging optics included.

Fig. 3.
Fig. 3.

Positioning the Image onto the filter-possible scenarios. (a) A square fixed filter (filled with gray), (b) image to be positioned (filled with lines), (c) correctly positioned, (d)–(g) wrongly positioned images by one pixel [vertically upward (d), vertically downward (e), horizontally right (f) and horizontally left (g)], and (i) five selected positions at the output plane of the 4f system.

Fig. 4.
Fig. 4.

Out-of-focus images of FT of input imaged onto the fixed size filter SLM.

Fig. 5.
Fig. 5.

DBS algorithm.

Fig. 6.
Fig. 6.

Optical setup used for the magnification alignment.

Fig. 7.
Fig. 7.

Experimental setup of 4f system using two SLMs.

Fig. 8.
Fig. 8.

Performance of the filter designed for positioning alignment: (a) BPOMF (128×128 pixels), (b) output optical intensity distribution when perfectly positioned, and (c)–(f) output optical intensity distribution when mispositioned by one pixel of the filter in all four directions (vertically downward and upward, horizontally left and right).

Fig. 9.
Fig. 9.

Performance with filter designed for focusing alignment: (a) BPOMF (128×128 pixels), (b) output optical intensity distribution when the image is in the right focus, and (c), (d) output optical intensity distribution when the image is out of focus in both directions (z+ and z).

Tables (4)

Tables Icon

Table 1. Parameter Values Chosen for the Experiment

Tables Icon

Table 2. Experimental Results of Positioning Alignment

Tables Icon

Table 3. Experimental Results of Focusing Alignment

Tables Icon

Table 4. Character Recognition Results

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

G(X,Y)=Ag(x,y)ej2πfλ(xX+yY)dxdy
v(xo,yo)=AG(X,Y)H(X,Y)ej2πfλ(xoX+yoY)dxdydXdY,
v(xo,yo)=FT[FT[g(x,y)]×H(X,Y)],
Hp(X,Y)=Hs(X,Y)(×)Rect(X,Y),
Rect(X,Y)={1p2X,Yp20otherwise,
d3=d1d22f2d12d12d2f1d22f2f1f2d1d12f1d2+d1d2,
M=f1f2f2f1f2d1d12f1d2+d1d2,
G(Xay,Yay)=Ae2π(aXx+aYy)g(x,y)ej2πfλ(xX+yY)dxdy,
G(X,Y)atf±s=1(f±s)λg(x,y)e±j2πsf2λ(x2+y2)ej2πfλ(xX+yY)dxdy.
Zzero=±2f2λr2.
C=i=1N(TiAi)2,
NU=(ImaxIminImax)×100,
ZS=i=1K(IOff)ij=1L(Ion)j×100,

Metrics