Abstract

This paper proposes a novel phase-shifting method for fast, accurate, and unambiguous 3D shape measurement. The basic idea is embedding a speckle-like signal in three sinusoidal fringe patterns to eliminate the phase ambiguity, but without reducing the fringe amplitude or frequency. The absolute depth is then recovered through a robust region-wise voting strategy relying on the embedded signal. Using the theoretical minimum of only three images, the proposed method greatly facilitates the application of phase shifting in time-critical conditions. Moreover, the proposed method is resistant to the global illumination effects, as the fringe patterns used are with a single high frequency. Based on the proposed method, we further demonstrate a real-time, high-precision 3D scanning system with an off-the-shelf projector and a commodity camera.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription