Abstract

Measurement of laser-driven shock wave pressure in solid blocks of polymethyl methacrylate is demonstrated using fiber optic pressure probes. Three probes based on a fiber Fabry–Perot, fiber Bragg grating, and interferometric fiber tip sensor are tested and compared. Shock waves are generated using a high-power laser focused onto a thin foil target placed in close proximity to the test blocks. The fiber Fabry–Perot sensor appears capable of resolving the shock front with a rise time of 91 ns. The peak pressure is estimated, using a separate shadowgraphy measurement, to be 3.4 GPa.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Schirber, “For nuclear fusion, could two lasers be better than one?” Science 310, 1610–1611 (2005).
    [CrossRef]
  2. J.-H. Lee, D. Veysset, J. Singer, M. Retsch, G. Saini, T. Pezeril, K. Nelson, and E. Thomas, “High strain rate deformation of layered nanocomposites,” Nat. Commun. 3, 1164 (2012).
    [CrossRef]
  3. T. Pezeril, G. Saini, D. Veysset, S. Kooi, P. Fidkowski, R. Radovitzky, and K. Nelson, “Direct visualization of laser-driven focusing shock waves,” Phys. Rev. Lett. 106, 214503 (2011).
    [CrossRef]
  4. N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “Ultrasonic hydrophone based on short in-fiber Bragg gratings,” Appl. Opt. 37, 8120–8128 (1998).
    [CrossRef]
  5. P. Fomitchov and S. Krishnaswamy, “Response of a fiber Bragg grating ultrasonic sensor,” Opt. Eng. 42, 956–963 (2003).
    [CrossRef]
  6. G. Flockhart, M. McGuire, S. Pierce, G. Thursby, G. Stewart, G. Hayward, and B. Culshaw, “Direct monitoring of underwater ultrasonic transducers in the near field using fibre Bragg grating sensors,” Proc. SPIE 7503, 750331 (2009).
    [CrossRef]
  7. W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11, 95–102 (2000).
    [CrossRef]
  8. S. Watson, M. J. Gander, W. N. MacPherson, J. S. Barton, J. D. C. Jones, T. Klotzbuecher, T. Braune, J. Ott, and F. Schmitz, “Laser-machined fibers as Fabry-Perot pressure sensors,” Appl. Opt. 45, 5590–5596 (2006).
    [CrossRef]
  9. S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17, 1337–1342 (2006).
    [CrossRef]
  10. W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17, 1334–1342 (2007).
    [CrossRef]
  11. P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125, 3611–3622 (2009).
    [CrossRef]
  12. J. Staudenraus and W. Eisenmenger, “Fiberoptic probe hydrophone for ultrasonic and shock-wave measurements in water,” Ultrasonics 31, 267–273 (1993).
    [CrossRef]
  13. R. G. Minasamudram, P. Arora, G. Gandhi, A. S. Daryoush, M. A. El-Sherif, and P. A. Lewin, “Thin film metal coated fiber optic hydrophone probe,” Appl. Opt. 48, G77–G82 (2009).
    [CrossRef]
  14. C. Koch, G. Ludwig, and W. Molkenstruck, “Calibration of a fiber tip ultrasonic sensor up to 50  mhz and the application to shock wave measurement,” Ultrasonics 36, 721–725 (1998).
    [CrossRef]
  15. C. Koch and K.-V. Jenderka, “Measurement of sound field in cavitating media by an optical fibre-tip hydrophone,” Ultrason. Sonochem. 15, 502–509 (2008).
  16. T. Lehecka, S. Bodner, A. V. Deniz, A. N. Mostovych, S. P. Obenschain, C. J. Pawley, and M. S. Pronko, “The NIKE KrF laser fusion facility,” J. Fusion Energ. 10, 301–303 (1991).
    [CrossRef]
  17. J. D. Sethian, M. Myers, J. L. Giuliani, R. Lehmberg, P. Kepple, M. F. Wolford, F. Hegeler, M. Friedman, S. B. Swanekamp, D. Weidenheimer, and D. Rose, “Development of krypton fluoride lasers for fusion energy,” in Inertial Fusion Sciences and Applications 2003 (ANS, 2004), pp. 517–522.
  18. G. S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer-Verlag, 2001).
  19. J. E. Carlson, “Frequency and temperature dependence of acoustic properties of polymers used in pulse-echo systems,” in IEEE Symposium on Ultrasonics (IEEE, 2003), pp. 885–888.
  20. D. Moore, D. Funk, and S. McGrane, “At the confluence of experiment and simulation: Ultrafast laser spectroscopic studies of shock compressed energetic materials,” Chemistry at Extreme Conditions, M. Riad Manaa, ed. (Elsevier, 2005).
  21. L. Barker and R. E. Hollenbach, “Shockwave studies of PMMA, fused silica, and sapphire,” J. Appl. Phys. 41, 4208–4226 (1970).
    [CrossRef]
  22. S. Marsh, LASL Shock Hugoniot Data (University of California, 1980).
  23. D. R. Christman, “Final report to the defense nuclear agency,” Rep. No. , 1980.

2012

J.-H. Lee, D. Veysset, J. Singer, M. Retsch, G. Saini, T. Pezeril, K. Nelson, and E. Thomas, “High strain rate deformation of layered nanocomposites,” Nat. Commun. 3, 1164 (2012).
[CrossRef]

2011

T. Pezeril, G. Saini, D. Veysset, S. Kooi, P. Fidkowski, R. Radovitzky, and K. Nelson, “Direct visualization of laser-driven focusing shock waves,” Phys. Rev. Lett. 106, 214503 (2011).
[CrossRef]

2009

G. Flockhart, M. McGuire, S. Pierce, G. Thursby, G. Stewart, G. Hayward, and B. Culshaw, “Direct monitoring of underwater ultrasonic transducers in the near field using fibre Bragg grating sensors,” Proc. SPIE 7503, 750331 (2009).
[CrossRef]

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125, 3611–3622 (2009).
[CrossRef]

R. G. Minasamudram, P. Arora, G. Gandhi, A. S. Daryoush, M. A. El-Sherif, and P. A. Lewin, “Thin film metal coated fiber optic hydrophone probe,” Appl. Opt. 48, G77–G82 (2009).
[CrossRef]

2008

C. Koch and K.-V. Jenderka, “Measurement of sound field in cavitating media by an optical fibre-tip hydrophone,” Ultrason. Sonochem. 15, 502–509 (2008).

2007

W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17, 1334–1342 (2007).
[CrossRef]

2006

S. Watson, M. J. Gander, W. N. MacPherson, J. S. Barton, J. D. C. Jones, T. Klotzbuecher, T. Braune, J. Ott, and F. Schmitz, “Laser-machined fibers as Fabry-Perot pressure sensors,” Appl. Opt. 45, 5590–5596 (2006).
[CrossRef]

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17, 1337–1342 (2006).
[CrossRef]

2005

M. Schirber, “For nuclear fusion, could two lasers be better than one?” Science 310, 1610–1611 (2005).
[CrossRef]

2003

P. Fomitchov and S. Krishnaswamy, “Response of a fiber Bragg grating ultrasonic sensor,” Opt. Eng. 42, 956–963 (2003).
[CrossRef]

2000

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11, 95–102 (2000).
[CrossRef]

1998

N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “Ultrasonic hydrophone based on short in-fiber Bragg gratings,” Appl. Opt. 37, 8120–8128 (1998).
[CrossRef]

C. Koch, G. Ludwig, and W. Molkenstruck, “Calibration of a fiber tip ultrasonic sensor up to 50  mhz and the application to shock wave measurement,” Ultrasonics 36, 721–725 (1998).
[CrossRef]

1993

J. Staudenraus and W. Eisenmenger, “Fiberoptic probe hydrophone for ultrasonic and shock-wave measurements in water,” Ultrasonics 31, 267–273 (1993).
[CrossRef]

1991

T. Lehecka, S. Bodner, A. V. Deniz, A. N. Mostovych, S. P. Obenschain, C. J. Pawley, and M. S. Pronko, “The NIKE KrF laser fusion facility,” J. Fusion Energ. 10, 301–303 (1991).
[CrossRef]

1970

L. Barker and R. E. Hollenbach, “Shockwave studies of PMMA, fused silica, and sapphire,” J. Appl. Phys. 41, 4208–4226 (1970).
[CrossRef]

Allen, R. M.

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11, 95–102 (2000).
[CrossRef]

Arora, P.

Barker, L.

L. Barker and R. E. Hollenbach, “Shockwave studies of PMMA, fused silica, and sapphire,” J. Appl. Phys. 41, 4208–4226 (1970).
[CrossRef]

Barton, J. S.

W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17, 1334–1342 (2007).
[CrossRef]

S. Watson, M. J. Gander, W. N. MacPherson, J. S. Barton, J. D. C. Jones, T. Klotzbuecher, T. Braune, J. Ott, and F. Schmitz, “Laser-machined fibers as Fabry-Perot pressure sensors,” Appl. Opt. 45, 5590–5596 (2006).
[CrossRef]

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17, 1337–1342 (2006).
[CrossRef]

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11, 95–102 (2000).
[CrossRef]

Beard, P.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125, 3611–3622 (2009).
[CrossRef]

Bennion, I.

Bodner, S.

T. Lehecka, S. Bodner, A. V. Deniz, A. N. Mostovych, S. P. Obenschain, C. J. Pawley, and M. S. Pronko, “The NIKE KrF laser fusion facility,” J. Fusion Energ. 10, 301–303 (1991).
[CrossRef]

Braune, T.

Carlson, J. E.

J. E. Carlson, “Frequency and temperature dependence of acoustic properties of polymers used in pulse-echo systems,” in IEEE Symposium on Ultrasonics (IEEE, 2003), pp. 885–888.

Christman, D. R.

D. R. Christman, “Final report to the defense nuclear agency,” Rep. No. , 1980.

Culshaw, B.

G. Flockhart, M. McGuire, S. Pierce, G. Thursby, G. Stewart, G. Hayward, and B. Culshaw, “Direct monitoring of underwater ultrasonic transducers in the near field using fibre Bragg grating sensors,” Proc. SPIE 7503, 750331 (2009).
[CrossRef]

Daryoush, A. S.

Deniz, A. V.

T. Lehecka, S. Bodner, A. V. Deniz, A. N. Mostovych, S. P. Obenschain, C. J. Pawley, and M. S. Pronko, “The NIKE KrF laser fusion facility,” J. Fusion Energ. 10, 301–303 (1991).
[CrossRef]

Djakov, V.

W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17, 1334–1342 (2007).
[CrossRef]

Dunare, C.

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17, 1337–1342 (2006).
[CrossRef]

Dunare, C. C.

W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17, 1334–1342 (2007).
[CrossRef]

Eisenmenger, W.

J. Staudenraus and W. Eisenmenger, “Fiberoptic probe hydrophone for ultrasonic and shock-wave measurements in water,” Ultrasonics 31, 267–273 (1993).
[CrossRef]

El-Sherif, M. A.

Fidkowski, P.

T. Pezeril, G. Saini, D. Veysset, S. Kooi, P. Fidkowski, R. Radovitzky, and K. Nelson, “Direct visualization of laser-driven focusing shock waves,” Phys. Rev. Lett. 106, 214503 (2011).
[CrossRef]

Fisher, N. E.

Flockhart, G.

G. Flockhart, M. McGuire, S. Pierce, G. Thursby, G. Stewart, G. Hayward, and B. Culshaw, “Direct monitoring of underwater ultrasonic transducers in the near field using fibre Bragg grating sensors,” Proc. SPIE 7503, 750331 (2009).
[CrossRef]

Fomitchov, P.

P. Fomitchov and S. Krishnaswamy, “Response of a fiber Bragg grating ultrasonic sensor,” Opt. Eng. 42, 956–963 (2003).
[CrossRef]

Friedman, M.

J. D. Sethian, M. Myers, J. L. Giuliani, R. Lehmberg, P. Kepple, M. F. Wolford, F. Hegeler, M. Friedman, S. B. Swanekamp, D. Weidenheimer, and D. Rose, “Development of krypton fluoride lasers for fusion energy,” in Inertial Fusion Sciences and Applications 2003 (ANS, 2004), pp. 517–522.

Funk, D.

D. Moore, D. Funk, and S. McGrane, “At the confluence of experiment and simulation: Ultrafast laser spectroscopic studies of shock compressed energetic materials,” Chemistry at Extreme Conditions, M. Riad Manaa, ed. (Elsevier, 2005).

Gander, M. J.

S. Watson, M. J. Gander, W. N. MacPherson, J. S. Barton, J. D. C. Jones, T. Klotzbuecher, T. Braune, J. Ott, and F. Schmitz, “Laser-machined fibers as Fabry-Perot pressure sensors,” Appl. Opt. 45, 5590–5596 (2006).
[CrossRef]

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11, 95–102 (2000).
[CrossRef]

Gandhi, G.

Gavrilov, L. R.

Giuliani, J. L.

J. D. Sethian, M. Myers, J. L. Giuliani, R. Lehmberg, P. Kepple, M. F. Wolford, F. Hegeler, M. Friedman, S. B. Swanekamp, D. Weidenheimer, and D. Rose, “Development of krypton fluoride lasers for fusion energy,” in Inertial Fusion Sciences and Applications 2003 (ANS, 2004), pp. 517–522.

Hand, J. W.

Hayward, G.

G. Flockhart, M. McGuire, S. Pierce, G. Thursby, G. Stewart, G. Hayward, and B. Culshaw, “Direct monitoring of underwater ultrasonic transducers in the near field using fibre Bragg grating sensors,” Proc. SPIE 7503, 750331 (2009).
[CrossRef]

Hegeler, F.

J. D. Sethian, M. Myers, J. L. Giuliani, R. Lehmberg, P. Kepple, M. F. Wolford, F. Hegeler, M. Friedman, S. B. Swanekamp, D. Weidenheimer, and D. Rose, “Development of krypton fluoride lasers for fusion energy,” in Inertial Fusion Sciences and Applications 2003 (ANS, 2004), pp. 517–522.

Hindle, A.

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17, 1337–1342 (2006).
[CrossRef]

Hollenbach, R. E.

L. Barker and R. E. Hollenbach, “Shockwave studies of PMMA, fused silica, and sapphire,” J. Appl. Phys. 41, 4208–4226 (1970).
[CrossRef]

Hurrell, A.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125, 3611–3622 (2009).
[CrossRef]

Jackson, D. A.

Jenderka, K.-V.

C. Koch and K.-V. Jenderka, “Measurement of sound field in cavitating media by an optical fibre-tip hydrophone,” Ultrason. Sonochem. 15, 502–509 (2008).

Jones, J. D. C.

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17, 1337–1342 (2006).
[CrossRef]

S. Watson, M. J. Gander, W. N. MacPherson, J. S. Barton, J. D. C. Jones, T. Klotzbuecher, T. Braune, J. Ott, and F. Schmitz, “Laser-machined fibers as Fabry-Perot pressure sensors,” Appl. Opt. 45, 5590–5596 (2006).
[CrossRef]

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11, 95–102 (2000).
[CrossRef]

Kepple, P.

J. D. Sethian, M. Myers, J. L. Giuliani, R. Lehmberg, P. Kepple, M. F. Wolford, F. Hegeler, M. Friedman, S. B. Swanekamp, D. Weidenheimer, and D. Rose, “Development of krypton fluoride lasers for fusion energy,” in Inertial Fusion Sciences and Applications 2003 (ANS, 2004), pp. 517–522.

Klotzbuecher, T.

Koch, C.

C. Koch and K.-V. Jenderka, “Measurement of sound field in cavitating media by an optical fibre-tip hydrophone,” Ultrason. Sonochem. 15, 502–509 (2008).

C. Koch, G. Ludwig, and W. Molkenstruck, “Calibration of a fiber tip ultrasonic sensor up to 50  mhz and the application to shock wave measurement,” Ultrasonics 36, 721–725 (1998).
[CrossRef]

Kooi, S.

T. Pezeril, G. Saini, D. Veysset, S. Kooi, P. Fidkowski, R. Radovitzky, and K. Nelson, “Direct visualization of laser-driven focusing shock waves,” Phys. Rev. Lett. 106, 214503 (2011).
[CrossRef]

Krishnaswamy, S.

P. Fomitchov and S. Krishnaswamy, “Response of a fiber Bragg grating ultrasonic sensor,” Opt. Eng. 42, 956–963 (2003).
[CrossRef]

Lee, J.-H.

J.-H. Lee, D. Veysset, J. Singer, M. Retsch, G. Saini, T. Pezeril, K. Nelson, and E. Thomas, “High strain rate deformation of layered nanocomposites,” Nat. Commun. 3, 1164 (2012).
[CrossRef]

Lehecka, T.

T. Lehecka, S. Bodner, A. V. Deniz, A. N. Mostovych, S. P. Obenschain, C. J. Pawley, and M. S. Pronko, “The NIKE KrF laser fusion facility,” J. Fusion Energ. 10, 301–303 (1991).
[CrossRef]

Lehmberg, R.

J. D. Sethian, M. Myers, J. L. Giuliani, R. Lehmberg, P. Kepple, M. F. Wolford, F. Hegeler, M. Friedman, S. B. Swanekamp, D. Weidenheimer, and D. Rose, “Development of krypton fluoride lasers for fusion energy,” in Inertial Fusion Sciences and Applications 2003 (ANS, 2004), pp. 517–522.

Lewin, P. A.

Ludwig, G.

C. Koch, G. Ludwig, and W. Molkenstruck, “Calibration of a fiber tip ultrasonic sensor up to 50  mhz and the application to shock wave measurement,” Ultrasonics 36, 721–725 (1998).
[CrossRef]

MacPherson, W. N.

W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17, 1334–1342 (2007).
[CrossRef]

S. Watson, M. J. Gander, W. N. MacPherson, J. S. Barton, J. D. C. Jones, T. Klotzbuecher, T. Braune, J. Ott, and F. Schmitz, “Laser-machined fibers as Fabry-Perot pressure sensors,” Appl. Opt. 45, 5590–5596 (2006).
[CrossRef]

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17, 1337–1342 (2006).
[CrossRef]

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11, 95–102 (2000).
[CrossRef]

Marsh, S.

S. Marsh, LASL Shock Hugoniot Data (University of California, 1980).

McGrane, S.

D. Moore, D. Funk, and S. McGrane, “At the confluence of experiment and simulation: Ultrafast laser spectroscopic studies of shock compressed energetic materials,” Chemistry at Extreme Conditions, M. Riad Manaa, ed. (Elsevier, 2005).

McGuire, M.

G. Flockhart, M. McGuire, S. Pierce, G. Thursby, G. Stewart, G. Hayward, and B. Culshaw, “Direct monitoring of underwater ultrasonic transducers in the near field using fibre Bragg grating sensors,” Proc. SPIE 7503, 750331 (2009).
[CrossRef]

Minasamudram, R. G.

Molkenstruck, W.

C. Koch, G. Ludwig, and W. Molkenstruck, “Calibration of a fiber tip ultrasonic sensor up to 50  mhz and the application to shock wave measurement,” Ultrasonics 36, 721–725 (1998).
[CrossRef]

Moore, D.

D. Moore, D. Funk, and S. McGrane, “At the confluence of experiment and simulation: Ultrafast laser spectroscopic studies of shock compressed energetic materials,” Chemistry at Extreme Conditions, M. Riad Manaa, ed. (Elsevier, 2005).

Morris, P.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125, 3611–3622 (2009).
[CrossRef]

Mostovych, A. N.

T. Lehecka, S. Bodner, A. V. Deniz, A. N. Mostovych, S. P. Obenschain, C. J. Pawley, and M. S. Pronko, “The NIKE KrF laser fusion facility,” J. Fusion Energ. 10, 301–303 (1991).
[CrossRef]

Myers, M.

J. D. Sethian, M. Myers, J. L. Giuliani, R. Lehmberg, P. Kepple, M. F. Wolford, F. Hegeler, M. Friedman, S. B. Swanekamp, D. Weidenheimer, and D. Rose, “Development of krypton fluoride lasers for fusion energy,” in Inertial Fusion Sciences and Applications 2003 (ANS, 2004), pp. 517–522.

Nelson, K.

J.-H. Lee, D. Veysset, J. Singer, M. Retsch, G. Saini, T. Pezeril, K. Nelson, and E. Thomas, “High strain rate deformation of layered nanocomposites,” Nat. Commun. 3, 1164 (2012).
[CrossRef]

T. Pezeril, G. Saini, D. Veysset, S. Kooi, P. Fidkowski, R. Radovitzky, and K. Nelson, “Direct visualization of laser-driven focusing shock waves,” Phys. Rev. Lett. 106, 214503 (2011).
[CrossRef]

Obenschain, S. P.

T. Lehecka, S. Bodner, A. V. Deniz, A. N. Mostovych, S. P. Obenschain, C. J. Pawley, and M. S. Pronko, “The NIKE KrF laser fusion facility,” J. Fusion Energ. 10, 301–303 (1991).
[CrossRef]

Ott, J.

Owen, C. L.

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11, 95–102 (2000).
[CrossRef]

Pannell, C. N.

Parkes, W.

W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17, 1334–1342 (2007).
[CrossRef]

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17, 1337–1342 (2006).
[CrossRef]

Pawley, C. J.

T. Lehecka, S. Bodner, A. V. Deniz, A. N. Mostovych, S. P. Obenschain, C. J. Pawley, and M. S. Pronko, “The NIKE KrF laser fusion facility,” J. Fusion Energ. 10, 301–303 (1991).
[CrossRef]

Pezeril, T.

J.-H. Lee, D. Veysset, J. Singer, M. Retsch, G. Saini, T. Pezeril, K. Nelson, and E. Thomas, “High strain rate deformation of layered nanocomposites,” Nat. Commun. 3, 1164 (2012).
[CrossRef]

T. Pezeril, G. Saini, D. Veysset, S. Kooi, P. Fidkowski, R. Radovitzky, and K. Nelson, “Direct visualization of laser-driven focusing shock waves,” Phys. Rev. Lett. 106, 214503 (2011).
[CrossRef]

Pichugin, A. V.

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17, 1337–1342 (2006).
[CrossRef]

Pierce, S.

G. Flockhart, M. McGuire, S. Pierce, G. Thursby, G. Stewart, G. Hayward, and B. Culshaw, “Direct monitoring of underwater ultrasonic transducers in the near field using fibre Bragg grating sensors,” Proc. SPIE 7503, 750331 (2009).
[CrossRef]

Pronko, M. S.

T. Lehecka, S. Bodner, A. V. Deniz, A. N. Mostovych, S. P. Obenschain, C. J. Pawley, and M. S. Pronko, “The NIKE KrF laser fusion facility,” J. Fusion Energ. 10, 301–303 (1991).
[CrossRef]

Radovitzky, R.

T. Pezeril, G. Saini, D. Veysset, S. Kooi, P. Fidkowski, R. Radovitzky, and K. Nelson, “Direct visualization of laser-driven focusing shock waves,” Phys. Rev. Lett. 106, 214503 (2011).
[CrossRef]

Retsch, M.

J.-H. Lee, D. Veysset, J. Singer, M. Retsch, G. Saini, T. Pezeril, K. Nelson, and E. Thomas, “High strain rate deformation of layered nanocomposites,” Nat. Commun. 3, 1164 (2012).
[CrossRef]

Rose, D.

J. D. Sethian, M. Myers, J. L. Giuliani, R. Lehmberg, P. Kepple, M. F. Wolford, F. Hegeler, M. Friedman, S. B. Swanekamp, D. Weidenheimer, and D. Rose, “Development of krypton fluoride lasers for fusion energy,” in Inertial Fusion Sciences and Applications 2003 (ANS, 2004), pp. 517–522.

Saini, G.

J.-H. Lee, D. Veysset, J. Singer, M. Retsch, G. Saini, T. Pezeril, K. Nelson, and E. Thomas, “High strain rate deformation of layered nanocomposites,” Nat. Commun. 3, 1164 (2012).
[CrossRef]

T. Pezeril, G. Saini, D. Veysset, S. Kooi, P. Fidkowski, R. Radovitzky, and K. Nelson, “Direct visualization of laser-driven focusing shock waves,” Phys. Rev. Lett. 106, 214503 (2011).
[CrossRef]

Schirber, M.

M. Schirber, “For nuclear fusion, could two lasers be better than one?” Science 310, 1610–1611 (2005).
[CrossRef]

Schmitz, F.

Sethian, J. D.

J. D. Sethian, M. Myers, J. L. Giuliani, R. Lehmberg, P. Kepple, M. F. Wolford, F. Hegeler, M. Friedman, S. B. Swanekamp, D. Weidenheimer, and D. Rose, “Development of krypton fluoride lasers for fusion energy,” in Inertial Fusion Sciences and Applications 2003 (ANS, 2004), pp. 517–522.

Settles, G. S.

G. S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer-Verlag, 2001).

Shaw, A.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125, 3611–3622 (2009).
[CrossRef]

Singer, J.

J.-H. Lee, D. Veysset, J. Singer, M. Retsch, G. Saini, T. Pezeril, K. Nelson, and E. Thomas, “High strain rate deformation of layered nanocomposites,” Nat. Commun. 3, 1164 (2012).
[CrossRef]

Staudenraus, J.

J. Staudenraus and W. Eisenmenger, “Fiberoptic probe hydrophone for ultrasonic and shock-wave measurements in water,” Ultrasonics 31, 267–273 (1993).
[CrossRef]

Stevenson, J. T. M.

W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17, 1334–1342 (2007).
[CrossRef]

Stevenson, T.

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17, 1337–1342 (2006).
[CrossRef]

Stewart, G.

G. Flockhart, M. McGuire, S. Pierce, G. Thursby, G. Stewart, G. Hayward, and B. Culshaw, “Direct monitoring of underwater ultrasonic transducers in the near field using fibre Bragg grating sensors,” Proc. SPIE 7503, 750331 (2009).
[CrossRef]

Swanekamp, S. B.

J. D. Sethian, M. Myers, J. L. Giuliani, R. Lehmberg, P. Kepple, M. F. Wolford, F. Hegeler, M. Friedman, S. B. Swanekamp, D. Weidenheimer, and D. Rose, “Development of krypton fluoride lasers for fusion energy,” in Inertial Fusion Sciences and Applications 2003 (ANS, 2004), pp. 517–522.

Thomas, E.

J.-H. Lee, D. Veysset, J. Singer, M. Retsch, G. Saini, T. Pezeril, K. Nelson, and E. Thomas, “High strain rate deformation of layered nanocomposites,” Nat. Commun. 3, 1164 (2012).
[CrossRef]

Thursby, G.

G. Flockhart, M. McGuire, S. Pierce, G. Thursby, G. Stewart, G. Hayward, and B. Culshaw, “Direct monitoring of underwater ultrasonic transducers in the near field using fibre Bragg grating sensors,” Proc. SPIE 7503, 750331 (2009).
[CrossRef]

Tyas, A.

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17, 1337–1342 (2006).
[CrossRef]

Veysset, D.

J.-H. Lee, D. Veysset, J. Singer, M. Retsch, G. Saini, T. Pezeril, K. Nelson, and E. Thomas, “High strain rate deformation of layered nanocomposites,” Nat. Commun. 3, 1164 (2012).
[CrossRef]

T. Pezeril, G. Saini, D. Veysset, S. Kooi, P. Fidkowski, R. Radovitzky, and K. Nelson, “Direct visualization of laser-driven focusing shock waves,” Phys. Rev. Lett. 106, 214503 (2011).
[CrossRef]

Watson, A. J.

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11, 95–102 (2000).
[CrossRef]

Watson, S.

W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17, 1334–1342 (2007).
[CrossRef]

S. Watson, M. J. Gander, W. N. MacPherson, J. S. Barton, J. D. C. Jones, T. Klotzbuecher, T. Braune, J. Ott, and F. Schmitz, “Laser-machined fibers as Fabry-Perot pressure sensors,” Appl. Opt. 45, 5590–5596 (2006).
[CrossRef]

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17, 1337–1342 (2006).
[CrossRef]

Webb, D. J.

Weidenheimer, D.

J. D. Sethian, M. Myers, J. L. Giuliani, R. Lehmberg, P. Kepple, M. F. Wolford, F. Hegeler, M. Friedman, S. B. Swanekamp, D. Weidenheimer, and D. Rose, “Development of krypton fluoride lasers for fusion energy,” in Inertial Fusion Sciences and Applications 2003 (ANS, 2004), pp. 517–522.

Wolford, M. F.

J. D. Sethian, M. Myers, J. L. Giuliani, R. Lehmberg, P. Kepple, M. F. Wolford, F. Hegeler, M. Friedman, S. B. Swanekamp, D. Weidenheimer, and D. Rose, “Development of krypton fluoride lasers for fusion energy,” in Inertial Fusion Sciences and Applications 2003 (ANS, 2004), pp. 517–522.

Zhang, E.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125, 3611–3622 (2009).
[CrossRef]

Zhang, L.

Appl. Opt.

J. Acoust. Soc. Am.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125, 3611–3622 (2009).
[CrossRef]

J. Appl. Phys.

L. Barker and R. E. Hollenbach, “Shockwave studies of PMMA, fused silica, and sapphire,” J. Appl. Phys. 41, 4208–4226 (1970).
[CrossRef]

J. Fusion Energ.

T. Lehecka, S. Bodner, A. V. Deniz, A. N. Mostovych, S. P. Obenschain, C. J. Pawley, and M. S. Pronko, “The NIKE KrF laser fusion facility,” J. Fusion Energ. 10, 301–303 (1991).
[CrossRef]

J. Micromech. Microeng.

W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17, 1334–1342 (2007).
[CrossRef]

Meas. Sci. Technol.

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17, 1337–1342 (2006).
[CrossRef]

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11, 95–102 (2000).
[CrossRef]

Nat. Commun.

J.-H. Lee, D. Veysset, J. Singer, M. Retsch, G. Saini, T. Pezeril, K. Nelson, and E. Thomas, “High strain rate deformation of layered nanocomposites,” Nat. Commun. 3, 1164 (2012).
[CrossRef]

Opt. Eng.

P. Fomitchov and S. Krishnaswamy, “Response of a fiber Bragg grating ultrasonic sensor,” Opt. Eng. 42, 956–963 (2003).
[CrossRef]

Phys. Rev. Lett.

T. Pezeril, G. Saini, D. Veysset, S. Kooi, P. Fidkowski, R. Radovitzky, and K. Nelson, “Direct visualization of laser-driven focusing shock waves,” Phys. Rev. Lett. 106, 214503 (2011).
[CrossRef]

Proc. SPIE

G. Flockhart, M. McGuire, S. Pierce, G. Thursby, G. Stewart, G. Hayward, and B. Culshaw, “Direct monitoring of underwater ultrasonic transducers in the near field using fibre Bragg grating sensors,” Proc. SPIE 7503, 750331 (2009).
[CrossRef]

Science

M. Schirber, “For nuclear fusion, could two lasers be better than one?” Science 310, 1610–1611 (2005).
[CrossRef]

Ultrason. Sonochem.

C. Koch and K.-V. Jenderka, “Measurement of sound field in cavitating media by an optical fibre-tip hydrophone,” Ultrason. Sonochem. 15, 502–509 (2008).

Ultrasonics

C. Koch, G. Ludwig, and W. Molkenstruck, “Calibration of a fiber tip ultrasonic sensor up to 50  mhz and the application to shock wave measurement,” Ultrasonics 36, 721–725 (1998).
[CrossRef]

J. Staudenraus and W. Eisenmenger, “Fiberoptic probe hydrophone for ultrasonic and shock-wave measurements in water,” Ultrasonics 31, 267–273 (1993).
[CrossRef]

Other

S. Marsh, LASL Shock Hugoniot Data (University of California, 1980).

D. R. Christman, “Final report to the defense nuclear agency,” Rep. No. , 1980.

J. D. Sethian, M. Myers, J. L. Giuliani, R. Lehmberg, P. Kepple, M. F. Wolford, F. Hegeler, M. Friedman, S. B. Swanekamp, D. Weidenheimer, and D. Rose, “Development of krypton fluoride lasers for fusion energy,” in Inertial Fusion Sciences and Applications 2003 (ANS, 2004), pp. 517–522.

G. S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer-Verlag, 2001).

J. E. Carlson, “Frequency and temperature dependence of acoustic properties of polymers used in pulse-echo systems,” in IEEE Symposium on Ultrasonics (IEEE, 2003), pp. 885–888.

D. Moore, D. Funk, and S. McGrane, “At the confluence of experiment and simulation: Ultrafast laser spectroscopic studies of shock compressed energetic materials,” Chemistry at Extreme Conditions, M. Riad Manaa, ed. (Elsevier, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Operating principle of fiber optic pressure probe.

Fig. 2.
Fig. 2.

Pressure sensors: (a) fiber Fabry–Perot, (b) FBG, (c) MI, and (d) packaged sensor.

Fig. 3.
Fig. 3.

Optical spectra of (a) fiber Fabry–Perot and (b) FBG sensors. These are measured by scanning a tunable laser across the resonance and recording the reflected power.

Fig. 4.
Fig. 4.

(a) General schematic of laser-induced shock system: (upper left), three pressure probes installed in test block for initial tests and (lower right), Fabry–Perot sensor installed in test block. (b) Detailed arrangement of Fabry–Perot sensor in test block.

Fig. 5.
Fig. 5.

Comparison of shock wave measurements for the fiber Fabry–Perot, FBG, and MI sensors. The oscillatory behavior observed in the FBG response arises from distortion of the FBG spectra due to the shock front.

Fig. 6.
Fig. 6.

Pressure measurements for three shots with the fiber Fabry–Perot sensor.

Fig. 7.
Fig. 7.

Linearized measurements for the three shots shown in Fig. 6.

Fig. 8.
Fig. 8.

Linearized pressure measurements from Fabry–Perot (22may12_2) sensor (inset) shows an enlargement of the measured shock front. The horizontal scale is in ns.

Fig. 9.
Fig. 9.

Shadowgraphy measurement for shot 22may12_1 (arrow indicates the shock front).

Metrics