Abstract

Low-altitude coastal hyperspectral imagery is sensitive to reflections of sky radiance at the water surface. Even in the absence of sun glint, and for a calm water surface, the wide range of viewing angles may result in pronounced, low-frequency variations of the reflected sky radiance across the scan line depending on the solar position. The variation in reflected sky radiance can be obscured by strong high-spatial-frequency sun glint and at high altitude by path radiance. However, at low altitudes, the low-spatial-frequency sky radiance effect is frequently significant and is not removed effectively by the typical corrections for sun glint. The reflected sky radiance from the water surface observed by a low-altitude sensor can be modeled in the first approximation as the sum of multiple-scattered Rayleigh path radiance and the single-scattered direct-solar-beam radiance by the aerosol in the lower atmosphere. The path radiance from zenith to the half field of view (FOV) of a typical airborne spectroradiometer has relatively minimal variation and its reflected radiance to detector array results in a flat base. Therefore the along-track variation is mostly contributed by the forward single-scattered solar-beam radiance. The scattered solar-beam radiances arrive at the water surface with different incident angles. Thus the reflected radiance received at the detector array corresponds to a certain scattering angle, and its variation is most effectively parameterized using the downward scattering angle (DSA) of the solar beam. Computation of the DSA must account for the roll, pitch, and heading of the platform and the viewing geometry of the sensor along with the solar ephemeris. Once the DSA image is calculated, the near-infrared (NIR) radiance from selected water scan lines are compared, and a relationship between DSA and NIR radiance is derived. We then apply the relationship to the entire DSA image to create an NIR reference image. Using the NIR reference image and an atmospheric spectral reflectance look-up table, the low spatial frequency variation of the water surface-reflected atmospheric contribution is removed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Doxaran, R. C. N. Cherukuru, and S. J. Lavender, “Estimation of surface reflection effects on upwelling radiance field measurements in turbid waters,” J. Opt. A 6, 690–697 (2004).
    [CrossRef]
  2. R. W. Austin, “The remote sensing of spectral radiance from below the ocean surface,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974), pp. 317–344.
  3. K. T. Kriebel, “On the variability of the reflected radiation field due to differing distributions of the irradiation,” Remote Sens. Environ. 4, 257–264 (1977).
    [CrossRef]
  4. R. H. Grant, G. M. Heisler, and W. Gao, “Clear sky radiance distributions in ultraviolet wavelength bands,” Theor. Appl. Climatol. 56, 123–135 (1997).
    [CrossRef]
  5. J. Wei, R. Van Dommelen, M. R. Lewis, S. McLean, and K. J. Voss, “A new instrument for measuring the high dynamic range radiance distribution in near-surface sea water,” Opt. Express 20, 27024–27038 (2012).
    [CrossRef]
  6. M. A. Rosen, “The angular distribution of diffuse sky radiance: an assessment of the effects of haze,” J. Solar Energy Eng. 113, 200–205 (1991).
  7. B. Fougnie, R. Frouin, P. Lecomte, and P. Deschamps, “Reduction of skylight reflection effects in the above-water measurement of diffuse marine reflectance,” Appl. Opt. 38, 3844–3856 (1999).
    [CrossRef]
  8. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38, 7442–7455 (1999).
    [CrossRef]
  9. G. F. Moore, J. Aiken, and S. J. Lavender, “The atmospheric correction of water color and the quantitative retrieval of suspended particulate matter in Case II waters: application to MERIS,” Int. J. Remote Sens. 20, 1713–1733 (1999).
    [CrossRef]
  10. D. R. Lyzenga, N. P. Malinas, and F. J. Tanis, “Multispectral bathymetry using a simple physically based algorithm,” IEEE Trans. Geosci. Remote Sens. 44, 2251–2259 (2006).
    [CrossRef]
  11. G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103, 27–42 (2006).
    [CrossRef]
  12. National Renewable Energy Laboratory ( http://www.nrel.gov/rredc/smarts/references.html ).
  13. Hydrolight ( http://www.sequoiasci.com/products/Radiative.aspx ).
  14. B.-C. Gao, M. J. Montes, Z. Ahmad, and C. O. Davis, “Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space,” Appl. Opt. 39, 887–896 (2000).
    [CrossRef]
  15. P. J. Sheridan and J. A. Ogren, “Observations of the vertical and regional variability of aerosol optical properties over central and Eastern North America,” J. Geophys. Res. 104, 16793–16805 (1999).
    [CrossRef]
  16. Y. J. Kaufman, A. Gitelson, A. Karnieli, E. Ganor, and R. S. Fraser, “Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements,” J. Geophys. Res. 99, 10341–10365 (1994).
    [CrossRef]
  17. G. H. Bryan, Stability in Aviation: An Introduction to Dynamical Stability as Applied to the Motions of Aeroplanes (Macmillan, 1911).
  18. P. Friess, “Toward a rigorous methodology for airborne laser mapping,” in Proceedings of EuroCOW, Castelldefels, Spain, January25–27, 2006.
  19. A. F. Habib, M. Al-Durgham, A. P. Kersting, and P. Quackenbush, “Error budget of lidar systems and quality control of the derived point cloud,” in Proceedings of the XXI ISPRS Congress, Commission I: Vol. XXXVII. Part B1 (Institute of Photogrammetry and Remote Sensing, 2008), pp. 203–209.
  20. FLASAH atmospheric correction package, http://www.exelisvis.com .
  21. ACORN atmospheric correction package, http://www.imspec.com .
  22. A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
    [CrossRef]

2012 (1)

2006 (3)

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

D. R. Lyzenga, N. P. Malinas, and F. J. Tanis, “Multispectral bathymetry using a simple physically based algorithm,” IEEE Trans. Geosci. Remote Sens. 44, 2251–2259 (2006).
[CrossRef]

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103, 27–42 (2006).
[CrossRef]

2004 (1)

D. Doxaran, R. C. N. Cherukuru, and S. J. Lavender, “Estimation of surface reflection effects on upwelling radiance field measurements in turbid waters,” J. Opt. A 6, 690–697 (2004).
[CrossRef]

2000 (1)

1999 (4)

B. Fougnie, R. Frouin, P. Lecomte, and P. Deschamps, “Reduction of skylight reflection effects in the above-water measurement of diffuse marine reflectance,” Appl. Opt. 38, 3844–3856 (1999).
[CrossRef]

C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38, 7442–7455 (1999).
[CrossRef]

G. F. Moore, J. Aiken, and S. J. Lavender, “The atmospheric correction of water color and the quantitative retrieval of suspended particulate matter in Case II waters: application to MERIS,” Int. J. Remote Sens. 20, 1713–1733 (1999).
[CrossRef]

P. J. Sheridan and J. A. Ogren, “Observations of the vertical and regional variability of aerosol optical properties over central and Eastern North America,” J. Geophys. Res. 104, 16793–16805 (1999).
[CrossRef]

1997 (1)

R. H. Grant, G. M. Heisler, and W. Gao, “Clear sky radiance distributions in ultraviolet wavelength bands,” Theor. Appl. Climatol. 56, 123–135 (1997).
[CrossRef]

1994 (1)

Y. J. Kaufman, A. Gitelson, A. Karnieli, E. Ganor, and R. S. Fraser, “Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements,” J. Geophys. Res. 99, 10341–10365 (1994).
[CrossRef]

1991 (1)

M. A. Rosen, “The angular distribution of diffuse sky radiance: an assessment of the effects of haze,” J. Solar Energy Eng. 113, 200–205 (1991).

1977 (1)

K. T. Kriebel, “On the variability of the reflected radiation field due to differing distributions of the irradiation,” Remote Sens. Environ. 4, 257–264 (1977).
[CrossRef]

Acharya, P. K.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Adler-Golden, S. M.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Ahmad, Z.

Aiken, J.

G. F. Moore, J. Aiken, and S. J. Lavender, “The atmospheric correction of water color and the quantitative retrieval of suspended particulate matter in Case II waters: application to MERIS,” Int. J. Remote Sens. 20, 1713–1733 (1999).
[CrossRef]

Al-Durgham, M.

A. F. Habib, M. Al-Durgham, A. P. Kersting, and P. Quackenbush, “Error budget of lidar systems and quality control of the derived point cloud,” in Proceedings of the XXI ISPRS Congress, Commission I: Vol. XXXVII. Part B1 (Institute of Photogrammetry and Remote Sensing, 2008), pp. 203–209.

Anderson, G. P.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Austin, R. W.

R. W. Austin, “The remote sensing of spectral radiance from below the ocean surface,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974), pp. 317–344.

Berk, A.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Bernstein, L. S.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Borel, C. C.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Bryan, G. H.

G. H. Bryan, Stability in Aviation: An Introduction to Dynamical Stability as Applied to the Motions of Aeroplanes (Macmillan, 1911).

Cherukuru, R. C. N.

D. Doxaran, R. C. N. Cherukuru, and S. J. Lavender, “Estimation of surface reflection effects on upwelling radiance field measurements in turbid waters,” J. Opt. A 6, 690–697 (2004).
[CrossRef]

Chetwynd, J. H.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Cooley, T. W.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Dangel, S.

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103, 27–42 (2006).
[CrossRef]

Davis, C. O.

Deschamps, P.

Doxaran, D.

D. Doxaran, R. C. N. Cherukuru, and S. J. Lavender, “Estimation of surface reflection effects on upwelling radiance field measurements in turbid waters,” J. Opt. A 6, 690–697 (2004).
[CrossRef]

Fougnie, B.

Fox, M.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Fraser, R. S.

Y. J. Kaufman, A. Gitelson, A. Karnieli, E. Ganor, and R. S. Fraser, “Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements,” J. Geophys. Res. 99, 10341–10365 (1994).
[CrossRef]

Friess, P.

P. Friess, “Toward a rigorous methodology for airborne laser mapping,” in Proceedings of EuroCOW, Castelldefels, Spain, January25–27, 2006.

Frouin, R.

Ganor, E.

Y. J. Kaufman, A. Gitelson, A. Karnieli, E. Ganor, and R. S. Fraser, “Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements,” J. Geophys. Res. 99, 10341–10365 (1994).
[CrossRef]

Gao, B.-C.

Gao, W.

R. H. Grant, G. M. Heisler, and W. Gao, “Clear sky radiance distributions in ultraviolet wavelength bands,” Theor. Appl. Climatol. 56, 123–135 (1997).
[CrossRef]

Gardner, J. A.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Gitelson, A.

Y. J. Kaufman, A. Gitelson, A. Karnieli, E. Ganor, and R. S. Fraser, “Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements,” J. Geophys. Res. 99, 10341–10365 (1994).
[CrossRef]

Grant, R. H.

R. H. Grant, G. M. Heisler, and W. Gao, “Clear sky radiance distributions in ultraviolet wavelength bands,” Theor. Appl. Climatol. 56, 123–135 (1997).
[CrossRef]

Habib, A. F.

A. F. Habib, M. Al-Durgham, A. P. Kersting, and P. Quackenbush, “Error budget of lidar systems and quality control of the derived point cloud,” in Proceedings of the XXI ISPRS Congress, Commission I: Vol. XXXVII. Part B1 (Institute of Photogrammetry and Remote Sensing, 2008), pp. 203–209.

Heisler, G. M.

R. H. Grant, G. M. Heisler, and W. Gao, “Clear sky radiance distributions in ultraviolet wavelength bands,” Theor. Appl. Climatol. 56, 123–135 (1997).
[CrossRef]

Hoke, M. L.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Karnieli, A.

Y. J. Kaufman, A. Gitelson, A. Karnieli, E. Ganor, and R. S. Fraser, “Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements,” J. Geophys. Res. 99, 10341–10365 (1994).
[CrossRef]

Kaufman, Y. J.

Y. J. Kaufman, A. Gitelson, A. Karnieli, E. Ganor, and R. S. Fraser, “Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements,” J. Geophys. Res. 99, 10341–10365 (1994).
[CrossRef]

Kersting, A. P.

A. F. Habib, M. Al-Durgham, A. P. Kersting, and P. Quackenbush, “Error budget of lidar systems and quality control of the derived point cloud,” in Proceedings of the XXI ISPRS Congress, Commission I: Vol. XXXVII. Part B1 (Institute of Photogrammetry and Remote Sensing, 2008), pp. 203–209.

Kriebel, K. T.

K. T. Kriebel, “On the variability of the reflected radiation field due to differing distributions of the irradiation,” Remote Sens. Environ. 4, 257–264 (1977).
[CrossRef]

Lavender, S. J.

D. Doxaran, R. C. N. Cherukuru, and S. J. Lavender, “Estimation of surface reflection effects on upwelling radiance field measurements in turbid waters,” J. Opt. A 6, 690–697 (2004).
[CrossRef]

G. F. Moore, J. Aiken, and S. J. Lavender, “The atmospheric correction of water color and the quantitative retrieval of suspended particulate matter in Case II waters: application to MERIS,” Int. J. Remote Sens. 20, 1713–1733 (1999).
[CrossRef]

Lecomte, P.

Lee, J.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Lewis, M. R.

Lewis, P. E.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Lockwood, R. B.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Lyzenga, D. R.

D. R. Lyzenga, N. P. Malinas, and F. J. Tanis, “Multispectral bathymetry using a simple physically based algorithm,” IEEE Trans. Geosci. Remote Sens. 44, 2251–2259 (2006).
[CrossRef]

Malinas, N. P.

D. R. Lyzenga, N. P. Malinas, and F. J. Tanis, “Multispectral bathymetry using a simple physically based algorithm,” IEEE Trans. Geosci. Remote Sens. 44, 2251–2259 (2006).
[CrossRef]

Martonchik, J. V.

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103, 27–42 (2006).
[CrossRef]

McLean, S.

Mobley, C. D.

Montes, M. J.

Moore, G. F.

G. F. Moore, J. Aiken, and S. J. Lavender, “The atmospheric correction of water color and the quantitative retrieval of suspended particulate matter in Case II waters: application to MERIS,” Int. J. Remote Sens. 20, 1713–1733 (1999).
[CrossRef]

Muratov, L.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Ogren, J. A.

P. J. Sheridan and J. A. Ogren, “Observations of the vertical and regional variability of aerosol optical properties over central and Eastern North America,” J. Geophys. Res. 104, 16793–16805 (1999).
[CrossRef]

Painter, T. H.

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103, 27–42 (2006).
[CrossRef]

Quackenbush, P.

A. F. Habib, M. Al-Durgham, A. P. Kersting, and P. Quackenbush, “Error budget of lidar systems and quality control of the derived point cloud,” in Proceedings of the XXI ISPRS Congress, Commission I: Vol. XXXVII. Part B1 (Institute of Photogrammetry and Remote Sensing, 2008), pp. 203–209.

Rosen, M. A.

M. A. Rosen, “The angular distribution of diffuse sky radiance: an assessment of the effects of haze,” J. Solar Energy Eng. 113, 200–205 (1991).

Schaepman, M. E.

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103, 27–42 (2006).
[CrossRef]

Schaepman-Strub, G.

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103, 27–42 (2006).
[CrossRef]

Sheridan, P. J.

P. J. Sheridan and J. A. Ogren, “Observations of the vertical and regional variability of aerosol optical properties over central and Eastern North America,” J. Geophys. Res. 104, 16793–16805 (1999).
[CrossRef]

Shettle, E. P.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Tanis, F. J.

D. R. Lyzenga, N. P. Malinas, and F. J. Tanis, “Multispectral bathymetry using a simple physically based algorithm,” IEEE Trans. Geosci. Remote Sens. 44, 2251–2259 (2006).
[CrossRef]

Van Dommelen, R.

Voss, K. J.

Wei, J.

Appl. Opt. (3)

IEEE Trans. Geosci. Remote Sens. (1)

D. R. Lyzenga, N. P. Malinas, and F. J. Tanis, “Multispectral bathymetry using a simple physically based algorithm,” IEEE Trans. Geosci. Remote Sens. 44, 2251–2259 (2006).
[CrossRef]

Int. J. Remote Sens. (1)

G. F. Moore, J. Aiken, and S. J. Lavender, “The atmospheric correction of water color and the quantitative retrieval of suspended particulate matter in Case II waters: application to MERIS,” Int. J. Remote Sens. 20, 1713–1733 (1999).
[CrossRef]

J. Geophys. Res. (2)

P. J. Sheridan and J. A. Ogren, “Observations of the vertical and regional variability of aerosol optical properties over central and Eastern North America,” J. Geophys. Res. 104, 16793–16805 (1999).
[CrossRef]

Y. J. Kaufman, A. Gitelson, A. Karnieli, E. Ganor, and R. S. Fraser, “Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements,” J. Geophys. Res. 99, 10341–10365 (1994).
[CrossRef]

J. Opt. A (1)

D. Doxaran, R. C. N. Cherukuru, and S. J. Lavender, “Estimation of surface reflection effects on upwelling radiance field measurements in turbid waters,” J. Opt. A 6, 690–697 (2004).
[CrossRef]

J. Solar Energy Eng. (1)

M. A. Rosen, “The angular distribution of diffuse sky radiance: an assessment of the effects of haze,” J. Solar Energy Eng. 113, 200–205 (1991).

Opt. Express (1)

Proc. SPIE (1)

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Remote Sens. Environ. (2)

K. T. Kriebel, “On the variability of the reflected radiation field due to differing distributions of the irradiation,” Remote Sens. Environ. 4, 257–264 (1977).
[CrossRef]

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103, 27–42 (2006).
[CrossRef]

Theor. Appl. Climatol. (1)

R. H. Grant, G. M. Heisler, and W. Gao, “Clear sky radiance distributions in ultraviolet wavelength bands,” Theor. Appl. Climatol. 56, 123–135 (1997).
[CrossRef]

Other (8)

R. W. Austin, “The remote sensing of spectral radiance from below the ocean surface,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974), pp. 317–344.

National Renewable Energy Laboratory ( http://www.nrel.gov/rredc/smarts/references.html ).

Hydrolight ( http://www.sequoiasci.com/products/Radiative.aspx ).

G. H. Bryan, Stability in Aviation: An Introduction to Dynamical Stability as Applied to the Motions of Aeroplanes (Macmillan, 1911).

P. Friess, “Toward a rigorous methodology for airborne laser mapping,” in Proceedings of EuroCOW, Castelldefels, Spain, January25–27, 2006.

A. F. Habib, M. Al-Durgham, A. P. Kersting, and P. Quackenbush, “Error budget of lidar systems and quality control of the derived point cloud,” in Proceedings of the XXI ISPRS Congress, Commission I: Vol. XXXVII. Part B1 (Institute of Photogrammetry and Remote Sensing, 2008), pp. 203–209.

FLASAH atmospheric correction package, http://www.exelisvis.com .

ACORN atmospheric correction package, http://www.imspec.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Three flight lines on the LANDSAT background image near Ft. Lauderdale, Florida, in July 2005. The width of the flight line is about 300 m.

Fig. 2.
Fig. 2.

(a) Cross-track profile of remote-sensing reflectance in the NIR. (b) Selected spectra.

Fig. 3.
Fig. 3.

Horizontal scan line profiles of NIR reflectance for the two lines shown in the image.

Fig. 4.
Fig. 4.

(a) Horizontal scan line profile of NIR reflectance for one deep and two shallow scan lines. (b) Horizontal scan line profile of NIR reflectance from the coast to medium depth.

Fig. 5.
Fig. 5.

Simulated water-leaving reflectance for varying shallow depths for (a) sand bottom and (b) vegetative bottom, from 0.5 to 1.5 m in 10 cm interval.

Fig. 6.
Fig. 6.

(a) Illustration of upwelling path radiance. (b) Example aerosol scattering phase function.

Fig. 7.
Fig. 7.

Illustration of aerosol scattering of the direct solar beam reflected at the water surface and redirected toward the detector.

Fig. 8.
Fig. 8.

Illustration of SBF in reference to the airborne platform: (a) top view and (b) vertical view.

Fig. 9.
Fig. 9.

Illustration of the rotation matrix: (a) SBF to IBF and (b) IBF to LGF.

Fig. 10.
Fig. 10.

Illustration of the two direction vectors: direct solar beam and the sensor viewing in the LGF.

Fig. 11.
Fig. 11.

(a) NIR band CASI-1500 image. (b) NIR band image modeled using TAFKAA. (c) Vertical profile of the left boundary of the flight line. The bottom two plots compare the modeled NIR reflectance using TAFKAA to the real NIR reflectance along the horizontal scan line: (d) for high (H) and (e) for low (L).

Fig. 12.
Fig. 12.

Reflectance at NIR channel over the downward-scattering angle.

Fig. 13.
Fig. 13.

(a) NIR band CASI-1500 image. (b) NIR band image modeled using DSA model. (c) Vertical profile of the left boundary of the flight line. The bottom two plots compare the modeled NIR reflectance using DSA model to the real data along the horizontal scan line: (d) for high (L) and (e) for low (L).

Fig. 14.
Fig. 14.

Atmospheric reflectance library and the image-driven glint-ripple library.

Fig. 15.
Fig. 15.

Comparison between corrected image using scattering angle concept and the raw mosaic image. (a) Full corrected mosaic image of a set of flight lines. (b) Uncorrected mosaic. (c) Close-up of the corrected data for the red rectangle in (a). (d) Close-up of the corresponding area in (b). Profiles of the corrected (red) and uncorrected (blue) data along the red line in (c) and (d) are shown in (e).

Fig. 16.
Fig. 16.

Optically deep-water reflectance spectra from regions of different water types. The water-absorption spectrum is on the secondary vertical axis.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Lsky(ξ^,Z)=2πLskyβ^b{1exp[baZ]}.
Lsun(ξ^,Z)=Lsunβ^(πθFOV/2θs)ΔΩ(ξ^o){1exp[baZ]}.
Lsun(θ)=0ZLsun(ξ^o)β(θ)ΔΩ(ξ^o)exp[ba(z)z]dz,
L_sun(θ)=RF·Lsun(ξ^o)β(θ)ΔΩ(ξ^o){1exp[τa]}.
VPSBF=[0,sinθ,cosθ]T.
θ=tan1(N2n1N1tan(θFOV/2)),
RSBFIBF=[cosβcosγsinαsinβcosγcosαsinγcosαsinβcosγ+sinαsinγcosβsinγsinαsinβsinγ+cosαcosγcosαsinβsinγsinαcosγsinβsinαcosβcosαcosβ].
VPLGF=(RIBFLGFRSBFIBF)VPSBF.
VSLGF=[sin(SZA)cos(SAA)sin(SZA)sin(SAA)cos(SZA)].
DSA=cos1(VSLGF·VPLGF).

Metrics