Abstract

In the present work, the pyro-electrohydrodynamic technique was used for the realization of tunable-size microlens arrays. Poly(methyl methacrylate) dissolved in different solvent mixtures was used as the polymeric material for the realization of the microstructures. By controlling the experimental parameters and in particular, the volume of the drop reservoir, graded-size square arrays of tens of microlenses with focal length in the range 1.5–3 mm were produced. Moreover, the optical quality and geometrical features were investigated by profilometric and interferometric analysis.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, “Tunable microdoublet lens array,” Opt. Express 12, 2494–2500 (2004).
    [CrossRef]
  2. D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
    [CrossRef]
  3. H. Ren and S. T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86, 211107 (2005).
    [CrossRef]
  4. S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90, 121129 (2007).
    [CrossRef]
  5. C. A. Lopez, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87, 134102 (2005).
    [CrossRef]
  6. S. Yang, T. N. Krupenkin, P. Mach, and E. A. Chandross, “Tunable and latchable liquid microlens with photopolymerizable components,” Adv. Mater. 15, 940–943 (2003).
    [CrossRef]
  7. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
    [CrossRef]
  8. H. Ren and S. T. Wu, “Tunable-focus liquid microlens array using dielectrophoretic effect,” Opt. Express 16, 2646–2652 (2008).
    [CrossRef]
  9. L. Li and A. Y. Yi, “Design and fabrication of a freeform microlenses array for a compact large field of view compound eye camera,” Appl. Opt. 51, 1843–1852 (2012).
    [CrossRef]
  10. M. M. Vekshin, A. S. Levchenko, A. V. Nikitin, V. A. Nikitin, and N. A. Yacovenko, “Glass microlens arrays for Shack–Hartmann wavefront sensors,” Meas. Sci. Technol. 21, 054010 (2010).
    [CrossRef]
  11. P. Savander and H. J. Haumann, “Microlens array used for collimation of linear laser-diode array,” Meas. Sci. Technol. 4, 541–543 (1993).
    [CrossRef]
  12. F. Merola, S. Coppola, V. Vespini, S. Grilli, and P. Ferraro, “Characterization of Bessel beams generated by polymeric microaxicons,” Meas. Sci. Technol. 23, 065204 (2012).
    [CrossRef]
  13. P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, “Switchable fiber coupling using variable-focal-length microlenses,” Rev. Sci. Instrum. 72, 3132–3134 (2001).
    [CrossRef]
  14. J. Jang and B. Javidi, “Improvement of viewing angle in integral imaging by use of moving lenslet arrays with low fill factor,” Appl. Opt. 42, 1996–2002 (2003).
    [CrossRef]
  15. T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003).
    [CrossRef]
  16. L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
    [CrossRef]
  17. D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
    [CrossRef]
  18. N. Chronis, G. L. Liu, K. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11, 2370–2378 (2003).
    [CrossRef]
  19. H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A 4, S22–S28 (2002).
    [CrossRef]
  20. M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Single-step fabrication of a microlens array in sol–gel material by direct laser writing and its application in optical coupling,” J. Opt. A 6, 94–97 (2004).
    [CrossRef]
  21. C. Y. Chang, S. Y. Yang, and J. L. Sheh, “A roller embossing process for rapid fabrication of microlens arrays on glass substrates,” Microsyst. Technol. 12, 754–759 (2006).
    [CrossRef]
  22. J. Shi, Z. Stratton, S. C. S. Lin, H. Huang, and T. Jun Huang, “Tunable optofluidic microlens through active pressure control of an air–liquid interface,” Microfluid. Nanofluid. 9, 313–318 (2010).
    [CrossRef]
  23. J. H. Zhu, J. X. Shi, Y. Wang, and P. S. He, “Spherical micro-lens array of PMMA produced by micro-molding,” Chin. J. Chem. Phys. 19, 443–446 (2006).
    [CrossRef]
  24. A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39, 2171–2176 (2000).
    [CrossRef]
  25. D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990).
    [CrossRef]
  26. W. Cheong, L. Yuan, V. Koudriachov, and W. Yu, “High sensitive SiO2/TiO2 hybrid sol–gel material for fabrication of 3 dimensional continuous surface relief diffractive optical elements by electron-beam lithography,” Opt. Express 10, 586–590 (2002).
    [CrossRef]
  27. D. W. de Lima Monteiro, O. Akhzar-Mehr, P. M. Sarro, and G. Vdovin, “Single-mask microfabrication technology of aspherical optics using KOH anisotropic etching,” Opt. Express 11, 2244–2252 (2003).
    [CrossRef]
  28. M. Wakaki, Y. Komachi, and G. Kanai, “Microlenses and microlens arrays formed on a glass plate by use of a CO2 laser,” Appl. Opt. 37, 627–631 (1998).
    [CrossRef]
  29. D. Kuang, X. Zhang, M. Gui, and Z. Fang, “Hexagonal microlens array fabricated by direct laser writing and inductively coupled plasma etching on organic light emitting devices to enhance the outcoupling efficiency,” Appl. Opt. 48, 974–978 (2009).
    [CrossRef]
  30. E. A. Sanchez, M. Waldmann, and C. B. Arnold, “Chalcogenide glass microlenses by inkjet printing,” Appl. Opt. 50, 1974–1978 (2011).
    [CrossRef]
  31. S. I. E. Lin, “Study and implementation of a hybrid diffractive/refractive lens and a color inkjet head on high density data storage,” Appl. Opt. 50, 1091–1100 (2011).
    [CrossRef]
  32. I. A. Grimaldi, A. De Girolamo Del Mauro, G. Nenna, F. Loffredo, C. Minarini, and F. Villani, “Microstructuring of polymer films by inkjet etching,” J. Appl. Polym. Sci. 122, 3637–3643 (2011).
    [CrossRef]
  33. J. Y. Kim, N. B. Brauer, V. Fakhfouri, D. L. Boiko, E. Charbon, G. Grutzner, and J. Brugger, “Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique,” Opt. Mater. Express 1, 259–269 (2011).
    [CrossRef]
  34. I. A. Grimaldi, A. De Girolamo Del Mauro, F. Loffredo, G. Nenna, F. Villani, and C. Minarini, “Microlens array manufactured by inkjet printing: study of the effects of the solvent and the polymer concentration on the microstructure shape,” Proc. SPIE 8082, 808244 (2011).
    [CrossRef]
  35. R. Danzebrink and M. A. Aegerter, “Deposition of optical microlens arrays by ink-jet processes,” Thin Solid Films 392, 223–225 (2001).
    [CrossRef]
  36. R. Pericet-Camara, A. Best, S. K. Nett, J. S. Gutmann, and E. Bonaccurso, “Arrays of microlenses with variable focal lengths fabricated by restructuring polymer surfaces with an ink-jet device,” Opt. Express 15, 9877–9882 (2007).
    [CrossRef]
  37. I. M. Hutchings, “Ink-jet printing in micro-manufacturing: opportunities and limitations,” in 4M/ICOMM—The Global Conference on Micro Manufacture, 2009, pp. 47–57.
  38. J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High resolution electrohydrodynamic printing,” Nat. Mater. 6, 781–789 (2007).
  39. K. Rahman, A. Khan, N. M. Muhammad, J. Jo, and K.-H. Choi, “Fine-resolution patterning of copper nanoparticles through electrohydrodynamic jet printing,” J. Micromech. Microeng. 22, 065012 (2012).
    [CrossRef]
  40. P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, “Dispensing nano–pico droplets and liquid patterning by pyroelectrodynamic shooting,” Nat. Nanotechnol. 5, 429–435 (2010).
    [CrossRef]
  41. I. A. Grimaldi, S. Coppola, F. Loffredo, F. Villani, C. Minarini, V. Vespini, L. Miccio, S. Grilliand, and P. Ferraro, “Printing of polymer microlenses by a pyroelectrohydrodynamic dispensing approach,” Opt. Lett. 37, 2460–2462 (2012).
    [CrossRef]
  42. N. Maeda, J. N. Israelachvili, and M. M. Kohonen, “Evaporation and instabilities of microscopic capillary bridges,” Proc. Natl. Acad. Sci. USA 100, 803–808 (2003).
    [CrossRef]
  43. T. Miyashita, “Standardization for microlenses and microlens arrays,” Jpn. J. Appl. Phys. 46, 5391–5396 (2007).
  44. V. Gomez, Y.-S. Ghim, H. Ottevaere, N. Gardner, B. Bergner, K. Medicus, A. Davies, and H. Thienpont, “Micro-optic reflection and transmission interferometer for complete microlens characterization,” Meas. Sci. Technol. 20, 025901 (2009).
    [CrossRef]
  45. M. S. Kim, T. Scharf, and H. P. Herzig, “Small-size microlens characterization by multiwavelength high-resolution interference microscopy,” Opt. Express 18, 14319–14329 (2010).
    [CrossRef]
  46. R. Kasztelanic, “Amplitude filter and Zernike polynomial expansion method for quality control of microlens arrays,” Appl. Opt. 49, 5486–5492 (2010).
    [CrossRef]

2012 (4)

F. Merola, S. Coppola, V. Vespini, S. Grilli, and P. Ferraro, “Characterization of Bessel beams generated by polymeric microaxicons,” Meas. Sci. Technol. 23, 065204 (2012).
[CrossRef]

K. Rahman, A. Khan, N. M. Muhammad, J. Jo, and K.-H. Choi, “Fine-resolution patterning of copper nanoparticles through electrohydrodynamic jet printing,” J. Micromech. Microeng. 22, 065012 (2012).
[CrossRef]

L. Li and A. Y. Yi, “Design and fabrication of a freeform microlenses array for a compact large field of view compound eye camera,” Appl. Opt. 51, 1843–1852 (2012).
[CrossRef]

I. A. Grimaldi, S. Coppola, F. Loffredo, F. Villani, C. Minarini, V. Vespini, L. Miccio, S. Grilliand, and P. Ferraro, “Printing of polymer microlenses by a pyroelectrohydrodynamic dispensing approach,” Opt. Lett. 37, 2460–2462 (2012).
[CrossRef]

2011 (5)

S. I. E. Lin, “Study and implementation of a hybrid diffractive/refractive lens and a color inkjet head on high density data storage,” Appl. Opt. 50, 1091–1100 (2011).
[CrossRef]

E. A. Sanchez, M. Waldmann, and C. B. Arnold, “Chalcogenide glass microlenses by inkjet printing,” Appl. Opt. 50, 1974–1978 (2011).
[CrossRef]

J. Y. Kim, N. B. Brauer, V. Fakhfouri, D. L. Boiko, E. Charbon, G. Grutzner, and J. Brugger, “Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique,” Opt. Mater. Express 1, 259–269 (2011).
[CrossRef]

I. A. Grimaldi, A. De Girolamo Del Mauro, G. Nenna, F. Loffredo, C. Minarini, and F. Villani, “Microstructuring of polymer films by inkjet etching,” J. Appl. Polym. Sci. 122, 3637–3643 (2011).
[CrossRef]

I. A. Grimaldi, A. De Girolamo Del Mauro, F. Loffredo, G. Nenna, F. Villani, and C. Minarini, “Microlens array manufactured by inkjet printing: study of the effects of the solvent and the polymer concentration on the microstructure shape,” Proc. SPIE 8082, 808244 (2011).
[CrossRef]

2010 (5)

P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, “Dispensing nano–pico droplets and liquid patterning by pyroelectrodynamic shooting,” Nat. Nanotechnol. 5, 429–435 (2010).
[CrossRef]

M. M. Vekshin, A. S. Levchenko, A. V. Nikitin, V. A. Nikitin, and N. A. Yacovenko, “Glass microlens arrays for Shack–Hartmann wavefront sensors,” Meas. Sci. Technol. 21, 054010 (2010).
[CrossRef]

J. Shi, Z. Stratton, S. C. S. Lin, H. Huang, and T. Jun Huang, “Tunable optofluidic microlens through active pressure control of an air–liquid interface,” Microfluid. Nanofluid. 9, 313–318 (2010).
[CrossRef]

M. S. Kim, T. Scharf, and H. P. Herzig, “Small-size microlens characterization by multiwavelength high-resolution interference microscopy,” Opt. Express 18, 14319–14329 (2010).
[CrossRef]

R. Kasztelanic, “Amplitude filter and Zernike polynomial expansion method for quality control of microlens arrays,” Appl. Opt. 49, 5486–5492 (2010).
[CrossRef]

2009 (2)

D. Kuang, X. Zhang, M. Gui, and Z. Fang, “Hexagonal microlens array fabricated by direct laser writing and inductively coupled plasma etching on organic light emitting devices to enhance the outcoupling efficiency,” Appl. Opt. 48, 974–978 (2009).
[CrossRef]

V. Gomez, Y.-S. Ghim, H. Ottevaere, N. Gardner, B. Bergner, K. Medicus, A. Davies, and H. Thienpont, “Micro-optic reflection and transmission interferometer for complete microlens characterization,” Meas. Sci. Technol. 20, 025901 (2009).
[CrossRef]

2008 (1)

2007 (4)

T. Miyashita, “Standardization for microlenses and microlens arrays,” Jpn. J. Appl. Phys. 46, 5391–5396 (2007).

R. Pericet-Camara, A. Best, S. K. Nett, J. S. Gutmann, and E. Bonaccurso, “Arrays of microlenses with variable focal lengths fabricated by restructuring polymer surfaces with an ink-jet device,” Opt. Express 15, 9877–9882 (2007).
[CrossRef]

J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High resolution electrohydrodynamic printing,” Nat. Mater. 6, 781–789 (2007).

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

2006 (2)

J. H. Zhu, J. X. Shi, Y. Wang, and P. S. He, “Spherical micro-lens array of PMMA produced by micro-molding,” Chin. J. Chem. Phys. 19, 443–446 (2006).
[CrossRef]

C. Y. Chang, S. Y. Yang, and J. L. Sheh, “A roller embossing process for rapid fabrication of microlens arrays on glass substrates,” Microsyst. Technol. 12, 754–759 (2006).
[CrossRef]

2005 (2)

C. A. Lopez, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87, 134102 (2005).
[CrossRef]

H. Ren and S. T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86, 211107 (2005).
[CrossRef]

2004 (3)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Single-step fabrication of a microlens array in sol–gel material by direct laser writing and its application in optical coupling,” J. Opt. A 6, 94–97 (2004).
[CrossRef]

K. H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, “Tunable microdoublet lens array,” Opt. Express 12, 2494–2500 (2004).
[CrossRef]

2003 (8)

J. Jang and B. Javidi, “Improvement of viewing angle in integral imaging by use of moving lenslet arrays with low fill factor,” Appl. Opt. 42, 1996–2002 (2003).
[CrossRef]

N. Chronis, G. L. Liu, K. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11, 2370–2378 (2003).
[CrossRef]

D. W. de Lima Monteiro, O. Akhzar-Mehr, P. M. Sarro, and G. Vdovin, “Single-mask microfabrication technology of aspherical optics using KOH anisotropic etching,” Opt. Express 11, 2244–2252 (2003).
[CrossRef]

N. Maeda, J. N. Israelachvili, and M. M. Kohonen, “Evaporation and instabilities of microscopic capillary bridges,” Proc. Natl. Acad. Sci. USA 100, 803–808 (2003).
[CrossRef]

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

S. Yang, T. N. Krupenkin, P. Mach, and E. A. Chandross, “Tunable and latchable liquid microlens with photopolymerizable components,” Adv. Mater. 15, 940–943 (2003).
[CrossRef]

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003).
[CrossRef]

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

2002 (2)

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A 4, S22–S28 (2002).
[CrossRef]

W. Cheong, L. Yuan, V. Koudriachov, and W. Yu, “High sensitive SiO2/TiO2 hybrid sol–gel material for fabrication of 3 dimensional continuous surface relief diffractive optical elements by electron-beam lithography,” Opt. Express 10, 586–590 (2002).
[CrossRef]

2001 (2)

R. Danzebrink and M. A. Aegerter, “Deposition of optical microlens arrays by ink-jet processes,” Thin Solid Films 392, 223–225 (2001).
[CrossRef]

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, “Switchable fiber coupling using variable-focal-length microlenses,” Rev. Sci. Instrum. 72, 3132–3134 (2001).
[CrossRef]

2000 (2)

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[CrossRef]

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39, 2171–2176 (2000).
[CrossRef]

1998 (1)

1993 (1)

P. Savander and H. J. Haumann, “Microlens array used for collimation of linear laser-diode array,” Meas. Sci. Technol. 4, 541–543 (1993).
[CrossRef]

1990 (1)

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990).
[CrossRef]

Adair, K.

J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High resolution electrohydrodynamic printing,” Nat. Mater. 6, 781–789 (2007).

Aegerter, M. A.

R. Danzebrink and M. A. Aegerter, “Deposition of optical microlens arrays by ink-jet processes,” Thin Solid Films 392, 223–225 (2001).
[CrossRef]

Akhzar-Mehr, O.

Alleyne, A. G.

J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High resolution electrohydrodynamic printing,” Nat. Mater. 6, 781–789 (2007).

Arnold, C. B.

Barton, K.

J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High resolution electrohydrodynamic printing,” Nat. Mater. 6, 781–789 (2007).

Berdichevsky, Y.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Bergner, B.

V. Gomez, Y.-S. Ghim, H. Ottevaere, N. Gardner, B. Bergner, K. Medicus, A. Davies, and H. Thienpont, “Micro-optic reflection and transmission interferometer for complete microlens characterization,” Meas. Sci. Technol. 20, 025901 (2009).
[CrossRef]

Best, A.

Boiko, D. L.

Bonaccurso, E.

Brauer, N. B.

Brugger, J.

Bu, J.

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Single-step fabrication of a microlens array in sol–gel material by direct laser writing and its application in optical coupling,” J. Opt. A 6, 94–97 (2004).
[CrossRef]

Chandross, E. A.

S. Yang, T. N. Krupenkin, P. Mach, and E. A. Chandross, “Tunable and latchable liquid microlens with photopolymerizable components,” Adv. Mater. 15, 940–943 (2003).
[CrossRef]

Chang, C. Y.

C. Y. Chang, S. Y. Yang, and J. L. Sheh, “A roller embossing process for rapid fabrication of microlens arrays on glass substrates,” Microsyst. Technol. 12, 754–759 (2006).
[CrossRef]

Charbon, E.

Cheong, W.

Choi, J.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Choi, K.-H.

K. Rahman, A. Khan, N. M. Muhammad, J. Jo, and K.-H. Choi, “Fine-resolution patterning of copper nanoparticles through electrohydrodynamic jet printing,” J. Micromech. Microeng. 22, 065012 (2012).
[CrossRef]

Chronis, N.

Commander, L. G.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, “Switchable fiber coupling using variable-focal-length microlenses,” Rev. Sci. Instrum. 72, 3132–3134 (2001).
[CrossRef]

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[CrossRef]

Coppola, S.

F. Merola, S. Coppola, V. Vespini, S. Grilli, and P. Ferraro, “Characterization of Bessel beams generated by polymeric microaxicons,” Meas. Sci. Technol. 23, 065204 (2012).
[CrossRef]

I. A. Grimaldi, S. Coppola, F. Loffredo, F. Villani, C. Minarini, V. Vespini, L. Miccio, S. Grilliand, and P. Ferraro, “Printing of polymer microlenses by a pyroelectrohydrodynamic dispensing approach,” Opt. Lett. 37, 2460–2462 (2012).
[CrossRef]

P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, “Dispensing nano–pico droplets and liquid patterning by pyroelectrodynamic shooting,” Nat. Nanotechnol. 5, 429–435 (2010).
[CrossRef]

Daly, D.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990).
[CrossRef]

Danzebrink, R.

R. Danzebrink and M. A. Aegerter, “Deposition of optical microlens arrays by ink-jet processes,” Thin Solid Films 392, 223–225 (2001).
[CrossRef]

Davies, A.

V. Gomez, Y.-S. Ghim, H. Ottevaere, N. Gardner, B. Bergner, K. Medicus, A. Davies, and H. Thienpont, “Micro-optic reflection and transmission interferometer for complete microlens characterization,” Meas. Sci. Technol. 20, 025901 (2009).
[CrossRef]

Davies, N.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990).
[CrossRef]

Day, S. E.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, “Switchable fiber coupling using variable-focal-length microlenses,” Rev. Sci. Instrum. 72, 3132–3134 (2001).
[CrossRef]

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[CrossRef]

De Girolamo Del Mauro, A.

I. A. Grimaldi, A. De Girolamo Del Mauro, F. Loffredo, G. Nenna, F. Villani, and C. Minarini, “Microlens array manufactured by inkjet printing: study of the effects of the solvent and the polymer concentration on the microstructure shape,” Proc. SPIE 8082, 808244 (2011).
[CrossRef]

I. A. Grimaldi, A. De Girolamo Del Mauro, G. Nenna, F. Loffredo, C. Minarini, and F. Villani, “Microstructuring of polymer films by inkjet etching,” J. Appl. Polym. Sci. 122, 3637–3643 (2011).
[CrossRef]

de Lima Monteiro, D. W.

Fakhfouri, V.

Fang, Z.

Ferraro, P.

I. A. Grimaldi, S. Coppola, F. Loffredo, F. Villani, C. Minarini, V. Vespini, L. Miccio, S. Grilliand, and P. Ferraro, “Printing of polymer microlenses by a pyroelectrohydrodynamic dispensing approach,” Opt. Lett. 37, 2460–2462 (2012).
[CrossRef]

F. Merola, S. Coppola, V. Vespini, S. Grilli, and P. Ferraro, “Characterization of Bessel beams generated by polymeric microaxicons,” Meas. Sci. Technol. 23, 065204 (2012).
[CrossRef]

P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, “Dispensing nano–pico droplets and liquid patterning by pyroelectrodynamic shooting,” Nat. Nanotechnol. 5, 429–435 (2010).
[CrossRef]

Ferreira, P. M.

J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High resolution electrohydrodynamic printing,” Nat. Mater. 6, 781–789 (2007).

Gardner, N.

V. Gomez, Y.-S. Ghim, H. Ottevaere, N. Gardner, B. Bergner, K. Medicus, A. Davies, and H. Thienpont, “Micro-optic reflection and transmission interferometer for complete microlens characterization,” Meas. Sci. Technol. 20, 025901 (2009).
[CrossRef]

Georgiadis, J. G.

J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High resolution electrohydrodynamic printing,” Nat. Mater. 6, 781–789 (2007).

Ghim, Y.-S.

V. Gomez, Y.-S. Ghim, H. Ottevaere, N. Gardner, B. Bergner, K. Medicus, A. Davies, and H. Thienpont, “Micro-optic reflection and transmission interferometer for complete microlens characterization,” Meas. Sci. Technol. 20, 025901 (2009).
[CrossRef]

Gomez, V.

V. Gomez, Y.-S. Ghim, H. Ottevaere, N. Gardner, B. Bergner, K. Medicus, A. Davies, and H. Thienpont, “Micro-optic reflection and transmission interferometer for complete microlens characterization,” Meas. Sci. Technol. 20, 025901 (2009).
[CrossRef]

Grilli, S.

F. Merola, S. Coppola, V. Vespini, S. Grilli, and P. Ferraro, “Characterization of Bessel beams generated by polymeric microaxicons,” Meas. Sci. Technol. 23, 065204 (2012).
[CrossRef]

P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, “Dispensing nano–pico droplets and liquid patterning by pyroelectrodynamic shooting,” Nat. Nanotechnol. 5, 429–435 (2010).
[CrossRef]

Grilliand, S.

Grimaldi, I. A.

I. A. Grimaldi, S. Coppola, F. Loffredo, F. Villani, C. Minarini, V. Vespini, L. Miccio, S. Grilliand, and P. Ferraro, “Printing of polymer microlenses by a pyroelectrohydrodynamic dispensing approach,” Opt. Lett. 37, 2460–2462 (2012).
[CrossRef]

I. A. Grimaldi, A. De Girolamo Del Mauro, G. Nenna, F. Loffredo, C. Minarini, and F. Villani, “Microstructuring of polymer films by inkjet etching,” J. Appl. Polym. Sci. 122, 3637–3643 (2011).
[CrossRef]

I. A. Grimaldi, A. De Girolamo Del Mauro, F. Loffredo, G. Nenna, F. Villani, and C. Minarini, “Microlens array manufactured by inkjet printing: study of the effects of the solvent and the polymer concentration on the microstructure shape,” Proc. SPIE 8082, 808244 (2011).
[CrossRef]

Grutzner, G.

Gui, M.

Gutmann, J. S.

Hardy, M.

J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High resolution electrohydrodynamic printing,” Nat. Mater. 6, 781–789 (2007).

Haumann, H. J.

P. Savander and H. J. Haumann, “Microlens array used for collimation of linear laser-diode array,” Meas. Sci. Technol. 4, 541–543 (1993).
[CrossRef]

He, M.

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Single-step fabrication of a microlens array in sol–gel material by direct laser writing and its application in optical coupling,” J. Opt. A 6, 94–97 (2004).
[CrossRef]

He, P. S.

J. H. Zhu, J. X. Shi, Y. Wang, and P. S. He, “Spherical micro-lens array of PMMA produced by micro-molding,” Chin. J. Chem. Phys. 19, 443–446 (2006).
[CrossRef]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Hermanne, A.

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A 4, S22–S28 (2002).
[CrossRef]

Herzig, H. P.

M. S. Kim, T. Scharf, and H. P. Herzig, “Small-size microlens characterization by multiwavelength high-resolution interference microscopy,” Opt. Express 18, 14319–14329 (2010).
[CrossRef]

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39, 2171–2176 (2000).
[CrossRef]

Hirsa, A. H.

C. A. Lopez, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87, 134102 (2005).
[CrossRef]

Huang, H.

J. Shi, Z. Stratton, S. C. S. Lin, H. Huang, and T. Jun Huang, “Tunable optofluidic microlens through active pressure control of an air–liquid interface,” Microfluid. Nanofluid. 9, 313–318 (2010).
[CrossRef]

Hutchings, I. M.

I. M. Hutchings, “Ink-jet printing in micro-manufacturing: opportunities and limitations,” in 4M/ICOMM—The Global Conference on Micro Manufacture, 2009, pp. 47–57.

Hutley, M. C.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990).
[CrossRef]

Israelachvili, J. N.

N. Maeda, J. N. Israelachvili, and M. M. Kohonen, “Evaporation and instabilities of microscopic capillary bridges,” Proc. Natl. Acad. Sci. USA 100, 803–808 (2003).
[CrossRef]

Jang, J.

Javidi, B.

Jeong, K.

Jeong, K. H.

Jo, J.

K. Rahman, A. Khan, N. M. Muhammad, J. Jo, and K.-H. Choi, “Fine-resolution patterning of copper nanoparticles through electrohydrodynamic jet printing,” J. Micromech. Microeng. 22, 065012 (2012).
[CrossRef]

Jun Huang, T.

J. Shi, Z. Stratton, S. C. S. Lin, H. Huang, and T. Jun Huang, “Tunable optofluidic microlens through active pressure control of an air–liquid interface,” Microfluid. Nanofluid. 9, 313–318 (2010).
[CrossRef]

Kanai, G.

Kang, S. J.

J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High resolution electrohydrodynamic printing,” Nat. Mater. 6, 781–789 (2007).

Kasztelanic, R.

Khan, A.

K. Rahman, A. Khan, N. M. Muhammad, J. Jo, and K.-H. Choi, “Fine-resolution patterning of copper nanoparticles through electrohydrodynamic jet printing,” J. Micromech. Microeng. 22, 065012 (2012).
[CrossRef]

Kim, J. Y.

Kim, M. S.

Kohonen, M. M.

N. Maeda, J. N. Israelachvili, and M. M. Kohonen, “Evaporation and instabilities of microscopic capillary bridges,” Proc. Natl. Acad. Sci. USA 100, 803–808 (2003).
[CrossRef]

Komachi, Y.

Koudriachov, V.

Krupenkin, T.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003).
[CrossRef]

Krupenkin, T. N.

S. Yang, T. N. Krupenkin, P. Mach, and E. A. Chandross, “Tunable and latchable liquid microlens with photopolymerizable components,” Adv. Mater. 15, 940–943 (2003).
[CrossRef]

Kuang, D.

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Lamprecht, J.

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A 4, S22–S28 (2002).
[CrossRef]

Lee, C. C.

C. A. Lopez, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87, 134102 (2005).
[CrossRef]

Lee, C. Y.

J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High resolution electrohydrodynamic printing,” Nat. Mater. 6, 781–789 (2007).

Lee, L. P.

Lee, S. S.

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

Lee, S. W.

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

Levchenko, A. S.

M. M. Vekshin, A. S. Levchenko, A. V. Nikitin, V. A. Nikitin, and N. A. Yacovenko, “Glass microlens arrays for Shack–Hartmann wavefront sensors,” Meas. Sci. Technol. 21, 054010 (2010).
[CrossRef]

Li, L.

Lien, V.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Lin, S. C. S.

J. Shi, Z. Stratton, S. C. S. Lin, H. Huang, and T. Jun Huang, “Tunable optofluidic microlens through active pressure control of an air–liquid interface,” Microfluid. Nanofluid. 9, 313–318 (2010).
[CrossRef]

Lin, S. I. E.

Liu, G. L.

Lo, Y.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Lo, Y. H.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Loffredo, F.

I. A. Grimaldi, S. Coppola, F. Loffredo, F. Villani, C. Minarini, V. Vespini, L. Miccio, S. Grilliand, and P. Ferraro, “Printing of polymer microlenses by a pyroelectrohydrodynamic dispensing approach,” Opt. Lett. 37, 2460–2462 (2012).
[CrossRef]

I. A. Grimaldi, A. De Girolamo Del Mauro, G. Nenna, F. Loffredo, C. Minarini, and F. Villani, “Microstructuring of polymer films by inkjet etching,” J. Appl. Polym. Sci. 122, 3637–3643 (2011).
[CrossRef]

I. A. Grimaldi, A. De Girolamo Del Mauro, F. Loffredo, G. Nenna, F. Villani, and C. Minarini, “Microlens array manufactured by inkjet printing: study of the effects of the solvent and the polymer concentration on the microstructure shape,” Proc. SPIE 8082, 808244 (2011).
[CrossRef]

Lopez, C. A.

C. A. Lopez, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87, 134102 (2005).
[CrossRef]

Mach, P.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003).
[CrossRef]

S. Yang, T. N. Krupenkin, P. Mach, and E. A. Chandross, “Tunable and latchable liquid microlens with photopolymerizable components,” Adv. Mater. 15, 940–943 (2003).
[CrossRef]

Maeda, N.

N. Maeda, J. N. Israelachvili, and M. M. Kohonen, “Evaporation and instabilities of microscopic capillary bridges,” Proc. Natl. Acad. Sci. USA 100, 803–808 (2003).
[CrossRef]

McCabe, E. M.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, “Switchable fiber coupling using variable-focal-length microlenses,” Rev. Sci. Instrum. 72, 3132–3134 (2001).
[CrossRef]

Medicus, K.

V. Gomez, Y.-S. Ghim, H. Ottevaere, N. Gardner, B. Bergner, K. Medicus, A. Davies, and H. Thienpont, “Micro-optic reflection and transmission interferometer for complete microlens characterization,” Meas. Sci. Technol. 20, 025901 (2009).
[CrossRef]

Merola, F.

F. Merola, S. Coppola, V. Vespini, S. Grilli, and P. Ferraro, “Characterization of Bessel beams generated by polymeric microaxicons,” Meas. Sci. Technol. 23, 065204 (2012).
[CrossRef]

Merz, R.

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39, 2171–2176 (2000).
[CrossRef]

Miccio, L.

Minarini, C.

I. A. Grimaldi, S. Coppola, F. Loffredo, F. Villani, C. Minarini, V. Vespini, L. Miccio, S. Grilliand, and P. Ferraro, “Printing of polymer microlenses by a pyroelectrohydrodynamic dispensing approach,” Opt. Lett. 37, 2460–2462 (2012).
[CrossRef]

I. A. Grimaldi, A. De Girolamo Del Mauro, G. Nenna, F. Loffredo, C. Minarini, and F. Villani, “Microstructuring of polymer films by inkjet etching,” J. Appl. Polym. Sci. 122, 3637–3643 (2011).
[CrossRef]

I. A. Grimaldi, A. De Girolamo Del Mauro, F. Loffredo, G. Nenna, F. Villani, and C. Minarini, “Microlens array manufactured by inkjet printing: study of the effects of the solvent and the polymer concentration on the microstructure shape,” Proc. SPIE 8082, 808244 (2011).
[CrossRef]

Miyashita, T.

T. Miyashita, “Standardization for microlenses and microlens arrays,” Jpn. J. Appl. Phys. 46, 5391–5396 (2007).

Muhammad, N. M.

K. Rahman, A. Khan, N. M. Muhammad, J. Jo, and K.-H. Choi, “Fine-resolution patterning of copper nanoparticles through electrohydrodynamic jet printing,” J. Micromech. Microeng. 22, 065012 (2012).
[CrossRef]

Mukhopadhyay, D. K.

J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High resolution electrohydrodynamic printing,” Nat. Mater. 6, 781–789 (2007).

Nenna, G.

I. A. Grimaldi, A. De Girolamo Del Mauro, F. Loffredo, G. Nenna, F. Villani, and C. Minarini, “Microlens array manufactured by inkjet printing: study of the effects of the solvent and the polymer concentration on the microstructure shape,” Proc. SPIE 8082, 808244 (2011).
[CrossRef]

I. A. Grimaldi, A. De Girolamo Del Mauro, G. Nenna, F. Loffredo, C. Minarini, and F. Villani, “Microstructuring of polymer films by inkjet etching,” J. Appl. Polym. Sci. 122, 3637–3643 (2011).
[CrossRef]

Nett, S. K.

Ngo, N. Q.

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Single-step fabrication of a microlens array in sol–gel material by direct laser writing and its application in optical coupling,” J. Opt. A 6, 94–97 (2004).
[CrossRef]

Nikitin, A. V.

M. M. Vekshin, A. S. Levchenko, A. V. Nikitin, V. A. Nikitin, and N. A. Yacovenko, “Glass microlens arrays for Shack–Hartmann wavefront sensors,” Meas. Sci. Technol. 21, 054010 (2010).
[CrossRef]

Nikitin, V. A.

M. M. Vekshin, A. S. Levchenko, A. V. Nikitin, V. A. Nikitin, and N. A. Yacovenko, “Glass microlens arrays for Shack–Hartmann wavefront sensors,” Meas. Sci. Technol. 21, 054010 (2010).
[CrossRef]

Ossmann, C.

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39, 2171–2176 (2000).
[CrossRef]

Ottevaere, H.

V. Gomez, Y.-S. Ghim, H. Ottevaere, N. Gardner, B. Bergner, K. Medicus, A. Davies, and H. Thienpont, “Micro-optic reflection and transmission interferometer for complete microlens characterization,” Meas. Sci. Technol. 20, 025901 (2009).
[CrossRef]

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A 4, S22–S28 (2002).
[CrossRef]

Park, J. U.

J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High resolution electrohydrodynamic printing,” Nat. Mater. 6, 781–789 (2007).

Paturzo, M.

P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, “Dispensing nano–pico droplets and liquid patterning by pyroelectrodynamic shooting,” Nat. Nanotechnol. 5, 429–435 (2010).
[CrossRef]

Pericet-Camara, R.

Rahman, K.

K. Rahman, A. Khan, N. M. Muhammad, J. Jo, and K.-H. Choi, “Fine-resolution patterning of copper nanoparticles through electrohydrodynamic jet printing,” J. Micromech. Microeng. 22, 065012 (2012).
[CrossRef]

Ren, H.

H. Ren and S. T. Wu, “Tunable-focus liquid microlens array using dielectrophoretic effect,” Opt. Express 16, 2646–2652 (2008).
[CrossRef]

H. Ren and S. T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86, 211107 (2005).
[CrossRef]

Rogers, J. A.

J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High resolution electrohydrodynamic printing,” Nat. Mater. 6, 781–789 (2007).

Sanchez, E. A.

Sarro, P. M.

Savander, P.

P. Savander and H. J. Haumann, “Microlens array used for collimation of linear laser-diode array,” Meas. Sci. Technol. 4, 541–543 (1993).
[CrossRef]

Scharf, T.

Schilling, A.

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39, 2171–2176 (2000).
[CrossRef]

Schwider, J.

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A 4, S22–S28 (2002).
[CrossRef]

Selviah, D. R.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, “Switchable fiber coupling using variable-focal-length microlenses,” Rev. Sci. Instrum. 72, 3132–3134 (2001).
[CrossRef]

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[CrossRef]

Sheh, J. L.

C. Y. Chang, S. Y. Yang, and J. L. Sheh, “A roller embossing process for rapid fabrication of microlens arrays on glass substrates,” Microsyst. Technol. 12, 754–759 (2006).
[CrossRef]

Shi, J.

J. Shi, Z. Stratton, S. C. S. Lin, H. Huang, and T. Jun Huang, “Tunable optofluidic microlens through active pressure control of an air–liquid interface,” Microfluid. Nanofluid. 9, 313–318 (2010).
[CrossRef]

Shi, J. X.

J. H. Zhu, J. X. Shi, Y. Wang, and P. S. He, “Spherical micro-lens array of PMMA produced by micro-molding,” Chin. J. Chem. Phys. 19, 443–446 (2006).
[CrossRef]

Smith, P. J.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, “Switchable fiber coupling using variable-focal-length microlenses,” Rev. Sci. Instrum. 72, 3132–3134 (2001).
[CrossRef]

Stevens, R. F.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990).
[CrossRef]

Strano, M. S.

J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High resolution electrohydrodynamic printing,” Nat. Mater. 6, 781–789 (2007).

Stratton, Z.

J. Shi, Z. Stratton, S. C. S. Lin, H. Huang, and T. Jun Huang, “Tunable optofluidic microlens through active pressure control of an air–liquid interface,” Microfluid. Nanofluid. 9, 313–318 (2010).
[CrossRef]

Tao, S. H.

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Single-step fabrication of a microlens array in sol–gel material by direct laser writing and its application in optical coupling,” J. Opt. A 6, 94–97 (2004).
[CrossRef]

Taylor, C. M.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, “Switchable fiber coupling using variable-focal-length microlenses,” Rev. Sci. Instrum. 72, 3132–3134 (2001).
[CrossRef]

Thienpont, H.

V. Gomez, Y.-S. Ghim, H. Ottevaere, N. Gardner, B. Bergner, K. Medicus, A. Davies, and H. Thienpont, “Micro-optic reflection and transmission interferometer for complete microlens characterization,” Meas. Sci. Technol. 20, 025901 (2009).
[CrossRef]

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A 4, S22–S28 (2002).
[CrossRef]

Vdovin, G.

Vekshin, M. M.

M. M. Vekshin, A. S. Levchenko, A. V. Nikitin, V. A. Nikitin, and N. A. Yacovenko, “Glass microlens arrays for Shack–Hartmann wavefront sensors,” Meas. Sci. Technol. 21, 054010 (2010).
[CrossRef]

Veretennicoff, I.

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A 4, S22–S28 (2002).
[CrossRef]

Vespini, V.

I. A. Grimaldi, S. Coppola, F. Loffredo, F. Villani, C. Minarini, V. Vespini, L. Miccio, S. Grilliand, and P. Ferraro, “Printing of polymer microlenses by a pyroelectrohydrodynamic dispensing approach,” Opt. Lett. 37, 2460–2462 (2012).
[CrossRef]

F. Merola, S. Coppola, V. Vespini, S. Grilli, and P. Ferraro, “Characterization of Bessel beams generated by polymeric microaxicons,” Meas. Sci. Technol. 23, 065204 (2012).
[CrossRef]

P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, “Dispensing nano–pico droplets and liquid patterning by pyroelectrodynamic shooting,” Nat. Nanotechnol. 5, 429–435 (2010).
[CrossRef]

Villani, F.

I. A. Grimaldi, S. Coppola, F. Loffredo, F. Villani, C. Minarini, V. Vespini, L. Miccio, S. Grilliand, and P. Ferraro, “Printing of polymer microlenses by a pyroelectrohydrodynamic dispensing approach,” Opt. Lett. 37, 2460–2462 (2012).
[CrossRef]

I. A. Grimaldi, A. De Girolamo Del Mauro, G. Nenna, F. Loffredo, C. Minarini, and F. Villani, “Microstructuring of polymer films by inkjet etching,” J. Appl. Polym. Sci. 122, 3637–3643 (2011).
[CrossRef]

I. A. Grimaldi, A. De Girolamo Del Mauro, F. Loffredo, G. Nenna, F. Villani, and C. Minarini, “Microlens array manufactured by inkjet printing: study of the effects of the solvent and the polymer concentration on the microstructure shape,” Proc. SPIE 8082, 808244 (2011).
[CrossRef]

Volckaerts, B.

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A 4, S22–S28 (2002).
[CrossRef]

Wakaki, M.

Waldmann, M.

Wang, Y.

J. H. Zhu, J. X. Shi, Y. Wang, and P. S. He, “Spherical micro-lens array of PMMA produced by micro-molding,” Chin. J. Chem. Phys. 19, 443–446 (2006).
[CrossRef]

Wu, S. T.

H. Ren and S. T. Wu, “Tunable-focus liquid microlens array using dielectrophoretic effect,” Opt. Express 16, 2646–2652 (2008).
[CrossRef]

H. Ren and S. T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86, 211107 (2005).
[CrossRef]

Yacovenko, N. A.

M. M. Vekshin, A. S. Levchenko, A. V. Nikitin, V. A. Nikitin, and N. A. Yacovenko, “Glass microlens arrays for Shack–Hartmann wavefront sensors,” Meas. Sci. Technol. 21, 054010 (2010).
[CrossRef]

Yang, S.

S. Yang, T. N. Krupenkin, P. Mach, and E. A. Chandross, “Tunable and latchable liquid microlens with photopolymerizable components,” Adv. Mater. 15, 940–943 (2003).
[CrossRef]

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003).
[CrossRef]

Yang, S. Y.

C. Y. Chang, S. Y. Yang, and J. L. Sheh, “A roller embossing process for rapid fabrication of microlens arrays on glass substrates,” Microsyst. Technol. 12, 754–759 (2006).
[CrossRef]

Yi, A. Y.

Yu, W.

Yuan, L.

Yuan, X. C.

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Single-step fabrication of a microlens array in sol–gel material by direct laser writing and its application in optical coupling,” J. Opt. A 6, 94–97 (2004).
[CrossRef]

Zhang, D.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Zhang, D. Y.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Zhang, X.

Zhu, J. H.

J. H. Zhu, J. X. Shi, Y. Wang, and P. S. He, “Spherical micro-lens array of PMMA produced by micro-molding,” Chin. J. Chem. Phys. 19, 443–446 (2006).
[CrossRef]

Adv. Mater. (1)

S. Yang, T. N. Krupenkin, P. Mach, and E. A. Chandross, “Tunable and latchable liquid microlens with photopolymerizable components,” Adv. Mater. 15, 940–943 (2003).
[CrossRef]

Appl. Opt. (7)

Appl. Phys. Lett. (7)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

H. Ren and S. T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86, 211107 (2005).
[CrossRef]

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

C. A. Lopez, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87, 134102 (2005).
[CrossRef]

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003).
[CrossRef]

Chin. J. Chem. Phys. (1)

J. H. Zhu, J. X. Shi, Y. Wang, and P. S. He, “Spherical micro-lens array of PMMA produced by micro-molding,” Chin. J. Chem. Phys. 19, 443–446 (2006).
[CrossRef]

J. Appl. Polym. Sci. (1)

I. A. Grimaldi, A. De Girolamo Del Mauro, G. Nenna, F. Loffredo, C. Minarini, and F. Villani, “Microstructuring of polymer films by inkjet etching,” J. Appl. Polym. Sci. 122, 3637–3643 (2011).
[CrossRef]

J. Micromech. Microeng. (1)

K. Rahman, A. Khan, N. M. Muhammad, J. Jo, and K.-H. Choi, “Fine-resolution patterning of copper nanoparticles through electrohydrodynamic jet printing,” J. Micromech. Microeng. 22, 065012 (2012).
[CrossRef]

J. Opt. A (2)

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A 4, S22–S28 (2002).
[CrossRef]

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Single-step fabrication of a microlens array in sol–gel material by direct laser writing and its application in optical coupling,” J. Opt. A 6, 94–97 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Miyashita, “Standardization for microlenses and microlens arrays,” Jpn. J. Appl. Phys. 46, 5391–5396 (2007).

Meas. Sci. Technol. (5)

V. Gomez, Y.-S. Ghim, H. Ottevaere, N. Gardner, B. Bergner, K. Medicus, A. Davies, and H. Thienpont, “Micro-optic reflection and transmission interferometer for complete microlens characterization,” Meas. Sci. Technol. 20, 025901 (2009).
[CrossRef]

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990).
[CrossRef]

M. M. Vekshin, A. S. Levchenko, A. V. Nikitin, V. A. Nikitin, and N. A. Yacovenko, “Glass microlens arrays for Shack–Hartmann wavefront sensors,” Meas. Sci. Technol. 21, 054010 (2010).
[CrossRef]

P. Savander and H. J. Haumann, “Microlens array used for collimation of linear laser-diode array,” Meas. Sci. Technol. 4, 541–543 (1993).
[CrossRef]

F. Merola, S. Coppola, V. Vespini, S. Grilli, and P. Ferraro, “Characterization of Bessel beams generated by polymeric microaxicons,” Meas. Sci. Technol. 23, 065204 (2012).
[CrossRef]

Microfluid. Nanofluid. (1)

J. Shi, Z. Stratton, S. C. S. Lin, H. Huang, and T. Jun Huang, “Tunable optofluidic microlens through active pressure control of an air–liquid interface,” Microfluid. Nanofluid. 9, 313–318 (2010).
[CrossRef]

Microsyst. Technol. (1)

C. Y. Chang, S. Y. Yang, and J. L. Sheh, “A roller embossing process for rapid fabrication of microlens arrays on glass substrates,” Microsyst. Technol. 12, 754–759 (2006).
[CrossRef]

Nat. Mater. (1)

J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High resolution electrohydrodynamic printing,” Nat. Mater. 6, 781–789 (2007).

Nat. Nanotechnol. (1)

P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, “Dispensing nano–pico droplets and liquid patterning by pyroelectrodynamic shooting,” Nat. Nanotechnol. 5, 429–435 (2010).
[CrossRef]

Opt. Commun. (1)

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[CrossRef]

Opt. Eng. (1)

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39, 2171–2176 (2000).
[CrossRef]

Opt. Express (7)

Opt. Lett. (1)

Opt. Mater. Express (1)

Proc. Natl. Acad. Sci. USA (1)

N. Maeda, J. N. Israelachvili, and M. M. Kohonen, “Evaporation and instabilities of microscopic capillary bridges,” Proc. Natl. Acad. Sci. USA 100, 803–808 (2003).
[CrossRef]

Proc. SPIE (1)

I. A. Grimaldi, A. De Girolamo Del Mauro, F. Loffredo, G. Nenna, F. Villani, and C. Minarini, “Microlens array manufactured by inkjet printing: study of the effects of the solvent and the polymer concentration on the microstructure shape,” Proc. SPIE 8082, 808244 (2011).
[CrossRef]

Rev. Sci. Instrum. (1)

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, “Switchable fiber coupling using variable-focal-length microlenses,” Rev. Sci. Instrum. 72, 3132–3134 (2001).
[CrossRef]

Thin Solid Films (1)

R. Danzebrink and M. A. Aegerter, “Deposition of optical microlens arrays by ink-jet processes,” Thin Solid Films 392, 223–225 (2001).
[CrossRef]

Other (1)

I. M. Hutchings, “Ink-jet printing in micro-manufacturing: opportunities and limitations,” in 4M/ICOMM—The Global Conference on Micro Manufacture, 2009, pp. 47–57.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Scheme of temporal evolution, formation of polymer lenses through breakdown of the Pyro-EHD bridge. (b) Experimental setup for the fabrication of polymer microlenses having diminishing volume and focal length.

Fig. 2.
Fig. 2.

(a) Multiple drop reservoirs to allow parallel production of the rows of a matrix on the target substrate (b).

Fig. 3.
Fig. 3.

(a), (d), (g) 3-D images, (b), (e), (h) tilted interferometric fringe images, and (c), (f), (i) wavefront error of the microlenses obtained by printing using PMMA dissolved in, respectively, pure NMP, NMPTOL 73, and NMPTOL 64 mixtures.

Fig. 4.
Fig. 4.

3-D image of (a) the first, (b) fifth, and (c) tenth microlens realized by employing the NMPTOL 73 solvent mixture.

Fig. 5.
Fig. 5.

(a) Diameter and height as functions of microlens number and (b) height as a function of the diameter of the printed microlenses.

Fig. 6.
Fig. 6.

Volume as a function of the number of printed microlenses.

Fig. 7.
Fig. 7.

Focal length as a function of the volume of the printed microlenses.

Tables (1)

Tables Icon

Table 1. RMS Error and P–V Wavefront Aberration Realized by Using Different NMPTOL Mixing Ratios

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d=(1+θ4)V13,
V=πh2(ah3)
a=h2+r22h,
F=Rn1
R=hL2+r22hL,

Metrics