Abstract

A novel design for a quantum dot infrared photodetector (QDIP) is proposed based on avalanche multiplication and is expected to be used as a single photon detector at mid-IR. A high field multiplication region is added to a conventional QDIP in separate absorption, charge, and multiplication structures to intensify incoming photocurrent generated in the absorption region. The absorption region of the photodetector consists of quantum dot layers that are responsible for absorption of mid-IR wavelengths. Because of higher operation voltages in gated-mode operation, resonant tunneling barriers are also included in the absorption region to prevent higher dark currents. The absorption region is designed for operation at λ=8μm. During the gate pulse period, photo-generated electrons can trigger an avalanche and produce an output pulse. For this detector, the dark count rate (DCR) and single photon quantum efficiency (SPQE) are calculated at different temperatures. SPQE with peak of about 0.3 for T=50K is obtained. For higher temperatures, about T=120K, SPQE is very low due to the contribution of dark carriers generated in the quantum dot absorption region.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Polyakov and A. Migdall, “High accuracy verification of a correlated photon-based method for determining photon counting detection efficiency,” Opt. Express 15, 1390–1407 (2007).
    [CrossRef]
  2. B. E. Kardynał, Z. L. Yuan, and A. J. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photonics 2, 425–428 (2008).
    [CrossRef]
  3. M. Oh, H. Kong, T. Kim, S. Jo, B. Kim, and D. Park, “Development and analysis of a photon-counting three-dimensional imaging laser detection and ranging (LADAR) system,” J. Opt. Soc. Am. A 28, 759–765 (2011).
    [CrossRef]
  4. H. Kosaka, “Single-photon interference experiment over 100  km for quantum cryptography system using balanced gated-mode photon detector,” Electron. Lett. 39, 1199–1201 (2003).
    [CrossRef]
  5. G. Smith, K. McIntosh, J. Donnelly, J. Funk, L. Mahoney, and S. Verghese, “Reliable InP-based Geiger-mode avalanche photodiode arrays,” in Advanced Photon Counting Techniques III (SPIE, 2009), p. 73200R.
  6. D. Ramirez, M. Hayat, G. Karve, J. Campbell, S. Torres, B. Saleh, and M. Teich, “Detection efficiencies and generalized breakdown probabilities for nanosecond-gated near infrared single-photon avalanche photodiodes,” IEEE J. Quantum Electron. 42, 137–145 (2006).
    [CrossRef]
  7. A. Yoshizawa, R. Kaji, and H. Tsuchida, “Gated-mode single-photon detection at 1550  nm by discharge pulse counting,” Appl. Phys. Lett. 84, 3606–3608 (2004).
    [CrossRef]
  8. J. Campbell, “Recent advances in telecommunications avalanche photodiodes,” IEEE J. Lightwave Technol. 25, 109–121 (2007).
    [CrossRef]
  9. D. A. Ramirez, M. M. Hayat, G. J. Rees, X. Jiang, and M. A. Itzler, “New perspective on passively quenched single photon avalanche diodes: effect of feedback on impact ionization,” Opt. Express 20, 1512–1529 (2012).
    [CrossRef]
  10. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35, 1956–1976 (1996).
    [CrossRef]
  11. M. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
    [CrossRef]
  12. S. You, J. Cheng, and Y. Lo, “Physics of single photon avalanche detectors with built-in self-quenching and self-recovering capabilities,” IEEE J. Quantum Electron. 48, 960–967 (2012).
    [CrossRef]
  13. A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105, 091101 (2009).
    [CrossRef]
  14. H. Liu and J. Zhang, “Dark current and noise analyses of quantum dot infrared photodetectors,” Appl. Opt. 51, 2767–2771 (2012).
    [CrossRef]
  15. M. Zavvari, V. Ahmadi, A. Mir, and E. Darabi, “Quantum dot infrared photodetector enhanced by avalanche multiplication,” Electron. Lett. 48, 589–591 (2012).
    [CrossRef]
  16. M. Zavvari and V. Ahmadi, “Quantum dot based mid-IR single photon detector with self-quenching and self-recovering operation,” IEEE Electron Device Lett. 34, 783–785 (2013).
    [CrossRef]
  17. X. Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “A resonant tunneling quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 41, 974–979 (2005).
    [CrossRef]
  18. A. Barve, S. Y. Shah, J. Shao, T. E. Vandervelde, R. V. Shenoi, W.-Y. Jang, and S. Krishna, “Reduction in dark current using resonant tunneling barriers in quantum dots-in-a-well long wavelength infrared photodetector,” Appl. Phys. Lett. 93, 131115 (2008).
    [CrossRef]
  19. Y. Kang, H. Lu, and Y. Lo, “Dark count probability and quantum efficiency of avalanche photodiodes for single-photon detection,” Appl. Phys. Lett. 83, 2955–2957 (2003).
    [CrossRef]
  20. D. Ramirez, M. Hayat, and M. Itzler, “Dependence of the performance of single photon avalanche diodes on the multiplication region width,” IEEE J. Quantum Electron. 44, 1188–1195 (2008).
    [CrossRef]
  21. J. Donnelly, E. Duerr, K. McIntosh, E. Dauler, D. Oakley, S. Groves, C. Vineis, L. Mahoney, K. Molvar, P. Hopman, K. Jensen, G. Smith, S. Verghese, and D. Shaver, “Design considerations for 1.06-μm InGaAsP–InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797–809 (2006).
    [CrossRef]
  22. K. Sugihara, E. Yagyu, and Y. Tokuda, “Numerical analysis of single photon detection avalanche photodiodes operated in the Geiger mode,” J. Appl. Phys. 99, 124502 (2006).
    [CrossRef]
  23. G. Karve, S. Wang, F. Ma, X. Li, J. C. Campbell, R. G. Ispasoiu, D. S. Bethune, W. P. Risk, G. S. Kinsey, J. C. Boisvert, T. D. Isshiki, and R. Sudharsanan, “Origin of dark counts in In0.53Ga0.47As/In0.52Al0.48As avalanche photodiodes operated in Geiger mode,” Appl. Phys. Lett. 86, 063505 (2005).
    [CrossRef]
  24. X. Jiang, M. Itzler, R. Ben-Michael, and K. Slomkowski, “InGaAsP–InP avalanche photodiodes for single photon detection,” IEEE J. Sel. Top. Quantum Electron. 13, 895–905 (2007).
    [CrossRef]
  25. B. Kochman, A. Stiff-Roberts, S. Chakrabarti, J. Phillips, S. Krishna, J. Singh, and P. Bhattacharya, “Absorption, carrier lifetime, and gain in InAs–GaAs quantum-dot infrared photodetectors,” IEEE J. Quantum Electron. 39, 459–467 (2003).
    [CrossRef]
  26. H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A. A. Quivy, and M. Razeghi, “Gain and recombination dynamics of quantum-dot infrared photodetectors,” Phys. Rev. B 74, 205321 (2006).
    [CrossRef]
  27. A. Mir and V. Ahmadi, “Design and analysis of a new structure of InAs/GaAs QDIP for 8–12  um infrared windows with low dark current,” J. Mod. Opt. 56, 1704–1712 (2009).
    [CrossRef]
  28. G. Ariyawansa, V. Apalkov, A. G. U. Perera, S. G. Matsik, G. Huang, and P. Bhattacharya, “Bias-selectable tricolor tunneling quantum dot infrared photodetector for atmospheric windows,” Appl. Phys. Lett. 92, 111104 (2008).
    [CrossRef]
  29. M. Razeghi and C. Bayram, “Material and design engineering of (Al)GaN for high-performance avalanche photodiodes and intersubband applications,” in Photonic Materials, Devices, and Applications III (SPIE, 2009), p. 73661F.
  30. S. R. Forrest and O. K. Kim, “Analysis of the dark current and photoresponse of In0.53Ga0.47As/InP avalanche photodiodes,” Solid State Electron. 26, 951–968 (1983).
    [CrossRef]

2013 (1)

M. Zavvari and V. Ahmadi, “Quantum dot based mid-IR single photon detector with self-quenching and self-recovering operation,” IEEE Electron Device Lett. 34, 783–785 (2013).
[CrossRef]

2012 (4)

M. Zavvari, V. Ahmadi, A. Mir, and E. Darabi, “Quantum dot infrared photodetector enhanced by avalanche multiplication,” Electron. Lett. 48, 589–591 (2012).
[CrossRef]

S. You, J. Cheng, and Y. Lo, “Physics of single photon avalanche detectors with built-in self-quenching and self-recovering capabilities,” IEEE J. Quantum Electron. 48, 960–967 (2012).
[CrossRef]

D. A. Ramirez, M. M. Hayat, G. J. Rees, X. Jiang, and M. A. Itzler, “New perspective on passively quenched single photon avalanche diodes: effect of feedback on impact ionization,” Opt. Express 20, 1512–1529 (2012).
[CrossRef]

H. Liu and J. Zhang, “Dark current and noise analyses of quantum dot infrared photodetectors,” Appl. Opt. 51, 2767–2771 (2012).
[CrossRef]

2011 (2)

M. Oh, H. Kong, T. Kim, S. Jo, B. Kim, and D. Park, “Development and analysis of a photon-counting three-dimensional imaging laser detection and ranging (LADAR) system,” J. Opt. Soc. Am. A 28, 759–765 (2011).
[CrossRef]

M. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[CrossRef]

2009 (2)

A. Mir and V. Ahmadi, “Design and analysis of a new structure of InAs/GaAs QDIP for 8–12  um infrared windows with low dark current,” J. Mod. Opt. 56, 1704–1712 (2009).
[CrossRef]

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105, 091101 (2009).
[CrossRef]

2008 (4)

G. Ariyawansa, V. Apalkov, A. G. U. Perera, S. G. Matsik, G. Huang, and P. Bhattacharya, “Bias-selectable tricolor tunneling quantum dot infrared photodetector for atmospheric windows,” Appl. Phys. Lett. 92, 111104 (2008).
[CrossRef]

B. E. Kardynał, Z. L. Yuan, and A. J. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photonics 2, 425–428 (2008).
[CrossRef]

D. Ramirez, M. Hayat, and M. Itzler, “Dependence of the performance of single photon avalanche diodes on the multiplication region width,” IEEE J. Quantum Electron. 44, 1188–1195 (2008).
[CrossRef]

A. Barve, S. Y. Shah, J. Shao, T. E. Vandervelde, R. V. Shenoi, W.-Y. Jang, and S. Krishna, “Reduction in dark current using resonant tunneling barriers in quantum dots-in-a-well long wavelength infrared photodetector,” Appl. Phys. Lett. 93, 131115 (2008).
[CrossRef]

2007 (3)

X. Jiang, M. Itzler, R. Ben-Michael, and K. Slomkowski, “InGaAsP–InP avalanche photodiodes for single photon detection,” IEEE J. Sel. Top. Quantum Electron. 13, 895–905 (2007).
[CrossRef]

J. Campbell, “Recent advances in telecommunications avalanche photodiodes,” IEEE J. Lightwave Technol. 25, 109–121 (2007).
[CrossRef]

S. Polyakov and A. Migdall, “High accuracy verification of a correlated photon-based method for determining photon counting detection efficiency,” Opt. Express 15, 1390–1407 (2007).
[CrossRef]

2006 (4)

H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A. A. Quivy, and M. Razeghi, “Gain and recombination dynamics of quantum-dot infrared photodetectors,” Phys. Rev. B 74, 205321 (2006).
[CrossRef]

D. Ramirez, M. Hayat, G. Karve, J. Campbell, S. Torres, B. Saleh, and M. Teich, “Detection efficiencies and generalized breakdown probabilities for nanosecond-gated near infrared single-photon avalanche photodiodes,” IEEE J. Quantum Electron. 42, 137–145 (2006).
[CrossRef]

J. Donnelly, E. Duerr, K. McIntosh, E. Dauler, D. Oakley, S. Groves, C. Vineis, L. Mahoney, K. Molvar, P. Hopman, K. Jensen, G. Smith, S. Verghese, and D. Shaver, “Design considerations for 1.06-μm InGaAsP–InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797–809 (2006).
[CrossRef]

K. Sugihara, E. Yagyu, and Y. Tokuda, “Numerical analysis of single photon detection avalanche photodiodes operated in the Geiger mode,” J. Appl. Phys. 99, 124502 (2006).
[CrossRef]

2005 (2)

G. Karve, S. Wang, F. Ma, X. Li, J. C. Campbell, R. G. Ispasoiu, D. S. Bethune, W. P. Risk, G. S. Kinsey, J. C. Boisvert, T. D. Isshiki, and R. Sudharsanan, “Origin of dark counts in In0.53Ga0.47As/In0.52Al0.48As avalanche photodiodes operated in Geiger mode,” Appl. Phys. Lett. 86, 063505 (2005).
[CrossRef]

X. Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “A resonant tunneling quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 41, 974–979 (2005).
[CrossRef]

2004 (1)

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Gated-mode single-photon detection at 1550  nm by discharge pulse counting,” Appl. Phys. Lett. 84, 3606–3608 (2004).
[CrossRef]

2003 (3)

H. Kosaka, “Single-photon interference experiment over 100  km for quantum cryptography system using balanced gated-mode photon detector,” Electron. Lett. 39, 1199–1201 (2003).
[CrossRef]

B. Kochman, A. Stiff-Roberts, S. Chakrabarti, J. Phillips, S. Krishna, J. Singh, and P. Bhattacharya, “Absorption, carrier lifetime, and gain in InAs–GaAs quantum-dot infrared photodetectors,” IEEE J. Quantum Electron. 39, 459–467 (2003).
[CrossRef]

Y. Kang, H. Lu, and Y. Lo, “Dark count probability and quantum efficiency of avalanche photodiodes for single-photon detection,” Appl. Phys. Lett. 83, 2955–2957 (2003).
[CrossRef]

1996 (1)

1983 (1)

S. R. Forrest and O. K. Kim, “Analysis of the dark current and photoresponse of In0.53Ga0.47As/InP avalanche photodiodes,” Solid State Electron. 26, 951–968 (1983).
[CrossRef]

Acerbi, F.

M. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[CrossRef]

Ahmadi, V.

M. Zavvari and V. Ahmadi, “Quantum dot based mid-IR single photon detector with self-quenching and self-recovering operation,” IEEE Electron Device Lett. 34, 783–785 (2013).
[CrossRef]

M. Zavvari, V. Ahmadi, A. Mir, and E. Darabi, “Quantum dot infrared photodetector enhanced by avalanche multiplication,” Electron. Lett. 48, 589–591 (2012).
[CrossRef]

A. Mir and V. Ahmadi, “Design and analysis of a new structure of InAs/GaAs QDIP for 8–12  um infrared windows with low dark current,” J. Mod. Opt. 56, 1704–1712 (2009).
[CrossRef]

Antoszewski, J.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105, 091101 (2009).
[CrossRef]

Apalkov, V.

G. Ariyawansa, V. Apalkov, A. G. U. Perera, S. G. Matsik, G. Huang, and P. Bhattacharya, “Bias-selectable tricolor tunneling quantum dot infrared photodetector for atmospheric windows,” Appl. Phys. Lett. 92, 111104 (2008).
[CrossRef]

Ariyawansa, G.

G. Ariyawansa, V. Apalkov, A. G. U. Perera, S. G. Matsik, G. Huang, and P. Bhattacharya, “Bias-selectable tricolor tunneling quantum dot infrared photodetector for atmospheric windows,” Appl. Phys. Lett. 92, 111104 (2008).
[CrossRef]

X. Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “A resonant tunneling quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 41, 974–979 (2005).
[CrossRef]

Barve, A.

A. Barve, S. Y. Shah, J. Shao, T. E. Vandervelde, R. V. Shenoi, W.-Y. Jang, and S. Krishna, “Reduction in dark current using resonant tunneling barriers in quantum dots-in-a-well long wavelength infrared photodetector,” Appl. Phys. Lett. 93, 131115 (2008).
[CrossRef]

Bayram, C.

M. Razeghi and C. Bayram, “Material and design engineering of (Al)GaN for high-performance avalanche photodiodes and intersubband applications,” in Photonic Materials, Devices, and Applications III (SPIE, 2009), p. 73661F.

Ben-Michael, R.

X. Jiang, M. Itzler, R. Ben-Michael, and K. Slomkowski, “InGaAsP–InP avalanche photodiodes for single photon detection,” IEEE J. Sel. Top. Quantum Electron. 13, 895–905 (2007).
[CrossRef]

Bethune, D. S.

G. Karve, S. Wang, F. Ma, X. Li, J. C. Campbell, R. G. Ispasoiu, D. S. Bethune, W. P. Risk, G. S. Kinsey, J. C. Boisvert, T. D. Isshiki, and R. Sudharsanan, “Origin of dark counts in In0.53Ga0.47As/In0.52Al0.48As avalanche photodiodes operated in Geiger mode,” Appl. Phys. Lett. 86, 063505 (2005).
[CrossRef]

Bhattacharya, P.

G. Ariyawansa, V. Apalkov, A. G. U. Perera, S. G. Matsik, G. Huang, and P. Bhattacharya, “Bias-selectable tricolor tunneling quantum dot infrared photodetector for atmospheric windows,” Appl. Phys. Lett. 92, 111104 (2008).
[CrossRef]

X. Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “A resonant tunneling quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 41, 974–979 (2005).
[CrossRef]

B. Kochman, A. Stiff-Roberts, S. Chakrabarti, J. Phillips, S. Krishna, J. Singh, and P. Bhattacharya, “Absorption, carrier lifetime, and gain in InAs–GaAs quantum-dot infrared photodetectors,” IEEE J. Quantum Electron. 39, 459–467 (2003).
[CrossRef]

Boisvert, J. C.

G. Karve, S. Wang, F. Ma, X. Li, J. C. Campbell, R. G. Ispasoiu, D. S. Bethune, W. P. Risk, G. S. Kinsey, J. C. Boisvert, T. D. Isshiki, and R. Sudharsanan, “Origin of dark counts in In0.53Ga0.47As/In0.52Al0.48As avalanche photodiodes operated in Geiger mode,” Appl. Phys. Lett. 86, 063505 (2005).
[CrossRef]

Campbell, J.

J. Campbell, “Recent advances in telecommunications avalanche photodiodes,” IEEE J. Lightwave Technol. 25, 109–121 (2007).
[CrossRef]

D. Ramirez, M. Hayat, G. Karve, J. Campbell, S. Torres, B. Saleh, and M. Teich, “Detection efficiencies and generalized breakdown probabilities for nanosecond-gated near infrared single-photon avalanche photodiodes,” IEEE J. Quantum Electron. 42, 137–145 (2006).
[CrossRef]

Campbell, J. C.

G. Karve, S. Wang, F. Ma, X. Li, J. C. Campbell, R. G. Ispasoiu, D. S. Bethune, W. P. Risk, G. S. Kinsey, J. C. Boisvert, T. D. Isshiki, and R. Sudharsanan, “Origin of dark counts in In0.53Ga0.47As/In0.52Al0.48As avalanche photodiodes operated in Geiger mode,” Appl. Phys. Lett. 86, 063505 (2005).
[CrossRef]

Chakrabarti, S.

X. Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “A resonant tunneling quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 41, 974–979 (2005).
[CrossRef]

B. Kochman, A. Stiff-Roberts, S. Chakrabarti, J. Phillips, S. Krishna, J. Singh, and P. Bhattacharya, “Absorption, carrier lifetime, and gain in InAs–GaAs quantum-dot infrared photodetectors,” IEEE J. Quantum Electron. 39, 459–467 (2003).
[CrossRef]

Cheng, J.

S. You, J. Cheng, and Y. Lo, “Physics of single photon avalanche detectors with built-in self-quenching and self-recovering capabilities,” IEEE J. Quantum Electron. 48, 960–967 (2012).
[CrossRef]

Cova, S.

M. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[CrossRef]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35, 1956–1976 (1996).
[CrossRef]

Darabi, E.

M. Zavvari, V. Ahmadi, A. Mir, and E. Darabi, “Quantum dot infrared photodetector enhanced by avalanche multiplication,” Electron. Lett. 48, 589–591 (2012).
[CrossRef]

Dauler, E.

J. Donnelly, E. Duerr, K. McIntosh, E. Dauler, D. Oakley, S. Groves, C. Vineis, L. Mahoney, K. Molvar, P. Hopman, K. Jensen, G. Smith, S. Verghese, and D. Shaver, “Design considerations for 1.06-μm InGaAsP–InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797–809 (2006).
[CrossRef]

Donnelly, J.

J. Donnelly, E. Duerr, K. McIntosh, E. Dauler, D. Oakley, S. Groves, C. Vineis, L. Mahoney, K. Molvar, P. Hopman, K. Jensen, G. Smith, S. Verghese, and D. Shaver, “Design considerations for 1.06-μm InGaAsP–InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797–809 (2006).
[CrossRef]

G. Smith, K. McIntosh, J. Donnelly, J. Funk, L. Mahoney, and S. Verghese, “Reliable InP-based Geiger-mode avalanche photodiode arrays,” in Advanced Photon Counting Techniques III (SPIE, 2009), p. 73200R.

Duerr, E.

J. Donnelly, E. Duerr, K. McIntosh, E. Dauler, D. Oakley, S. Groves, C. Vineis, L. Mahoney, K. Molvar, P. Hopman, K. Jensen, G. Smith, S. Verghese, and D. Shaver, “Design considerations for 1.06-μm InGaAsP–InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797–809 (2006).
[CrossRef]

Entwistle, M.

M. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[CrossRef]

Faraone, L.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105, 091101 (2009).
[CrossRef]

Forrest, S. R.

S. R. Forrest and O. K. Kim, “Analysis of the dark current and photoresponse of In0.53Ga0.47As/InP avalanche photodiodes,” Solid State Electron. 26, 951–968 (1983).
[CrossRef]

Funk, J.

G. Smith, K. McIntosh, J. Donnelly, J. Funk, L. Mahoney, and S. Verghese, “Reliable InP-based Geiger-mode avalanche photodiode arrays,” in Advanced Photon Counting Techniques III (SPIE, 2009), p. 73200R.

Ghioni, M.

Groves, S.

J. Donnelly, E. Duerr, K. McIntosh, E. Dauler, D. Oakley, S. Groves, C. Vineis, L. Mahoney, K. Molvar, P. Hopman, K. Jensen, G. Smith, S. Verghese, and D. Shaver, “Design considerations for 1.06-μm InGaAsP–InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797–809 (2006).
[CrossRef]

Hayat, M.

D. Ramirez, M. Hayat, and M. Itzler, “Dependence of the performance of single photon avalanche diodes on the multiplication region width,” IEEE J. Quantum Electron. 44, 1188–1195 (2008).
[CrossRef]

D. Ramirez, M. Hayat, G. Karve, J. Campbell, S. Torres, B. Saleh, and M. Teich, “Detection efficiencies and generalized breakdown probabilities for nanosecond-gated near infrared single-photon avalanche photodiodes,” IEEE J. Quantum Electron. 42, 137–145 (2006).
[CrossRef]

Hayat, M. M.

Hopman, P.

J. Donnelly, E. Duerr, K. McIntosh, E. Dauler, D. Oakley, S. Groves, C. Vineis, L. Mahoney, K. Molvar, P. Hopman, K. Jensen, G. Smith, S. Verghese, and D. Shaver, “Design considerations for 1.06-μm InGaAsP–InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797–809 (2006).
[CrossRef]

Huang, G.

G. Ariyawansa, V. Apalkov, A. G. U. Perera, S. G. Matsik, G. Huang, and P. Bhattacharya, “Bias-selectable tricolor tunneling quantum dot infrared photodetector for atmospheric windows,” Appl. Phys. Lett. 92, 111104 (2008).
[CrossRef]

Ispasoiu, R. G.

G. Karve, S. Wang, F. Ma, X. Li, J. C. Campbell, R. G. Ispasoiu, D. S. Bethune, W. P. Risk, G. S. Kinsey, J. C. Boisvert, T. D. Isshiki, and R. Sudharsanan, “Origin of dark counts in In0.53Ga0.47As/In0.52Al0.48As avalanche photodiodes operated in Geiger mode,” Appl. Phys. Lett. 86, 063505 (2005).
[CrossRef]

Isshiki, T. D.

G. Karve, S. Wang, F. Ma, X. Li, J. C. Campbell, R. G. Ispasoiu, D. S. Bethune, W. P. Risk, G. S. Kinsey, J. C. Boisvert, T. D. Isshiki, and R. Sudharsanan, “Origin of dark counts in In0.53Ga0.47As/In0.52Al0.48As avalanche photodiodes operated in Geiger mode,” Appl. Phys. Lett. 86, 063505 (2005).
[CrossRef]

Itzler, M.

M. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[CrossRef]

D. Ramirez, M. Hayat, and M. Itzler, “Dependence of the performance of single photon avalanche diodes on the multiplication region width,” IEEE J. Quantum Electron. 44, 1188–1195 (2008).
[CrossRef]

X. Jiang, M. Itzler, R. Ben-Michael, and K. Slomkowski, “InGaAsP–InP avalanche photodiodes for single photon detection,” IEEE J. Sel. Top. Quantum Electron. 13, 895–905 (2007).
[CrossRef]

Itzler, M. A.

Jang, W.-Y.

A. Barve, S. Y. Shah, J. Shao, T. E. Vandervelde, R. V. Shenoi, W.-Y. Jang, and S. Krishna, “Reduction in dark current using resonant tunneling barriers in quantum dots-in-a-well long wavelength infrared photodetector,” Appl. Phys. Lett. 93, 131115 (2008).
[CrossRef]

Jensen, K.

J. Donnelly, E. Duerr, K. McIntosh, E. Dauler, D. Oakley, S. Groves, C. Vineis, L. Mahoney, K. Molvar, P. Hopman, K. Jensen, G. Smith, S. Verghese, and D. Shaver, “Design considerations for 1.06-μm InGaAsP–InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797–809 (2006).
[CrossRef]

Jiang, X.

D. A. Ramirez, M. M. Hayat, G. J. Rees, X. Jiang, and M. A. Itzler, “New perspective on passively quenched single photon avalanche diodes: effect of feedback on impact ionization,” Opt. Express 20, 1512–1529 (2012).
[CrossRef]

M. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[CrossRef]

X. Jiang, M. Itzler, R. Ben-Michael, and K. Slomkowski, “InGaAsP–InP avalanche photodiodes for single photon detection,” IEEE J. Sel. Top. Quantum Electron. 13, 895–905 (2007).
[CrossRef]

Jo, S.

Kaji, R.

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Gated-mode single-photon detection at 1550  nm by discharge pulse counting,” Appl. Phys. Lett. 84, 3606–3608 (2004).
[CrossRef]

Kang, Y.

Y. Kang, H. Lu, and Y. Lo, “Dark count probability and quantum efficiency of avalanche photodiodes for single-photon detection,” Appl. Phys. Lett. 83, 2955–2957 (2003).
[CrossRef]

Kardynal, B. E.

B. E. Kardynał, Z. L. Yuan, and A. J. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photonics 2, 425–428 (2008).
[CrossRef]

Karve, G.

D. Ramirez, M. Hayat, G. Karve, J. Campbell, S. Torres, B. Saleh, and M. Teich, “Detection efficiencies and generalized breakdown probabilities for nanosecond-gated near infrared single-photon avalanche photodiodes,” IEEE J. Quantum Electron. 42, 137–145 (2006).
[CrossRef]

G. Karve, S. Wang, F. Ma, X. Li, J. C. Campbell, R. G. Ispasoiu, D. S. Bethune, W. P. Risk, G. S. Kinsey, J. C. Boisvert, T. D. Isshiki, and R. Sudharsanan, “Origin of dark counts in In0.53Ga0.47As/In0.52Al0.48As avalanche photodiodes operated in Geiger mode,” Appl. Phys. Lett. 86, 063505 (2005).
[CrossRef]

Kim, B.

Kim, O. K.

S. R. Forrest and O. K. Kim, “Analysis of the dark current and photoresponse of In0.53Ga0.47As/InP avalanche photodiodes,” Solid State Electron. 26, 951–968 (1983).
[CrossRef]

Kim, T.

Kinsey, G. S.

G. Karve, S. Wang, F. Ma, X. Li, J. C. Campbell, R. G. Ispasoiu, D. S. Bethune, W. P. Risk, G. S. Kinsey, J. C. Boisvert, T. D. Isshiki, and R. Sudharsanan, “Origin of dark counts in In0.53Ga0.47As/In0.52Al0.48As avalanche photodiodes operated in Geiger mode,” Appl. Phys. Lett. 86, 063505 (2005).
[CrossRef]

Kochman, B.

B. Kochman, A. Stiff-Roberts, S. Chakrabarti, J. Phillips, S. Krishna, J. Singh, and P. Bhattacharya, “Absorption, carrier lifetime, and gain in InAs–GaAs quantum-dot infrared photodetectors,” IEEE J. Quantum Electron. 39, 459–467 (2003).
[CrossRef]

Kong, H.

Kosaka, H.

H. Kosaka, “Single-photon interference experiment over 100  km for quantum cryptography system using balanced gated-mode photon detector,” Electron. Lett. 39, 1199–1201 (2003).
[CrossRef]

Krishna, S.

A. Barve, S. Y. Shah, J. Shao, T. E. Vandervelde, R. V. Shenoi, W.-Y. Jang, and S. Krishna, “Reduction in dark current using resonant tunneling barriers in quantum dots-in-a-well long wavelength infrared photodetector,” Appl. Phys. Lett. 93, 131115 (2008).
[CrossRef]

B. Kochman, A. Stiff-Roberts, S. Chakrabarti, J. Phillips, S. Krishna, J. Singh, and P. Bhattacharya, “Absorption, carrier lifetime, and gain in InAs–GaAs quantum-dot infrared photodetectors,” IEEE J. Quantum Electron. 39, 459–467 (2003).
[CrossRef]

Lacaita, A.

Li, X.

G. Karve, S. Wang, F. Ma, X. Li, J. C. Campbell, R. G. Ispasoiu, D. S. Bethune, W. P. Risk, G. S. Kinsey, J. C. Boisvert, T. D. Isshiki, and R. Sudharsanan, “Origin of dark counts in In0.53Ga0.47As/In0.52Al0.48As avalanche photodiodes operated in Geiger mode,” Appl. Phys. Lett. 86, 063505 (2005).
[CrossRef]

Lim, H.

H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A. A. Quivy, and M. Razeghi, “Gain and recombination dynamics of quantum-dot infrared photodetectors,” Phys. Rev. B 74, 205321 (2006).
[CrossRef]

Liu, H.

Lo, Y.

S. You, J. Cheng, and Y. Lo, “Physics of single photon avalanche detectors with built-in self-quenching and self-recovering capabilities,” IEEE J. Quantum Electron. 48, 960–967 (2012).
[CrossRef]

Y. Kang, H. Lu, and Y. Lo, “Dark count probability and quantum efficiency of avalanche photodiodes for single-photon detection,” Appl. Phys. Lett. 83, 2955–2957 (2003).
[CrossRef]

Lu, H.

Y. Kang, H. Lu, and Y. Lo, “Dark count probability and quantum efficiency of avalanche photodiodes for single-photon detection,” Appl. Phys. Lett. 83, 2955–2957 (2003).
[CrossRef]

Ma, F.

G. Karve, S. Wang, F. Ma, X. Li, J. C. Campbell, R. G. Ispasoiu, D. S. Bethune, W. P. Risk, G. S. Kinsey, J. C. Boisvert, T. D. Isshiki, and R. Sudharsanan, “Origin of dark counts in In0.53Ga0.47As/In0.52Al0.48As avalanche photodiodes operated in Geiger mode,” Appl. Phys. Lett. 86, 063505 (2005).
[CrossRef]

Mahoney, L.

J. Donnelly, E. Duerr, K. McIntosh, E. Dauler, D. Oakley, S. Groves, C. Vineis, L. Mahoney, K. Molvar, P. Hopman, K. Jensen, G. Smith, S. Verghese, and D. Shaver, “Design considerations for 1.06-μm InGaAsP–InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797–809 (2006).
[CrossRef]

G. Smith, K. McIntosh, J. Donnelly, J. Funk, L. Mahoney, and S. Verghese, “Reliable InP-based Geiger-mode avalanche photodiode arrays,” in Advanced Photon Counting Techniques III (SPIE, 2009), p. 73200R.

Matsik, S. G.

G. Ariyawansa, V. Apalkov, A. G. U. Perera, S. G. Matsik, G. Huang, and P. Bhattacharya, “Bias-selectable tricolor tunneling quantum dot infrared photodetector for atmospheric windows,” Appl. Phys. Lett. 92, 111104 (2008).
[CrossRef]

McIntosh, K.

J. Donnelly, E. Duerr, K. McIntosh, E. Dauler, D. Oakley, S. Groves, C. Vineis, L. Mahoney, K. Molvar, P. Hopman, K. Jensen, G. Smith, S. Verghese, and D. Shaver, “Design considerations for 1.06-μm InGaAsP–InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797–809 (2006).
[CrossRef]

G. Smith, K. McIntosh, J. Donnelly, J. Funk, L. Mahoney, and S. Verghese, “Reliable InP-based Geiger-mode avalanche photodiode arrays,” in Advanced Photon Counting Techniques III (SPIE, 2009), p. 73200R.

Migdall, A.

Mir, A.

M. Zavvari, V. Ahmadi, A. Mir, and E. Darabi, “Quantum dot infrared photodetector enhanced by avalanche multiplication,” Electron. Lett. 48, 589–591 (2012).
[CrossRef]

A. Mir and V. Ahmadi, “Design and analysis of a new structure of InAs/GaAs QDIP for 8–12  um infrared windows with low dark current,” J. Mod. Opt. 56, 1704–1712 (2009).
[CrossRef]

Molvar, K.

J. Donnelly, E. Duerr, K. McIntosh, E. Dauler, D. Oakley, S. Groves, C. Vineis, L. Mahoney, K. Molvar, P. Hopman, K. Jensen, G. Smith, S. Verghese, and D. Shaver, “Design considerations for 1.06-μm InGaAsP–InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797–809 (2006).
[CrossRef]

Movaghar, B.

H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A. A. Quivy, and M. Razeghi, “Gain and recombination dynamics of quantum-dot infrared photodetectors,” Phys. Rev. B 74, 205321 (2006).
[CrossRef]

Oakley, D.

J. Donnelly, E. Duerr, K. McIntosh, E. Dauler, D. Oakley, S. Groves, C. Vineis, L. Mahoney, K. Molvar, P. Hopman, K. Jensen, G. Smith, S. Verghese, and D. Shaver, “Design considerations for 1.06-μm InGaAsP–InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797–809 (2006).
[CrossRef]

Oh, M.

Park, D.

Perera, A. G. U.

G. Ariyawansa, V. Apalkov, A. G. U. Perera, S. G. Matsik, G. Huang, and P. Bhattacharya, “Bias-selectable tricolor tunneling quantum dot infrared photodetector for atmospheric windows,” Appl. Phys. Lett. 92, 111104 (2008).
[CrossRef]

X. Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “A resonant tunneling quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 41, 974–979 (2005).
[CrossRef]

Phillips, J.

B. Kochman, A. Stiff-Roberts, S. Chakrabarti, J. Phillips, S. Krishna, J. Singh, and P. Bhattacharya, “Absorption, carrier lifetime, and gain in InAs–GaAs quantum-dot infrared photodetectors,” IEEE J. Quantum Electron. 39, 459–467 (2003).
[CrossRef]

Polyakov, S.

Quivy, A. A.

H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A. A. Quivy, and M. Razeghi, “Gain and recombination dynamics of quantum-dot infrared photodetectors,” Phys. Rev. B 74, 205321 (2006).
[CrossRef]

Ramirez, D.

D. Ramirez, M. Hayat, and M. Itzler, “Dependence of the performance of single photon avalanche diodes on the multiplication region width,” IEEE J. Quantum Electron. 44, 1188–1195 (2008).
[CrossRef]

D. Ramirez, M. Hayat, G. Karve, J. Campbell, S. Torres, B. Saleh, and M. Teich, “Detection efficiencies and generalized breakdown probabilities for nanosecond-gated near infrared single-photon avalanche photodiodes,” IEEE J. Quantum Electron. 42, 137–145 (2006).
[CrossRef]

Ramirez, D. A.

Razeghi, M.

H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A. A. Quivy, and M. Razeghi, “Gain and recombination dynamics of quantum-dot infrared photodetectors,” Phys. Rev. B 74, 205321 (2006).
[CrossRef]

M. Razeghi and C. Bayram, “Material and design engineering of (Al)GaN for high-performance avalanche photodiodes and intersubband applications,” in Photonic Materials, Devices, and Applications III (SPIE, 2009), p. 73661F.

Rees, G. J.

Risk, W. P.

G. Karve, S. Wang, F. Ma, X. Li, J. C. Campbell, R. G. Ispasoiu, D. S. Bethune, W. P. Risk, G. S. Kinsey, J. C. Boisvert, T. D. Isshiki, and R. Sudharsanan, “Origin of dark counts in In0.53Ga0.47As/In0.52Al0.48As avalanche photodiodes operated in Geiger mode,” Appl. Phys. Lett. 86, 063505 (2005).
[CrossRef]

Rogalski, A.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105, 091101 (2009).
[CrossRef]

Saleh, B.

D. Ramirez, M. Hayat, G. Karve, J. Campbell, S. Torres, B. Saleh, and M. Teich, “Detection efficiencies and generalized breakdown probabilities for nanosecond-gated near infrared single-photon avalanche photodiodes,” IEEE J. Quantum Electron. 42, 137–145 (2006).
[CrossRef]

Samori, C.

Shah, S. Y.

A. Barve, S. Y. Shah, J. Shao, T. E. Vandervelde, R. V. Shenoi, W.-Y. Jang, and S. Krishna, “Reduction in dark current using resonant tunneling barriers in quantum dots-in-a-well long wavelength infrared photodetector,” Appl. Phys. Lett. 93, 131115 (2008).
[CrossRef]

Shao, J.

A. Barve, S. Y. Shah, J. Shao, T. E. Vandervelde, R. V. Shenoi, W.-Y. Jang, and S. Krishna, “Reduction in dark current using resonant tunneling barriers in quantum dots-in-a-well long wavelength infrared photodetector,” Appl. Phys. Lett. 93, 131115 (2008).
[CrossRef]

Shaver, D.

J. Donnelly, E. Duerr, K. McIntosh, E. Dauler, D. Oakley, S. Groves, C. Vineis, L. Mahoney, K. Molvar, P. Hopman, K. Jensen, G. Smith, S. Verghese, and D. Shaver, “Design considerations for 1.06-μm InGaAsP–InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797–809 (2006).
[CrossRef]

Shenoi, R. V.

A. Barve, S. Y. Shah, J. Shao, T. E. Vandervelde, R. V. Shenoi, W.-Y. Jang, and S. Krishna, “Reduction in dark current using resonant tunneling barriers in quantum dots-in-a-well long wavelength infrared photodetector,” Appl. Phys. Lett. 93, 131115 (2008).
[CrossRef]

Shields, A. J.

B. E. Kardynał, Z. L. Yuan, and A. J. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photonics 2, 425–428 (2008).
[CrossRef]

Singh, J.

B. Kochman, A. Stiff-Roberts, S. Chakrabarti, J. Phillips, S. Krishna, J. Singh, and P. Bhattacharya, “Absorption, carrier lifetime, and gain in InAs–GaAs quantum-dot infrared photodetectors,” IEEE J. Quantum Electron. 39, 459–467 (2003).
[CrossRef]

Slomkowski, K.

M. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[CrossRef]

X. Jiang, M. Itzler, R. Ben-Michael, and K. Slomkowski, “InGaAsP–InP avalanche photodiodes for single photon detection,” IEEE J. Sel. Top. Quantum Electron. 13, 895–905 (2007).
[CrossRef]

Smith, G.

J. Donnelly, E. Duerr, K. McIntosh, E. Dauler, D. Oakley, S. Groves, C. Vineis, L. Mahoney, K. Molvar, P. Hopman, K. Jensen, G. Smith, S. Verghese, and D. Shaver, “Design considerations for 1.06-μm InGaAsP–InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797–809 (2006).
[CrossRef]

G. Smith, K. McIntosh, J. Donnelly, J. Funk, L. Mahoney, and S. Verghese, “Reliable InP-based Geiger-mode avalanche photodiode arrays,” in Advanced Photon Counting Techniques III (SPIE, 2009), p. 73200R.

Stiff-Roberts, A.

B. Kochman, A. Stiff-Roberts, S. Chakrabarti, J. Phillips, S. Krishna, J. Singh, and P. Bhattacharya, “Absorption, carrier lifetime, and gain in InAs–GaAs quantum-dot infrared photodetectors,” IEEE J. Quantum Electron. 39, 459–467 (2003).
[CrossRef]

Su, X.

X. Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “A resonant tunneling quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 41, 974–979 (2005).
[CrossRef]

Sudharsanan, R.

G. Karve, S. Wang, F. Ma, X. Li, J. C. Campbell, R. G. Ispasoiu, D. S. Bethune, W. P. Risk, G. S. Kinsey, J. C. Boisvert, T. D. Isshiki, and R. Sudharsanan, “Origin of dark counts in In0.53Ga0.47As/In0.52Al0.48As avalanche photodiodes operated in Geiger mode,” Appl. Phys. Lett. 86, 063505 (2005).
[CrossRef]

Sugihara, K.

K. Sugihara, E. Yagyu, and Y. Tokuda, “Numerical analysis of single photon detection avalanche photodiodes operated in the Geiger mode,” J. Appl. Phys. 99, 124502 (2006).
[CrossRef]

Taguchi, M.

H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A. A. Quivy, and M. Razeghi, “Gain and recombination dynamics of quantum-dot infrared photodetectors,” Phys. Rev. B 74, 205321 (2006).
[CrossRef]

Teich, M.

D. Ramirez, M. Hayat, G. Karve, J. Campbell, S. Torres, B. Saleh, and M. Teich, “Detection efficiencies and generalized breakdown probabilities for nanosecond-gated near infrared single-photon avalanche photodiodes,” IEEE J. Quantum Electron. 42, 137–145 (2006).
[CrossRef]

Tokuda, Y.

K. Sugihara, E. Yagyu, and Y. Tokuda, “Numerical analysis of single photon detection avalanche photodiodes operated in the Geiger mode,” J. Appl. Phys. 99, 124502 (2006).
[CrossRef]

Torres, S.

D. Ramirez, M. Hayat, G. Karve, J. Campbell, S. Torres, B. Saleh, and M. Teich, “Detection efficiencies and generalized breakdown probabilities for nanosecond-gated near infrared single-photon avalanche photodiodes,” IEEE J. Quantum Electron. 42, 137–145 (2006).
[CrossRef]

Tosi, A.

M. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[CrossRef]

Tsao, S.

H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A. A. Quivy, and M. Razeghi, “Gain and recombination dynamics of quantum-dot infrared photodetectors,” Phys. Rev. B 74, 205321 (2006).
[CrossRef]

Tsuchida, H.

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Gated-mode single-photon detection at 1550  nm by discharge pulse counting,” Appl. Phys. Lett. 84, 3606–3608 (2004).
[CrossRef]

Vandervelde, T. E.

A. Barve, S. Y. Shah, J. Shao, T. E. Vandervelde, R. V. Shenoi, W.-Y. Jang, and S. Krishna, “Reduction in dark current using resonant tunneling barriers in quantum dots-in-a-well long wavelength infrared photodetector,” Appl. Phys. Lett. 93, 131115 (2008).
[CrossRef]

Verghese, S.

J. Donnelly, E. Duerr, K. McIntosh, E. Dauler, D. Oakley, S. Groves, C. Vineis, L. Mahoney, K. Molvar, P. Hopman, K. Jensen, G. Smith, S. Verghese, and D. Shaver, “Design considerations for 1.06-μm InGaAsP–InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797–809 (2006).
[CrossRef]

G. Smith, K. McIntosh, J. Donnelly, J. Funk, L. Mahoney, and S. Verghese, “Reliable InP-based Geiger-mode avalanche photodiode arrays,” in Advanced Photon Counting Techniques III (SPIE, 2009), p. 73200R.

Vineis, C.

J. Donnelly, E. Duerr, K. McIntosh, E. Dauler, D. Oakley, S. Groves, C. Vineis, L. Mahoney, K. Molvar, P. Hopman, K. Jensen, G. Smith, S. Verghese, and D. Shaver, “Design considerations for 1.06-μm InGaAsP–InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797–809 (2006).
[CrossRef]

Wang, S.

G. Karve, S. Wang, F. Ma, X. Li, J. C. Campbell, R. G. Ispasoiu, D. S. Bethune, W. P. Risk, G. S. Kinsey, J. C. Boisvert, T. D. Isshiki, and R. Sudharsanan, “Origin of dark counts in In0.53Ga0.47As/In0.52Al0.48As avalanche photodiodes operated in Geiger mode,” Appl. Phys. Lett. 86, 063505 (2005).
[CrossRef]

Yagyu, E.

K. Sugihara, E. Yagyu, and Y. Tokuda, “Numerical analysis of single photon detection avalanche photodiodes operated in the Geiger mode,” J. Appl. Phys. 99, 124502 (2006).
[CrossRef]

Yoshizawa, A.

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Gated-mode single-photon detection at 1550  nm by discharge pulse counting,” Appl. Phys. Lett. 84, 3606–3608 (2004).
[CrossRef]

You, S.

S. You, J. Cheng, and Y. Lo, “Physics of single photon avalanche detectors with built-in self-quenching and self-recovering capabilities,” IEEE J. Quantum Electron. 48, 960–967 (2012).
[CrossRef]

Yuan, Z. L.

B. E. Kardynał, Z. L. Yuan, and A. J. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photonics 2, 425–428 (2008).
[CrossRef]

Zappa, F.

M. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[CrossRef]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35, 1956–1976 (1996).
[CrossRef]

Zavvari, M.

M. Zavvari and V. Ahmadi, “Quantum dot based mid-IR single photon detector with self-quenching and self-recovering operation,” IEEE Electron Device Lett. 34, 783–785 (2013).
[CrossRef]

M. Zavvari, V. Ahmadi, A. Mir, and E. Darabi, “Quantum dot infrared photodetector enhanced by avalanche multiplication,” Electron. Lett. 48, 589–591 (2012).
[CrossRef]

Zhang, J.

Zhang, W.

H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A. A. Quivy, and M. Razeghi, “Gain and recombination dynamics of quantum-dot infrared photodetectors,” Phys. Rev. B 74, 205321 (2006).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (5)

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Gated-mode single-photon detection at 1550  nm by discharge pulse counting,” Appl. Phys. Lett. 84, 3606–3608 (2004).
[CrossRef]

A. Barve, S. Y. Shah, J. Shao, T. E. Vandervelde, R. V. Shenoi, W.-Y. Jang, and S. Krishna, “Reduction in dark current using resonant tunneling barriers in quantum dots-in-a-well long wavelength infrared photodetector,” Appl. Phys. Lett. 93, 131115 (2008).
[CrossRef]

Y. Kang, H. Lu, and Y. Lo, “Dark count probability and quantum efficiency of avalanche photodiodes for single-photon detection,” Appl. Phys. Lett. 83, 2955–2957 (2003).
[CrossRef]

G. Karve, S. Wang, F. Ma, X. Li, J. C. Campbell, R. G. Ispasoiu, D. S. Bethune, W. P. Risk, G. S. Kinsey, J. C. Boisvert, T. D. Isshiki, and R. Sudharsanan, “Origin of dark counts in In0.53Ga0.47As/In0.52Al0.48As avalanche photodiodes operated in Geiger mode,” Appl. Phys. Lett. 86, 063505 (2005).
[CrossRef]

G. Ariyawansa, V. Apalkov, A. G. U. Perera, S. G. Matsik, G. Huang, and P. Bhattacharya, “Bias-selectable tricolor tunneling quantum dot infrared photodetector for atmospheric windows,” Appl. Phys. Lett. 92, 111104 (2008).
[CrossRef]

Electron. Lett. (2)

H. Kosaka, “Single-photon interference experiment over 100  km for quantum cryptography system using balanced gated-mode photon detector,” Electron. Lett. 39, 1199–1201 (2003).
[CrossRef]

M. Zavvari, V. Ahmadi, A. Mir, and E. Darabi, “Quantum dot infrared photodetector enhanced by avalanche multiplication,” Electron. Lett. 48, 589–591 (2012).
[CrossRef]

IEEE Electron Device Lett. (1)

M. Zavvari and V. Ahmadi, “Quantum dot based mid-IR single photon detector with self-quenching and self-recovering operation,” IEEE Electron Device Lett. 34, 783–785 (2013).
[CrossRef]

IEEE J. Lightwave Technol. (1)

J. Campbell, “Recent advances in telecommunications avalanche photodiodes,” IEEE J. Lightwave Technol. 25, 109–121 (2007).
[CrossRef]

IEEE J. Quantum Electron. (6)

D. Ramirez, M. Hayat, G. Karve, J. Campbell, S. Torres, B. Saleh, and M. Teich, “Detection efficiencies and generalized breakdown probabilities for nanosecond-gated near infrared single-photon avalanche photodiodes,” IEEE J. Quantum Electron. 42, 137–145 (2006).
[CrossRef]

S. You, J. Cheng, and Y. Lo, “Physics of single photon avalanche detectors with built-in self-quenching and self-recovering capabilities,” IEEE J. Quantum Electron. 48, 960–967 (2012).
[CrossRef]

X. Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “A resonant tunneling quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 41, 974–979 (2005).
[CrossRef]

D. Ramirez, M. Hayat, and M. Itzler, “Dependence of the performance of single photon avalanche diodes on the multiplication region width,” IEEE J. Quantum Electron. 44, 1188–1195 (2008).
[CrossRef]

J. Donnelly, E. Duerr, K. McIntosh, E. Dauler, D. Oakley, S. Groves, C. Vineis, L. Mahoney, K. Molvar, P. Hopman, K. Jensen, G. Smith, S. Verghese, and D. Shaver, “Design considerations for 1.06-μm InGaAsP–InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797–809 (2006).
[CrossRef]

B. Kochman, A. Stiff-Roberts, S. Chakrabarti, J. Phillips, S. Krishna, J. Singh, and P. Bhattacharya, “Absorption, carrier lifetime, and gain in InAs–GaAs quantum-dot infrared photodetectors,” IEEE J. Quantum Electron. 39, 459–467 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

X. Jiang, M. Itzler, R. Ben-Michael, and K. Slomkowski, “InGaAsP–InP avalanche photodiodes for single photon detection,” IEEE J. Sel. Top. Quantum Electron. 13, 895–905 (2007).
[CrossRef]

J. Appl. Phys. (2)

K. Sugihara, E. Yagyu, and Y. Tokuda, “Numerical analysis of single photon detection avalanche photodiodes operated in the Geiger mode,” J. Appl. Phys. 99, 124502 (2006).
[CrossRef]

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105, 091101 (2009).
[CrossRef]

J. Mod. Opt. (2)

M. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[CrossRef]

A. Mir and V. Ahmadi, “Design and analysis of a new structure of InAs/GaAs QDIP for 8–12  um infrared windows with low dark current,” J. Mod. Opt. 56, 1704–1712 (2009).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

B. E. Kardynał, Z. L. Yuan, and A. J. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photonics 2, 425–428 (2008).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (1)

H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A. A. Quivy, and M. Razeghi, “Gain and recombination dynamics of quantum-dot infrared photodetectors,” Phys. Rev. B 74, 205321 (2006).
[CrossRef]

Solid State Electron. (1)

S. R. Forrest and O. K. Kim, “Analysis of the dark current and photoresponse of In0.53Ga0.47As/InP avalanche photodiodes,” Solid State Electron. 26, 951–968 (1983).
[CrossRef]

Other (2)

G. Smith, K. McIntosh, J. Donnelly, J. Funk, L. Mahoney, and S. Verghese, “Reliable InP-based Geiger-mode avalanche photodiode arrays,” in Advanced Photon Counting Techniques III (SPIE, 2009), p. 73200R.

M. Razeghi and C. Bayram, “Material and design engineering of (Al)GaN for high-performance avalanche photodiodes and intersubband applications,” in Photonic Materials, Devices, and Applications III (SPIE, 2009), p. 73661F.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of proposed SPAD structure with RT barriers added in the absorption layers.

Fig. 2.
Fig. 2.

Dark current density of proposed SPAD versus the applied bias with (black dashed lines) and without (blue solid and dashed lines) RT barriers in the absorption region, at different temperatures.

Fig. 3.
Fig. 3.

Dark count probability of a SPAD versus normalized overbias at different temperatures.

Fig. 4.
Fig. 4.

Dark count probability of a SPAD versus normalized overbias for different dopings of the charge layer at T=77K. The breakdown voltage corresponding to each doping is also shown in the figure.

Fig. 5.
Fig. 5.

Calculated DCR versus normalized overbias for different temperatures.

Fig. 6.
Fig. 6.

SPQE as a function of overbias for different temperatures.

Fig. 7.
Fig. 7.

DCR of a SPAD versus SPQE for different temperatures.

Tables (1)

Tables Icon

Table 1. Parameters Used in Our Calculations

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Pd=1exp(PaNd),
Nd=NDM1τ+NDM2τtrM0+Pdc1cMgexp(τ/τd)1exp(ΔT/τd)1+Pdc1cMgexp(τtr/τd)1exp(ΔT/τd)1,
NDM1=ND,ABS+ND,MUL,
ID,ABS(V)=q·n(V)·v(V)·A,
n(V)=N(E)·f(E)·T(E,V)·dE,
N(E)=i2NDLp12πσexp((EEi)22σ2)+4πm*Lp2H(EEw)+8π23m*3/2EEC·H(EEC),
ID,MUL=(2m*Eg)1/2q3EmV(2π)32exp(π(2m*Eg3)1/24qE)+AE2NTexp((B1EB13/2+B2EB23/2)E)Nvexp(B1EB13/2E)+Ncexp(B2EB23/2E),
DCR=PaNd/τ.
SPQE=PpPdP0,
Pp=1exp(PaNp),
Np=NDM1τ+NDM2τtrM0+Ppc1cMgexp(τ/τd)1exp(ΔT/τd)1+Ppc1cMgexp(τtr/τd)1exp(ΔT/τd)1+ηN0,

Metrics