Abstract

A novel design for a quantum dot infrared photodetector (QDIP) is proposed based on avalanche multiplication and is expected to be used as a single photon detector at mid-IR. A high field multiplication region is added to a conventional QDIP in separate absorption, charge, and multiplication structures to intensify incoming photocurrent generated in the absorption region. The absorption region of the photodetector consists of quantum dot layers that are responsible for absorption of mid-IR wavelengths. Because of higher operation voltages in gated-mode operation, resonant tunneling barriers are also included in the absorption region to prevent higher dark currents. The absorption region is designed for operation at λ=8μm. During the gate pulse period, photo-generated electrons can trigger an avalanche and produce an output pulse. For this detector, the dark count rate (DCR) and single photon quantum efficiency (SPQE) are calculated at different temperatures. SPQE with peak of about 0.3 for T=50K is obtained. For higher temperatures, about T=120K, SPQE is very low due to the contribution of dark carriers generated in the quantum dot absorption region.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription