W. W.-L. Ng and D. P.-K. Lun, “Effective bias removal for fringe projection profilometry using the dual-tree complex wavelet transform,” Appl. Opt. 51, 5909–5916 (2012).

[CrossRef]

M. Zhong, W. Chen, and M. Jiang, “Application of S-transform profilometry in eliminating nonlinearity in fringe pattern,” Appl. Opt. 51, 577–587 (2012).

[CrossRef]

C. Wang and F. Da, “Phase retrieval for noisy fringe pattern by using empirical mode decomposition and Hilbert Huang transform,” Opt. Eng. 51, 061306 (2012).

[CrossRef]

Y. Zhou and H. Li, “Adaptive noise reduction method for DSPI fringes based on bi-dimensional ensemble empirical mode decomposition,” Opt. Express 19, 18207–18215 (2011).

[CrossRef]

S. Fernandez, M. A. Gdeisat, J. Salvi, and D. Burton, “Automatic window size selection in windowed Fourier transform for 3D reconstruction using adapted mother wavelets,” Opt. Commun. 284, 2797–2807 (2011).

[CrossRef]

K. Patorski and K. Pokorski, “Examination of singular scalar light fields using wavelet processing of fork fringes,” Appl. Opt. 50, 773–781 (2011).

[CrossRef]

Z. H. Wu and N. E. Huang, “Ensemble empirical mode decomposition: a noise-assisted data analysis method,” Adv. Adapt. Data Anal. 1, 1–41 (2009).

[CrossRef]

S. Zheng, W. Chen, and X. Su, “Adaptive windowed Fourier transform in 3-D shape measurement,” Opt. Eng. 45, 063601 (2006).

[CrossRef]

S. Yoneyama, Y. Morimoto, M. Fujigaki, and M. Yabe, “Phase-measuring profilometry of moving object without phase-shifting device,” Opt. Lasers Eng. 40, 153–161 (2003).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

R. G. Stockwell, L. Mansinha, and R. P. Lowe, “Localization of the complex spectrum: the S transform,” IEEE Trans. Signal Process. 44, 998–1001 (1996).

[CrossRef]

S. Fernandez, M. A. Gdeisat, J. Salvi, and D. Burton, “Automatic window size selection in windowed Fourier transform for 3D reconstruction using adapted mother wavelets,” Opt. Commun. 284, 2797–2807 (2011).

[CrossRef]

M. Zhong, W. Chen, and M. Jiang, “Application of S-transform profilometry in eliminating nonlinearity in fringe pattern,” Appl. Opt. 51, 577–587 (2012).

[CrossRef]

S. Zheng, W. Chen, and X. Su, “Adaptive windowed Fourier transform in 3-D shape measurement,” Opt. Eng. 45, 063601 (2006).

[CrossRef]

C. Wang and F. Da, “Phase retrieval for noisy fringe pattern by using empirical mode decomposition and Hilbert Huang transform,” Opt. Eng. 51, 061306 (2012).

[CrossRef]

S. Fernandez, M. A. Gdeisat, J. Salvi, and D. Burton, “Automatic window size selection in windowed Fourier transform for 3D reconstruction using adapted mother wavelets,” Opt. Commun. 284, 2797–2807 (2011).

[CrossRef]

S. Yoneyama, Y. Morimoto, M. Fujigaki, and M. Yabe, “Phase-measuring profilometry of moving object without phase-shifting device,” Opt. Lasers Eng. 40, 153–161 (2003).

[CrossRef]

S. Fernandez, M. A. Gdeisat, J. Salvi, and D. Burton, “Automatic window size selection in windowed Fourier transform for 3D reconstruction using adapted mother wavelets,” Opt. Commun. 284, 2797–2807 (2011).

[CrossRef]

Z. H. Wu and N. E. Huang, “Ensemble empirical mode decomposition: a noise-assisted data analysis method,” Adv. Adapt. Data Anal. 1, 1–41 (2009).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

R. G. Stockwell, L. Mansinha, and R. P. Lowe, “Localization of the complex spectrum: the S transform,” IEEE Trans. Signal Process. 44, 998–1001 (1996).

[CrossRef]

R. G. Stockwell, L. Mansinha, and R. P. Lowe, “Localization of the complex spectrum: the S transform,” IEEE Trans. Signal Process. 44, 998–1001 (1996).

[CrossRef]

S. Yoneyama, Y. Morimoto, M. Fujigaki, and M. Yabe, “Phase-measuring profilometry of moving object without phase-shifting device,” Opt. Lasers Eng. 40, 153–161 (2003).

[CrossRef]

S. Fernandez, M. A. Gdeisat, J. Salvi, and D. Burton, “Automatic window size selection in windowed Fourier transform for 3D reconstruction using adapted mother wavelets,” Opt. Commun. 284, 2797–2807 (2011).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

R. G. Stockwell, L. Mansinha, and R. P. Lowe, “Localization of the complex spectrum: the S transform,” IEEE Trans. Signal Process. 44, 998–1001 (1996).

[CrossRef]

S. Zheng, W. Chen, and X. Su, “Adaptive windowed Fourier transform in 3-D shape measurement,” Opt. Eng. 45, 063601 (2006).

[CrossRef]

W. Li, X. Su, and Z. Liu, “Large-scale three-dimensional object measurement: a practical coordinate mapping and image data-patching method,” Appl. Opt. 40, 3326–3333 (2001).

[CrossRef]

M. Takeda, Q. Gu, M. Kinoshita, H. Takai, and Y. Takahashi, “Frequency-multiplex Fourier-transform profilometry: a single-shot three-dimensional shape measurement of objects with large height discontinuities and/or surface isolations,” Appl. Opt. 36, 5347–5354 (1997).

[CrossRef]

M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt. 22, 3977–3982 (1983).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

C. Wang and F. Da, “Phase retrieval for noisy fringe pattern by using empirical mode decomposition and Hilbert Huang transform,” Opt. Eng. 51, 061306 (2012).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

Z. H. Wu and N. E. Huang, “Ensemble empirical mode decomposition: a noise-assisted data analysis method,” Adv. Adapt. Data Anal. 1, 1–41 (2009).

[CrossRef]

S. Yoneyama, Y. Morimoto, M. Fujigaki, and M. Yabe, “Phase-measuring profilometry of moving object without phase-shifting device,” Opt. Lasers Eng. 40, 153–161 (2003).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

S. Yoneyama, Y. Morimoto, M. Fujigaki, and M. Yabe, “Phase-measuring profilometry of moving object without phase-shifting device,” Opt. Lasers Eng. 40, 153–161 (2003).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

S. Zheng, W. Chen, and X. Su, “Adaptive windowed Fourier transform in 3-D shape measurement,” Opt. Eng. 45, 063601 (2006).

[CrossRef]

Z. H. Wu and N. E. Huang, “Ensemble empirical mode decomposition: a noise-assisted data analysis method,” Adv. Adapt. Data Anal. 1, 1–41 (2009).

[CrossRef]

W. Li, X. Su, and Z. Liu, “Large-scale three-dimensional object measurement: a practical coordinate mapping and image data-patching method,” Appl. Opt. 40, 3326–3333 (2001).

[CrossRef]

M. Zhong, W. Chen, and M. Jiang, “Application of S-transform profilometry in eliminating nonlinearity in fringe pattern,” Appl. Opt. 51, 577–587 (2012).

[CrossRef]

M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt. 22, 3977–3982 (1983).

[CrossRef]

M. Takeda, Q. Gu, M. Kinoshita, H. Takai, and Y. Takahashi, “Frequency-multiplex Fourier-transform profilometry: a single-shot three-dimensional shape measurement of objects with large height discontinuities and/or surface isolations,” Appl. Opt. 36, 5347–5354 (1997).

[CrossRef]

Q. Kemao, “Windowed Fourier transform for fringe pattern analysis,” Appl. Opt. 43, 2695–2702 (2004).

[CrossRef]

K. Pokorski and K. Patorski, “Visualization of additive-type moiré and time-average fringe patterns using the continuous wavelet transform,” Appl. Opt. 49, 3640–3651 (2010).

[CrossRef]

K. Patorski and K. Pokorski, “Examination of singular scalar light fields using wavelet processing of fork fringes,” Appl. Opt. 50, 773–781 (2011).

[CrossRef]

W. W.-L. Ng and D. P.-K. Lun, “Effective bias removal for fringe projection profilometry using the dual-tree complex wavelet transform,” Appl. Opt. 51, 5909–5916 (2012).

[CrossRef]

R. G. Stockwell, L. Mansinha, and R. P. Lowe, “Localization of the complex spectrum: the S transform,” IEEE Trans. Signal Process. 44, 998–1001 (1996).

[CrossRef]

S. Fernandez, M. A. Gdeisat, J. Salvi, and D. Burton, “Automatic window size selection in windowed Fourier transform for 3D reconstruction using adapted mother wavelets,” Opt. Commun. 284, 2797–2807 (2011).

[CrossRef]

C. Wang and F. Da, “Phase retrieval for noisy fringe pattern by using empirical mode decomposition and Hilbert Huang transform,” Opt. Eng. 51, 061306 (2012).

[CrossRef]

S. Zheng, W. Chen, and X. Su, “Adaptive windowed Fourier transform in 3-D shape measurement,” Opt. Eng. 45, 063601 (2006).

[CrossRef]

S. Yoneyama, Y. Morimoto, M. Fujigaki, and M. Yabe, “Phase-measuring profilometry of moving object without phase-shifting device,” Opt. Lasers Eng. 40, 153–161 (2003).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]