Abstract

An array of passive silicon-on-insulator optical devices is laid out in repeating patterns on four foundry-fabricated wafers. The physical and optical characterization of these microrings, racetrack resonators, and directional couplers are found to exhibit significant variation in optical response. A device-heating experiment carried out on a number of different devices demonstrates that thermal effects are independent of the device’s location on the wafer. An analysis of the variation of the optical responses of the room-temperature devices is used to determine the process variation. We find that if we form successive arrays of the values of a quantity of interest (the peak wavelength of a transfer function) at a single device at some point on the wafer, and then increase the size of the array by including the values of the devices at ever greater distances from the original, then the variance of the values of the successive arrays increases linearly with the linear extent of the sample. That is, the process variation exhibits “random walk” pattern with spatial extent. We express the process variation in units of variance per length and find that our measured values agree with others in the literature; that is, the process variation is approximately 1nm2/cm.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
    [CrossRef]
  2. M. Mohamed, Z. Li, X. Chen, L. Shang, and A. Mickelson, “Reliability-aware design flow for silicon photonics on-chip interconnect,” IEEE Trans. Very Large Scale Integr. Syst. (to be published).
  3. http://www.epixfab.eu .
  4. http://www.europractice.com .
  5. S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
    [CrossRef]
  6. W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18, 23598–23607 (2010).
    [CrossRef]
  7. C. Nitta, M. Farrens, and V. Akella, “Addressing system-level trimming issues in on-chip nanophotonic networks,” in IEEE 17th International Symposium on High Performance Computer Architecture (HPCA) (IEEE, 2011), pp. 122–131.
  8. C. Qiu, J. Shu, Z. Li, X. Zhang, and Q. Xu, “Wavelength tracking with thermally controlled silicon resonators,” Opt. Express 19, 5143–5148 (2011).
    [CrossRef]
  9. B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18, 3487–3493 (2010).
    [CrossRef]
  10. S. Manipatruni, R. K. Dokania, B. Schmidt, N. Sherwood-Droz, C. B. Poitras, A. B. Apsel, and M. Lipson, “Wide temperature range operation of micrometer-scale silicon electro-optic modulators,” Opt. Lett. 33, 2185–2187 (2008).
    [CrossRef]
  11. G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5  μm in silicon etalon,” Electron. Lett. 28, 83–85 (1992).
    [CrossRef]
  12. I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermo-optical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett. 18, 364–366 (2006).
    [CrossRef]
  13. M. W. Pruessner, T. H. Stievater, M. S. Ferraro, and W. S. Robinovich, “Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities,” Opt. Express 15, 7557–7563 (2007).
    [CrossRef]
  14. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, M. Zhao, G. Morthier, and R. Baets, “Athermal SOI ring resonators by overlaying a polymer cladding on narrowed waveguides,” in 6th IEEE International Conference, Group IV Photonics, 2009 (IEEE, 2009), pp. 77–79.
  15. Y. Kokubun, S. Yoneda, and S. Matsuura, “Temperature-independent optical filter at 1.55  μm wavelength using a silica-based athermal waveguide,” Electron. Lett. 34, 367–369 (1998).
    [CrossRef]
  16. M. Mohamed, Z. Li, X. Chen, L. Shang, A. Mickelson, M. Vachharajani, and Y. Sun, “Power-efficient, variation-aware photonic on-chip network,” in International Symposium on Low Power Electronics and Design, August18–20, 2010.
  17. Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability modeling and management of nanophotonic on-chip networks,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20, 98–111 (2012).
    [CrossRef]
  18. S. K. Selvaraja, “Wafer-scale fabrication technology for silicon photonic integrated circuits,” Ph.D. thesis, Ghent University (2011).
  19. S. K. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using wafer-scale corrective etching for silicon nano-photonic device,” in Proceedings of the 2011 Annual Symposium of the IEEE Photonics Benelux Chapter,” P. Bienstman, G. Mortier, G. N. Roelkens, and M. Verbist, eds. (IEEE Photonics Society, 2011), pp. 289–292.
  20. Z. Li, A. Mickelson, L. Shang, M. Vachharjani, D. Filipovic, W. Park, and Y. Sun, “Spectrum: a hybrid nanophotonic-electric on-chip network,” in Design Automation Conference, San Francisco, CA, 2009.
  21. Z. Li, J. Wu, L. Shang, A. Mickelson, M. Vachharajani, D. Filipovic, W. Park, and Y. Sun, “A high-performance low-power nanophotonic on-chip network,” in Proceedings of the International Symposium on Low Power Electronics and Design, ISLPED, California, 2009.
  22. Z. Li, M. Mohamed, X. Chen, A. Mickelson, and L. Shang, “Device modeling and system simulation of nanophotonic on-chip networks for reliability, power and performance,” in Design Automation Conference, New York, 2011.
  23. Z. Li, M. Mohamed, H. Zhou, L. Shang, A. Mickelson, D. Filipović, M. Vachharajani, X. Chen, W. Park, and Y. Sun, “Global on-chip coordination at light speed,” IEEE Des. Test Comput. 27, 54–67 (2010).
  24. Z. Li, M. Mohamed, X. Chen, H. Zhou, L. Shang, A. Mickelson, and M. Vachharajani, “Iris: a hybrid nanophotonic network design for high performance and low-power on-chip communication,” ACM J. Emerging Technol. Comput. Syst. 7, 1 (2011).
    [CrossRef]
  25. K. Chiang, “Effective-index method for the analysis of optical waveguide couplers and arrays: an asymptotic theory,” J. Lightwave Technol. 9, 62–72 (1991).
    [CrossRef]
  26. X. Chen, Z. Li, M. Mohamed, L. Shang, and A. R. Mickelson, “Parameter extraction from fabricated silicon photonic devices” Appl. Opt. (to be published).
  27. Commissariat a l’nergie atomique-laboratoire d’lectronique des technologies de l’information (CEA-LETI), http://www-leti.cea.fr/en .
  28. Interuniversity Microelectronics Centre (IMEC), http://www.alphagalileo.org/Organisations/Default.aspx?OrganisationId=1903 .
  29. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
    [CrossRef]
  30. B. Little, S. Chu, H. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
    [CrossRef]
  31. W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
    [CrossRef]
  32. C. T. Shih and S. Chao, “Simplified numerical method for analyzing TE-like modes in a three-dimensional circularly bent dielectric rib waveguide by solving two one-dimensional eigenvalue equations,” J. Opt. Soc. Am. B 25, 1031–1037 (2008).
    [CrossRef]
  33. M. Masi, R. Orobtchouk, G. Fan, J.-M. Fedeli, and L. Pavesi, “Towards a realistic modelling of ultra-compact racetrack resonators,” J. Lightwave Technol. 28, 3233–3242 (2010).
    [CrossRef]
  34. Q. Wang, G. Farrell, and T. Freir, “Effective index method for planar lightwave circuits containing directional couplers,” Opt. Commun. 259, 133–136 (2006).
    [CrossRef]
  35. L. Cao, A. Elshaari, A. Aboketaf, and S. Preble, “Adiabatic couplers in SOI waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CThAA2.
  36. S. K. Selvaraja, K. D. Vos, W. Bogaerts, P. Bienstman, D. V. Thourhout, and R. Baets, “Effect of device density on the uniformity of silicon nano-photonic waveguide devices,” in IEEE LEOS Annual Meeting Conference Proceedings, Belek-Antalya, 2009.

2012 (2)

Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability modeling and management of nanophotonic on-chip networks,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20, 98–111 (2012).
[CrossRef]

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[CrossRef]

2011 (2)

Z. Li, M. Mohamed, X. Chen, H. Zhou, L. Shang, A. Mickelson, and M. Vachharajani, “Iris: a hybrid nanophotonic network design for high performance and low-power on-chip communication,” ACM J. Emerging Technol. Comput. Syst. 7, 1 (2011).
[CrossRef]

C. Qiu, J. Shu, Z. Li, X. Zhang, and Q. Xu, “Wavelength tracking with thermally controlled silicon resonators,” Opt. Express 19, 5143–5148 (2011).
[CrossRef]

2010 (5)

B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18, 3487–3493 (2010).
[CrossRef]

W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18, 23598–23607 (2010).
[CrossRef]

M. Masi, R. Orobtchouk, G. Fan, J.-M. Fedeli, and L. Pavesi, “Towards a realistic modelling of ultra-compact racetrack resonators,” J. Lightwave Technol. 28, 3233–3242 (2010).
[CrossRef]

Z. Li, M. Mohamed, H. Zhou, L. Shang, A. Mickelson, D. Filipović, M. Vachharajani, X. Chen, W. Park, and Y. Sun, “Global on-chip coordination at light speed,” IEEE Des. Test Comput. 27, 54–67 (2010).

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[CrossRef]

2008 (4)

2007 (1)

2006 (2)

Q. Wang, G. Farrell, and T. Freir, “Effective index method for planar lightwave circuits containing directional couplers,” Opt. Commun. 259, 133–136 (2006).
[CrossRef]

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermo-optical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett. 18, 364–366 (2006).
[CrossRef]

1998 (1)

Y. Kokubun, S. Yoneda, and S. Matsuura, “Temperature-independent optical filter at 1.55  μm wavelength using a silica-based athermal waveguide,” Electron. Lett. 34, 367–369 (1998).
[CrossRef]

1997 (1)

B. Little, S. Chu, H. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

1992 (1)

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5  μm in silicon etalon,” Electron. Lett. 28, 83–85 (1992).
[CrossRef]

1991 (1)

K. Chiang, “Effective-index method for the analysis of optical waveguide couplers and arrays: an asymptotic theory,” J. Lightwave Technol. 9, 62–72 (1991).
[CrossRef]

Aboketaf, A.

L. Cao, A. Elshaari, A. Aboketaf, and S. Preble, “Adiabatic couplers in SOI waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CThAA2.

Absil, P.

S. K. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using wafer-scale corrective etching for silicon nano-photonic device,” in Proceedings of the 2011 Annual Symposium of the IEEE Photonics Benelux Chapter,” P. Bienstman, G. Mortier, G. N. Roelkens, and M. Verbist, eds. (IEEE Photonics Society, 2011), pp. 289–292.

Akella, V.

C. Nitta, M. Farrens, and V. Akella, “Addressing system-level trimming issues in on-chip nanophotonic networks,” in IEEE 17th International Symposium on High Performance Computer Architecture (HPCA) (IEEE, 2011), pp. 122–131.

Apsel, A. B.

Aydinli, A.

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermo-optical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett. 18, 364–366 (2006).
[CrossRef]

Baets, R.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[CrossRef]

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[CrossRef]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, M. Zhao, G. Morthier, and R. Baets, “Athermal SOI ring resonators by overlaying a polymer cladding on narrowed waveguides,” in 6th IEEE International Conference, Group IV Photonics, 2009 (IEEE, 2009), pp. 77–79.

S. K. Selvaraja, K. D. Vos, W. Bogaerts, P. Bienstman, D. V. Thourhout, and R. Baets, “Effect of device density on the uniformity of silicon nano-photonic waveguide devices,” in IEEE LEOS Annual Meeting Conference Proceedings, Belek-Antalya, 2009.

Beausoleil, R. G.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[CrossRef]

Bienstman, P.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[CrossRef]

S. K. Selvaraja, K. D. Vos, W. Bogaerts, P. Bienstman, D. V. Thourhout, and R. Baets, “Effect of device density on the uniformity of silicon nano-photonic waveguide devices,” in IEEE LEOS Annual Meeting Conference Proceedings, Belek-Antalya, 2009.

Bogaerts, W.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[CrossRef]

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[CrossRef]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, M. Zhao, G. Morthier, and R. Baets, “Athermal SOI ring resonators by overlaying a polymer cladding on narrowed waveguides,” in 6th IEEE International Conference, Group IV Photonics, 2009 (IEEE, 2009), pp. 77–79.

S. K. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using wafer-scale corrective etching for silicon nano-photonic device,” in Proceedings of the 2011 Annual Symposium of the IEEE Photonics Benelux Chapter,” P. Bienstman, G. Mortier, G. N. Roelkens, and M. Verbist, eds. (IEEE Photonics Society, 2011), pp. 289–292.

S. K. Selvaraja, K. D. Vos, W. Bogaerts, P. Bienstman, D. V. Thourhout, and R. Baets, “Effect of device density on the uniformity of silicon nano-photonic waveguide devices,” in IEEE LEOS Annual Meeting Conference Proceedings, Belek-Antalya, 2009.

Cao, L.

L. Cao, A. Elshaari, A. Aboketaf, and S. Preble, “Adiabatic couplers in SOI waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CThAA2.

Chao, S.

Chen, X.

Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability modeling and management of nanophotonic on-chip networks,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20, 98–111 (2012).
[CrossRef]

Z. Li, M. Mohamed, X. Chen, H. Zhou, L. Shang, A. Mickelson, and M. Vachharajani, “Iris: a hybrid nanophotonic network design for high performance and low-power on-chip communication,” ACM J. Emerging Technol. Comput. Syst. 7, 1 (2011).
[CrossRef]

Z. Li, M. Mohamed, H. Zhou, L. Shang, A. Mickelson, D. Filipović, M. Vachharajani, X. Chen, W. Park, and Y. Sun, “Global on-chip coordination at light speed,” IEEE Des. Test Comput. 27, 54–67 (2010).

M. Mohamed, Z. Li, X. Chen, L. Shang, and A. Mickelson, “Reliability-aware design flow for silicon photonics on-chip interconnect,” IEEE Trans. Very Large Scale Integr. Syst. (to be published).

Z. Li, M. Mohamed, X. Chen, A. Mickelson, and L. Shang, “Device modeling and system simulation of nanophotonic on-chip networks for reliability, power and performance,” in Design Automation Conference, New York, 2011.

X. Chen, Z. Li, M. Mohamed, L. Shang, and A. R. Mickelson, “Parameter extraction from fabricated silicon photonic devices” Appl. Opt. (to be published).

M. Mohamed, Z. Li, X. Chen, L. Shang, A. Mickelson, M. Vachharajani, and Y. Sun, “Power-efficient, variation-aware photonic on-chip network,” in International Symposium on Low Power Electronics and Design, August18–20, 2010.

Chiang, K.

K. Chiang, “Effective-index method for the analysis of optical waveguide couplers and arrays: an asymptotic theory,” J. Lightwave Technol. 9, 62–72 (1991).
[CrossRef]

Chu, S.

B. Little, S. Chu, H. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Claes, T.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[CrossRef]

Cocorullo, G.

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5  μm in silicon etalon,” Electron. Lett. 28, 83–85 (1992).
[CrossRef]

Dagli, N.

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermo-optical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett. 18, 364–366 (2006).
[CrossRef]

Dokania, R. K.

Dudley, E.

Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability modeling and management of nanophotonic on-chip networks,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20, 98–111 (2012).
[CrossRef]

Dumon, P.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[CrossRef]

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[CrossRef]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, M. Zhao, G. Morthier, and R. Baets, “Athermal SOI ring resonators by overlaying a polymer cladding on narrowed waveguides,” in 6th IEEE International Conference, Group IV Photonics, 2009 (IEEE, 2009), pp. 77–79.

Elshaari, A.

L. Cao, A. Elshaari, A. Aboketaf, and S. Preble, “Adiabatic couplers in SOI waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CThAA2.

Fan, G.

Farrell, G.

Q. Wang, G. Farrell, and T. Freir, “Effective index method for planar lightwave circuits containing directional couplers,” Opt. Commun. 259, 133–136 (2006).
[CrossRef]

Farrens, M.

C. Nitta, M. Farrens, and V. Akella, “Addressing system-level trimming issues in on-chip nanophotonic networks,” in IEEE 17th International Symposium on High Performance Computer Architecture (HPCA) (IEEE, 2011), pp. 122–131.

Fedeli, J.-M.

Fernandez, L.

S. K. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using wafer-scale corrective etching for silicon nano-photonic device,” in Proceedings of the 2011 Annual Symposium of the IEEE Photonics Benelux Chapter,” P. Bienstman, G. Mortier, G. N. Roelkens, and M. Verbist, eds. (IEEE Photonics Society, 2011), pp. 289–292.

Ferraro, M. S.

Filipovic, D.

Z. Li, M. Mohamed, H. Zhou, L. Shang, A. Mickelson, D. Filipović, M. Vachharajani, X. Chen, W. Park, and Y. Sun, “Global on-chip coordination at light speed,” IEEE Des. Test Comput. 27, 54–67 (2010).

Z. Li, J. Wu, L. Shang, A. Mickelson, M. Vachharajani, D. Filipovic, W. Park, and Y. Sun, “A high-performance low-power nanophotonic on-chip network,” in Proceedings of the International Symposium on Low Power Electronics and Design, ISLPED, California, 2009.

Z. Li, A. Mickelson, L. Shang, M. Vachharjani, D. Filipovic, W. Park, and Y. Sun, “Spectrum: a hybrid nanophotonic-electric on-chip network,” in Design Automation Conference, San Francisco, CA, 2009.

Foresi, J.

B. Little, S. Chu, H. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Freir, T.

Q. Wang, G. Farrell, and T. Freir, “Effective index method for planar lightwave circuits containing directional couplers,” Opt. Commun. 259, 133–136 (2006).
[CrossRef]

Green, W. M. J.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[CrossRef]

Guha, B.

Haus, H.

B. Little, S. Chu, H. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Hautala, J.

S. K. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using wafer-scale corrective etching for silicon nano-photonic device,” in Proceedings of the 2011 Annual Symposium of the IEEE Photonics Benelux Chapter,” P. Bienstman, G. Mortier, G. N. Roelkens, and M. Verbist, eds. (IEEE Photonics Society, 2011), pp. 289–292.

Heyn, P. D.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[CrossRef]

Jian, X.

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, M. Zhao, G. Morthier, and R. Baets, “Athermal SOI ring resonators by overlaying a polymer cladding on narrowed waveguides,” in 6th IEEE International Conference, Group IV Photonics, 2009 (IEEE, 2009), pp. 77–79.

Joseph, R.

Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability modeling and management of nanophotonic on-chip networks,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20, 98–111 (2012).
[CrossRef]

Kiyat, I.

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermo-optical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett. 18, 364–366 (2006).
[CrossRef]

Kokubun, Y.

Y. Kokubun, S. Yoneda, and S. Matsuura, “Temperature-independent optical filter at 1.55  μm wavelength using a silica-based athermal waveguide,” Electron. Lett. 34, 367–369 (1998).
[CrossRef]

Kuekes, P. J.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[CrossRef]

Kyotoku, B. B. C.

Laine, J. P.

B. Little, S. Chu, H. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Li, Z.

Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability modeling and management of nanophotonic on-chip networks,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20, 98–111 (2012).
[CrossRef]

C. Qiu, J. Shu, Z. Li, X. Zhang, and Q. Xu, “Wavelength tracking with thermally controlled silicon resonators,” Opt. Express 19, 5143–5148 (2011).
[CrossRef]

Z. Li, M. Mohamed, X. Chen, H. Zhou, L. Shang, A. Mickelson, and M. Vachharajani, “Iris: a hybrid nanophotonic network design for high performance and low-power on-chip communication,” ACM J. Emerging Technol. Comput. Syst. 7, 1 (2011).
[CrossRef]

Z. Li, M. Mohamed, H. Zhou, L. Shang, A. Mickelson, D. Filipović, M. Vachharajani, X. Chen, W. Park, and Y. Sun, “Global on-chip coordination at light speed,” IEEE Des. Test Comput. 27, 54–67 (2010).

Z. Li, J. Wu, L. Shang, A. Mickelson, M. Vachharajani, D. Filipovic, W. Park, and Y. Sun, “A high-performance low-power nanophotonic on-chip network,” in Proceedings of the International Symposium on Low Power Electronics and Design, ISLPED, California, 2009.

M. Mohamed, Z. Li, X. Chen, L. Shang, and A. Mickelson, “Reliability-aware design flow for silicon photonics on-chip interconnect,” IEEE Trans. Very Large Scale Integr. Syst. (to be published).

X. Chen, Z. Li, M. Mohamed, L. Shang, and A. R. Mickelson, “Parameter extraction from fabricated silicon photonic devices” Appl. Opt. (to be published).

Z. Li, M. Mohamed, X. Chen, A. Mickelson, and L. Shang, “Device modeling and system simulation of nanophotonic on-chip networks for reliability, power and performance,” in Design Automation Conference, New York, 2011.

Z. Li, A. Mickelson, L. Shang, M. Vachharjani, D. Filipovic, W. Park, and Y. Sun, “Spectrum: a hybrid nanophotonic-electric on-chip network,” in Design Automation Conference, San Francisco, CA, 2009.

M. Mohamed, Z. Li, X. Chen, L. Shang, A. Mickelson, M. Vachharajani, and Y. Sun, “Power-efficient, variation-aware photonic on-chip network,” in International Symposium on Low Power Electronics and Design, August18–20, 2010.

Lipson, M.

Little, B.

B. Little, S. Chu, H. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Manipatruni, S.

Masi, M.

Matsuura, S.

Y. Kokubun, S. Yoneda, and S. Matsuura, “Temperature-independent optical filter at 1.55  μm wavelength using a silica-based athermal waveguide,” Electron. Lett. 34, 367–369 (1998).
[CrossRef]

Meng, K.

Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability modeling and management of nanophotonic on-chip networks,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20, 98–111 (2012).
[CrossRef]

Mickelson, A.

Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability modeling and management of nanophotonic on-chip networks,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20, 98–111 (2012).
[CrossRef]

Z. Li, M. Mohamed, X. Chen, H. Zhou, L. Shang, A. Mickelson, and M. Vachharajani, “Iris: a hybrid nanophotonic network design for high performance and low-power on-chip communication,” ACM J. Emerging Technol. Comput. Syst. 7, 1 (2011).
[CrossRef]

Z. Li, M. Mohamed, H. Zhou, L. Shang, A. Mickelson, D. Filipović, M. Vachharajani, X. Chen, W. Park, and Y. Sun, “Global on-chip coordination at light speed,” IEEE Des. Test Comput. 27, 54–67 (2010).

Z. Li, J. Wu, L. Shang, A. Mickelson, M. Vachharajani, D. Filipovic, W. Park, and Y. Sun, “A high-performance low-power nanophotonic on-chip network,” in Proceedings of the International Symposium on Low Power Electronics and Design, ISLPED, California, 2009.

M. Mohamed, Z. Li, X. Chen, L. Shang, and A. Mickelson, “Reliability-aware design flow for silicon photonics on-chip interconnect,” IEEE Trans. Very Large Scale Integr. Syst. (to be published).

Z. Li, M. Mohamed, X. Chen, A. Mickelson, and L. Shang, “Device modeling and system simulation of nanophotonic on-chip networks for reliability, power and performance,” in Design Automation Conference, New York, 2011.

Z. Li, A. Mickelson, L. Shang, M. Vachharjani, D. Filipovic, W. Park, and Y. Sun, “Spectrum: a hybrid nanophotonic-electric on-chip network,” in Design Automation Conference, San Francisco, CA, 2009.

M. Mohamed, Z. Li, X. Chen, L. Shang, A. Mickelson, M. Vachharajani, and Y. Sun, “Power-efficient, variation-aware photonic on-chip network,” in International Symposium on Low Power Electronics and Design, August18–20, 2010.

Mickelson, A. R.

X. Chen, Z. Li, M. Mohamed, L. Shang, and A. R. Mickelson, “Parameter extraction from fabricated silicon photonic devices” Appl. Opt. (to be published).

Mohamed, M.

Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability modeling and management of nanophotonic on-chip networks,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20, 98–111 (2012).
[CrossRef]

Z. Li, M. Mohamed, X. Chen, H. Zhou, L. Shang, A. Mickelson, and M. Vachharajani, “Iris: a hybrid nanophotonic network design for high performance and low-power on-chip communication,” ACM J. Emerging Technol. Comput. Syst. 7, 1 (2011).
[CrossRef]

Z. Li, M. Mohamed, H. Zhou, L. Shang, A. Mickelson, D. Filipović, M. Vachharajani, X. Chen, W. Park, and Y. Sun, “Global on-chip coordination at light speed,” IEEE Des. Test Comput. 27, 54–67 (2010).

M. Mohamed, Z. Li, X. Chen, L. Shang, and A. Mickelson, “Reliability-aware design flow for silicon photonics on-chip interconnect,” IEEE Trans. Very Large Scale Integr. Syst. (to be published).

X. Chen, Z. Li, M. Mohamed, L. Shang, and A. R. Mickelson, “Parameter extraction from fabricated silicon photonic devices” Appl. Opt. (to be published).

Z. Li, M. Mohamed, X. Chen, A. Mickelson, and L. Shang, “Device modeling and system simulation of nanophotonic on-chip networks for reliability, power and performance,” in Design Automation Conference, New York, 2011.

M. Mohamed, Z. Li, X. Chen, L. Shang, A. Mickelson, M. Vachharajani, and Y. Sun, “Power-efficient, variation-aware photonic on-chip network,” in International Symposium on Low Power Electronics and Design, August18–20, 2010.

Morthier, G.

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, M. Zhao, G. Morthier, and R. Baets, “Athermal SOI ring resonators by overlaying a polymer cladding on narrowed waveguides,” in 6th IEEE International Conference, Group IV Photonics, 2009 (IEEE, 2009), pp. 77–79.

Nitta, C.

C. Nitta, M. Farrens, and V. Akella, “Addressing system-level trimming issues in on-chip nanophotonic networks,” in IEEE 17th International Symposium on High Performance Computer Architecture (HPCA) (IEEE, 2011), pp. 122–131.

Orobtchouk, R.

Park, W.

Z. Li, M. Mohamed, H. Zhou, L. Shang, A. Mickelson, D. Filipović, M. Vachharajani, X. Chen, W. Park, and Y. Sun, “Global on-chip coordination at light speed,” IEEE Des. Test Comput. 27, 54–67 (2010).

Z. Li, J. Wu, L. Shang, A. Mickelson, M. Vachharajani, D. Filipovic, W. Park, and Y. Sun, “A high-performance low-power nanophotonic on-chip network,” in Proceedings of the International Symposium on Low Power Electronics and Design, ISLPED, California, 2009.

Z. Li, A. Mickelson, L. Shang, M. Vachharjani, D. Filipovic, W. Park, and Y. Sun, “Spectrum: a hybrid nanophotonic-electric on-chip network,” in Design Automation Conference, San Francisco, CA, 2009.

Pavesi, L.

Poitras, C. B.

Preble, S.

L. Cao, A. Elshaari, A. Aboketaf, and S. Preble, “Adiabatic couplers in SOI waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CThAA2.

Pruessner, M. W.

Qiu, C.

Rendina, I.

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5  μm in silicon etalon,” Electron. Lett. 28, 83–85 (1992).
[CrossRef]

Robinovich, W. S.

Rosseel, E.

S. K. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using wafer-scale corrective etching for silicon nano-photonic device,” in Proceedings of the 2011 Annual Symposium of the IEEE Photonics Benelux Chapter,” P. Bienstman, G. Mortier, G. N. Roelkens, and M. Verbist, eds. (IEEE Photonics Society, 2011), pp. 289–292.

Schmidt, B.

Schwartz, B.

Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability modeling and management of nanophotonic on-chip networks,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20, 98–111 (2012).
[CrossRef]

Selvaraja, S.

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[CrossRef]

Selvaraja, S. K.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[CrossRef]

S. K. Selvaraja, “Wafer-scale fabrication technology for silicon photonic integrated circuits,” Ph.D. thesis, Ghent University (2011).

S. K. Selvaraja, K. D. Vos, W. Bogaerts, P. Bienstman, D. V. Thourhout, and R. Baets, “Effect of device density on the uniformity of silicon nano-photonic waveguide devices,” in IEEE LEOS Annual Meeting Conference Proceedings, Belek-Antalya, 2009.

S. K. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using wafer-scale corrective etching for silicon nano-photonic device,” in Proceedings of the 2011 Annual Symposium of the IEEE Photonics Benelux Chapter,” P. Bienstman, G. Mortier, G. N. Roelkens, and M. Verbist, eds. (IEEE Photonics Society, 2011), pp. 289–292.

Shang, L.

Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability modeling and management of nanophotonic on-chip networks,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20, 98–111 (2012).
[CrossRef]

Z. Li, M. Mohamed, X. Chen, H. Zhou, L. Shang, A. Mickelson, and M. Vachharajani, “Iris: a hybrid nanophotonic network design for high performance and low-power on-chip communication,” ACM J. Emerging Technol. Comput. Syst. 7, 1 (2011).
[CrossRef]

Z. Li, M. Mohamed, H. Zhou, L. Shang, A. Mickelson, D. Filipović, M. Vachharajani, X. Chen, W. Park, and Y. Sun, “Global on-chip coordination at light speed,” IEEE Des. Test Comput. 27, 54–67 (2010).

Z. Li, J. Wu, L. Shang, A. Mickelson, M. Vachharajani, D. Filipovic, W. Park, and Y. Sun, “A high-performance low-power nanophotonic on-chip network,” in Proceedings of the International Symposium on Low Power Electronics and Design, ISLPED, California, 2009.

M. Mohamed, Z. Li, X. Chen, L. Shang, and A. Mickelson, “Reliability-aware design flow for silicon photonics on-chip interconnect,” IEEE Trans. Very Large Scale Integr. Syst. (to be published).

X. Chen, Z. Li, M. Mohamed, L. Shang, and A. R. Mickelson, “Parameter extraction from fabricated silicon photonic devices” Appl. Opt. (to be published).

Z. Li, M. Mohamed, X. Chen, A. Mickelson, and L. Shang, “Device modeling and system simulation of nanophotonic on-chip networks for reliability, power and performance,” in Design Automation Conference, New York, 2011.

Z. Li, A. Mickelson, L. Shang, M. Vachharjani, D. Filipovic, W. Park, and Y. Sun, “Spectrum: a hybrid nanophotonic-electric on-chip network,” in Design Automation Conference, San Francisco, CA, 2009.

M. Mohamed, Z. Li, X. Chen, L. Shang, A. Mickelson, M. Vachharajani, and Y. Sun, “Power-efficient, variation-aware photonic on-chip network,” in International Symposium on Low Power Electronics and Design, August18–20, 2010.

Sherwood-Droz, N.

Shih, C. T.

Shu, J.

Snider, G. S.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[CrossRef]

Stievater, T. H.

Sun, Y.

Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability modeling and management of nanophotonic on-chip networks,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20, 98–111 (2012).
[CrossRef]

Z. Li, M. Mohamed, H. Zhou, L. Shang, A. Mickelson, D. Filipović, M. Vachharajani, X. Chen, W. Park, and Y. Sun, “Global on-chip coordination at light speed,” IEEE Des. Test Comput. 27, 54–67 (2010).

Z. Li, J. Wu, L. Shang, A. Mickelson, M. Vachharajani, D. Filipovic, W. Park, and Y. Sun, “A high-performance low-power nanophotonic on-chip network,” in Proceedings of the International Symposium on Low Power Electronics and Design, ISLPED, California, 2009.

Z. Li, A. Mickelson, L. Shang, M. Vachharjani, D. Filipovic, W. Park, and Y. Sun, “Spectrum: a hybrid nanophotonic-electric on-chip network,” in Design Automation Conference, San Francisco, CA, 2009.

M. Mohamed, Z. Li, X. Chen, L. Shang, A. Mickelson, M. Vachharajani, and Y. Sun, “Power-efficient, variation-aware photonic on-chip network,” in International Symposium on Low Power Electronics and Design, August18–20, 2010.

Tabat, M.

S. K. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using wafer-scale corrective etching for silicon nano-photonic device,” in Proceedings of the 2011 Annual Symposium of the IEEE Photonics Benelux Chapter,” P. Bienstman, G. Mortier, G. N. Roelkens, and M. Verbist, eds. (IEEE Photonics Society, 2011), pp. 289–292.

Teng, J.

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, M. Zhao, G. Morthier, and R. Baets, “Athermal SOI ring resonators by overlaying a polymer cladding on narrowed waveguides,” in 6th IEEE International Conference, Group IV Photonics, 2009 (IEEE, 2009), pp. 77–79.

Thourhout, D. V.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[CrossRef]

S. K. Selvaraja, K. D. Vos, W. Bogaerts, P. Bienstman, D. V. Thourhout, and R. Baets, “Effect of device density on the uniformity of silicon nano-photonic waveguide devices,” in IEEE LEOS Annual Meeting Conference Proceedings, Belek-Antalya, 2009.

Trotter, D. C.

Vachharajani, M.

Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability modeling and management of nanophotonic on-chip networks,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20, 98–111 (2012).
[CrossRef]

Z. Li, M. Mohamed, X. Chen, H. Zhou, L. Shang, A. Mickelson, and M. Vachharajani, “Iris: a hybrid nanophotonic network design for high performance and low-power on-chip communication,” ACM J. Emerging Technol. Comput. Syst. 7, 1 (2011).
[CrossRef]

Z. Li, M. Mohamed, H. Zhou, L. Shang, A. Mickelson, D. Filipović, M. Vachharajani, X. Chen, W. Park, and Y. Sun, “Global on-chip coordination at light speed,” IEEE Des. Test Comput. 27, 54–67 (2010).

Z. Li, J. Wu, L. Shang, A. Mickelson, M. Vachharajani, D. Filipovic, W. Park, and Y. Sun, “A high-performance low-power nanophotonic on-chip network,” in Proceedings of the International Symposium on Low Power Electronics and Design, ISLPED, California, 2009.

M. Mohamed, Z. Li, X. Chen, L. Shang, A. Mickelson, M. Vachharajani, and Y. Sun, “Power-efficient, variation-aware photonic on-chip network,” in International Symposium on Low Power Electronics and Design, August18–20, 2010.

Vachharjani, M.

Z. Li, A. Mickelson, L. Shang, M. Vachharjani, D. Filipovic, W. Park, and Y. Sun, “Spectrum: a hybrid nanophotonic-electric on-chip network,” in Design Automation Conference, San Francisco, CA, 2009.

Vaerenbergh, T. V.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[CrossRef]

Van Thourhout, D.

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[CrossRef]

Vlasov, Y.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[CrossRef]

Vos, K. D.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[CrossRef]

S. K. Selvaraja, K. D. Vos, W. Bogaerts, P. Bienstman, D. V. Thourhout, and R. Baets, “Effect of device density on the uniformity of silicon nano-photonic waveguide devices,” in IEEE LEOS Annual Meeting Conference Proceedings, Belek-Antalya, 2009.

Wang, Q.

Q. Wang, G. Farrell, and T. Freir, “Effective index method for planar lightwave circuits containing directional couplers,” Opt. Commun. 259, 133–136 (2006).
[CrossRef]

Wang, S.-Y.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[CrossRef]

Watts, M. R.

Williams, R. S.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[CrossRef]

Wu, J.

Z. Li, J. Wu, L. Shang, A. Mickelson, M. Vachharajani, D. Filipovic, W. Park, and Y. Sun, “A high-performance low-power nanophotonic on-chip network,” in Proceedings of the International Symposium on Low Power Electronics and Design, ISLPED, California, 2009.

Xia, F.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[CrossRef]

Xu, Q.

Yoneda, S.

Y. Kokubun, S. Yoneda, and S. Matsuura, “Temperature-independent optical filter at 1.55  μm wavelength using a silica-based athermal waveguide,” Electron. Lett. 34, 367–369 (1998).
[CrossRef]

Zhang, H.

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, M. Zhao, G. Morthier, and R. Baets, “Athermal SOI ring resonators by overlaying a polymer cladding on narrowed waveguides,” in 6th IEEE International Conference, Group IV Photonics, 2009 (IEEE, 2009), pp. 77–79.

Zhang, X.

Zhao, M.

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, M. Zhao, G. Morthier, and R. Baets, “Athermal SOI ring resonators by overlaying a polymer cladding on narrowed waveguides,” in 6th IEEE International Conference, Group IV Photonics, 2009 (IEEE, 2009), pp. 77–79.

Zhou, H.

Z. Li, M. Mohamed, X. Chen, H. Zhou, L. Shang, A. Mickelson, and M. Vachharajani, “Iris: a hybrid nanophotonic network design for high performance and low-power on-chip communication,” ACM J. Emerging Technol. Comput. Syst. 7, 1 (2011).
[CrossRef]

Z. Li, M. Mohamed, H. Zhou, L. Shang, A. Mickelson, D. Filipović, M. Vachharajani, X. Chen, W. Park, and Y. Sun, “Global on-chip coordination at light speed,” IEEE Des. Test Comput. 27, 54–67 (2010).

Zortman, W. A.

ACM J. Emerging Technol. Comput. Syst. (1)

Z. Li, M. Mohamed, X. Chen, H. Zhou, L. Shang, A. Mickelson, and M. Vachharajani, “Iris: a hybrid nanophotonic network design for high performance and low-power on-chip communication,” ACM J. Emerging Technol. Comput. Syst. 7, 1 (2011).
[CrossRef]

Electron. Lett. (2)

Y. Kokubun, S. Yoneda, and S. Matsuura, “Temperature-independent optical filter at 1.55  μm wavelength using a silica-based athermal waveguide,” Electron. Lett. 34, 367–369 (1998).
[CrossRef]

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5  μm in silicon etalon,” Electron. Lett. 28, 83–85 (1992).
[CrossRef]

IEEE Des. Test Comput. (1)

Z. Li, M. Mohamed, H. Zhou, L. Shang, A. Mickelson, D. Filipović, M. Vachharajani, X. Chen, W. Park, and Y. Sun, “Global on-chip coordination at light speed,” IEEE Des. Test Comput. 27, 54–67 (2010).

IEEE J. Sel. Top. Quantum Electron. (1)

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermo-optical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett. 18, 364–366 (2006).
[CrossRef]

IEEE Trans. Very Large Scale Integr. (VLSI) Syst. (1)

Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability modeling and management of nanophotonic on-chip networks,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20, 98–111 (2012).
[CrossRef]

J. Lightwave Technol. (3)

K. Chiang, “Effective-index method for the analysis of optical waveguide couplers and arrays: an asymptotic theory,” J. Lightwave Technol. 9, 62–72 (1991).
[CrossRef]

B. Little, S. Chu, H. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

M. Masi, R. Orobtchouk, G. Fan, J.-M. Fedeli, and L. Pavesi, “Towards a realistic modelling of ultra-compact racetrack resonators,” J. Lightwave Technol. 28, 3233–3242 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[CrossRef]

Nat. Photonics (1)

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[CrossRef]

Opt. Commun. (1)

Q. Wang, G. Farrell, and T. Freir, “Effective index method for planar lightwave circuits containing directional couplers,” Opt. Commun. 259, 133–136 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Proc. IEEE (1)

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[CrossRef]

Other (16)

M. Mohamed, Z. Li, X. Chen, L. Shang, and A. Mickelson, “Reliability-aware design flow for silicon photonics on-chip interconnect,” IEEE Trans. Very Large Scale Integr. Syst. (to be published).

http://www.epixfab.eu .

http://www.europractice.com .

X. Chen, Z. Li, M. Mohamed, L. Shang, and A. R. Mickelson, “Parameter extraction from fabricated silicon photonic devices” Appl. Opt. (to be published).

Commissariat a l’nergie atomique-laboratoire d’lectronique des technologies de l’information (CEA-LETI), http://www-leti.cea.fr/en .

Interuniversity Microelectronics Centre (IMEC), http://www.alphagalileo.org/Organisations/Default.aspx?OrganisationId=1903 .

S. K. Selvaraja, “Wafer-scale fabrication technology for silicon photonic integrated circuits,” Ph.D. thesis, Ghent University (2011).

S. K. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using wafer-scale corrective etching for silicon nano-photonic device,” in Proceedings of the 2011 Annual Symposium of the IEEE Photonics Benelux Chapter,” P. Bienstman, G. Mortier, G. N. Roelkens, and M. Verbist, eds. (IEEE Photonics Society, 2011), pp. 289–292.

Z. Li, A. Mickelson, L. Shang, M. Vachharjani, D. Filipovic, W. Park, and Y. Sun, “Spectrum: a hybrid nanophotonic-electric on-chip network,” in Design Automation Conference, San Francisco, CA, 2009.

Z. Li, J. Wu, L. Shang, A. Mickelson, M. Vachharajani, D. Filipovic, W. Park, and Y. Sun, “A high-performance low-power nanophotonic on-chip network,” in Proceedings of the International Symposium on Low Power Electronics and Design, ISLPED, California, 2009.

Z. Li, M. Mohamed, X. Chen, A. Mickelson, and L. Shang, “Device modeling and system simulation of nanophotonic on-chip networks for reliability, power and performance,” in Design Automation Conference, New York, 2011.

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, M. Zhao, G. Morthier, and R. Baets, “Athermal SOI ring resonators by overlaying a polymer cladding on narrowed waveguides,” in 6th IEEE International Conference, Group IV Photonics, 2009 (IEEE, 2009), pp. 77–79.

M. Mohamed, Z. Li, X. Chen, L. Shang, A. Mickelson, M. Vachharajani, and Y. Sun, “Power-efficient, variation-aware photonic on-chip network,” in International Symposium on Low Power Electronics and Design, August18–20, 2010.

C. Nitta, M. Farrens, and V. Akella, “Addressing system-level trimming issues in on-chip nanophotonic networks,” in IEEE 17th International Symposium on High Performance Computer Architecture (HPCA) (IEEE, 2011), pp. 122–131.

L. Cao, A. Elshaari, A. Aboketaf, and S. Preble, “Adiabatic couplers in SOI waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CThAA2.

S. K. Selvaraja, K. D. Vos, W. Bogaerts, P. Bienstman, D. V. Thourhout, and R. Baets, “Effect of device density on the uniformity of silicon nano-photonic waveguide devices,” in IEEE LEOS Annual Meeting Conference Proceedings, Belek-Antalya, 2009.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

SEM images of the 450nm×220nm waveguide structures of interest including (a) a microring resonator with radius of 4.975 μm and 200 nm coupling gap, (b) a racetrack resonator with the coupling length of 7 μm, bend radius of 3 μm, and 130 nm coupling gap, and (c) a section of the coupling region of a directional coupler with coupling length 1063 μm and 130 nm gap.

Fig. 2.
Fig. 2.

Schematic depiction of an 8 in. wafer that details the vertical cells (repeated dies) of a single column. The lithographic exposure was swept horizontally such that each column received a different exposure, but each cell within a column received nominally the same exposure.

Fig. 3.
Fig. 3.

Schematic of the in-house measurement setup. The setup is comprised of a SLED light source, an OSA, two single-mode fibers that couple light to and from the photonic chips, two submicron accurate 3D motion controllers, a visible camera that monitors the fiber movement, and a temperature-controlled sample stage.

Fig. 4.
Fig. 4.

Study of the variation of four maximum transmission wavelengths of the 4.975 μm radius microring in Fig. 1(a) at six temperatures in the range of 25°C–50°C. The inset shows a regime of the transmission function that includes two peaks at all of the temperatures.

Fig. 5.
Fig. 5.

Study of the variation of three maximum transmission wavelengths of the racetrack of Fig. 1(b) at six temperatures in the range of 25°C–50°C. The inset shows a regime of the transmission function that includes two peaks at all of the temperatures.

Fig. 6.
Fig. 6.

Study of the variation of six minimum transmission wavelengths of the directional coupler of Fig. 1(c) at six temperatures in the range of 25°C–50°C. The inset shows a regime of the transmission function that includes three minima at all of the temperatures.

Fig. 7.
Fig. 7.

SEM image of a WDM that consists of four microring resonators with 200 nm gaps and 450 nm waveguides. From left to right, the radii of the microrings are 4.975, 4.995, 5.015, and 5.035 μm, respectively.

Fig. 8.
Fig. 8.

Scatter plot containing two of the maximum transmission wavelengths of each of the four transmission functions of the WDM device of Fig. 7 realized on 12 dies of a 28-die column (for example, see the layout of the 18-die column of Fig. 2). The inset shows the measured transfer function for this design realization on three adjacent dies.

Fig. 9.
Fig. 9.

Plot of the variance of transmission wavelength peaks of the WDM structures over the device separation distance on a wafer.

Fig. 10.
Fig. 10.

Scatter plot of five wavelength peaks of each of the 18 transfer functions. The 18 transfer functions represent one per device of Fig. 1(b), where these devices are repeated per die where there is one die per row for each of the 18 rows of a column of a wafer, as depicted in Fig. 2. Die (row) 1 and die (row) 18 are located at the edges of the wafer. The inset shows the wavelength dispersion of the two peaks of the three transfer functions on three adjacent dies.

Fig. 11.
Fig. 11.

Plot of the standard deviation versus mean of each set of 18 consecutive wavelengths that can be constructed from the scatter data of Fig. 10.

Fig. 12.
Fig. 12.

Plot of the variance of the transmission wavelength peaks of the racetrack structures over the device separation distance on a wafer.

Fig. 13.
Fig. 13.

Scatter plot of the four adjacent minima of the directional coupler transfer functions. The measured transfer functions are realizations of the device in Fig. 1(c) (nominal dimensions of the device: coupling length 1063 μm, waveguide width 450 nm, and coupling gap of 130 nm) repeated one per die, one die per row of an 18-column row as per Fig. 2. Die 1 and die 18 are located at the edges of the wafer. The inset indicates the minima located between 1525 and 1540 nm of three transfer functions.

Fig. 14.
Fig. 14.

Plot of standard deviation versus mean value for each possible grouping of 18 adjacent wavelength data points of Fig. 13.

Fig. 15.
Fig. 15.

Plot of the variance of transmission wavelength minima of the directional couplers over the device separation distance on a wafer.

Tables (1)

Tables Icon

Table 1. Summary of the Thermal and Local Process Variation of the Fabricated Devices

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

mλsel=Lcirneff(λsel),
mλsel=Lbentneffbent(λsel)+Lstrneffstr(λsel),
mλsel=2Lstr(neffEven(λsel)neffOdd(λsel)),
FSR=λ02neffL,

Metrics