Abstract

An array of passive silicon-on-insulator optical devices is laid out in repeating patterns on four foundry-fabricated wafers. The physical and optical characterization of these microrings, racetrack resonators, and directional couplers are found to exhibit significant variation in optical response. A device-heating experiment carried out on a number of different devices demonstrates that thermal effects are independent of the device’s location on the wafer. An analysis of the variation of the optical responses of the room-temperature devices is used to determine the process variation. We find that if we form successive arrays of the values of a quantity of interest (the peak wavelength of a transfer function) at a single device at some point on the wafer, and then increase the size of the array by including the values of the devices at ever greater distances from the original, then the variance of the values of the successive arrays increases linearly with the linear extent of the sample. That is, the process variation exhibits “random walk” pattern with spatial extent. We express the process variation in units of variance per length and find that our measured values agree with others in the literature; that is, the process variation is approximately 1nm2/cm.

© 2013 Optical Society of America

Full Article  |  PDF Article
Related Articles
Microring-based optical pulse-train generator

Shang Wang, Berkehan Ciftcioglu, and Hui Wu
Opt. Express 18(18) 19314-19323 (2010)

Silicon photonics manufacturing

William A. Zortman, Douglas C. Trotter, and Michael R. Watts
Opt. Express 18(23) 23598-23607 (2010)

Defect-mediated resonance shift of silicon-on-insulator racetrack resonators

J. J. Ackert, J. K. Doylend, D. F. Logan, P. E. Jessop, R. Vafaei, L. Chrostowski, and A. P. Knights
Opt. Express 19(13) 11969-11976 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription