Abstract

We report on the stoichiometric analysis of laser ablated brass plasma nanoparticles (NPs) in water and ambient air. Morphological study of the deposited NPs in water showed smaller spherical NPs compared to micrometer sized spherical particles in air. The smaller particles were Zn enriched and the concentration decreased with increases in size. Photoluminescence of particles at 380 nm corresponding to ZnO showed higher concentrations of Zn with smaller sized deposited NPs, whereas the micrometer sized particles showed multiple peaks at 415 and 440 nm, which implied that there was an abundance of the Cu fraction in the NPs. Plasma plume parameters, electron temperature, electron density, and evolution of the plasma plume were studied using optical emission spectroscopy and 2-dimensional imaging of the plume. The mass ablation rate in water was observed to be greater than that in air. Higher electron density and temperature of the plasmoid in water was attributed to confinement of the plasma plume near the target surface in water.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
    [Crossref]
  2. C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size dependent nanoparticle optics,” J. Phys. Chem. B 105, 5599–5611 (2001).
    [Crossref]
  3. T. E. Itina, A. A. Katassonov, W. Marine, and M. Autric, “Numerical study of the role of background gas and system geometry in pulsed laser deposition,” J. Appl. Phys. 83, 6050–6054 (1998).
    [Crossref]
  4. Istituto per l’Energetica e le Interfasi “Nanoparticle synthesis and characterization,” http://www.ieni.mi.cnr.it/research_themes/reactive-systems-and-advanced-diagnostics/nanoparticle-synthesis-and-characterization .
  5. P. K. Pandey and R. K. Thareja, “Surface nanostructuring of laser ablated copper in ambient gas atmosphere and magnetic field,” Phys. Plasmas 18, 033505 (2011).
    [Crossref]
  6. D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, 1994).
  7. D. Bauerle, Laser Processing and Chemistry (Springer-Verlag, 2000).
  8. T. Szorenyi and Zs. Geretovszky, “Comparison of growth rate and surface structure of carbon nitride films, pulsed laser deposition in parallel, on axis planes,” Thin Solid Films 453–454, 431–435 (2004).
    [Crossref]
  9. P. V. Kazakevich, A. V. Simakin, G. A. Shafeev, F. Monteverde, and M. Wautelet, “Phase diagrams of laser-processed nanoparticles of brass,” Appl. Surf. Sci. 253, 7724–7728 (2007).
    [Crossref]
  10. A. V. Simakin, V. V. Voronov, N. A. Kirichenko, and G. A. Shafeev, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Phys. A 79, 1127–1132 (2004).
    [Crossref]
  11. J. Hermann, L. Mercadier, E. Mothe, G. Socol, and P. Alloncle, “On the stoichiometry of mass transfer from solid to plasma during pulsed laser ablation of brass,” Spectrochim. Acta B 65, 636–641 (2010).
    [Crossref]
  12. A. Fojtik, M. Giersig, and A. Henglein, “Formation of nanometer-size silicon particles in a laser induced plasma in SiH4,” Ber. Bunsenges. Phys. Chem. 97, 1493–1496 (1993).
    [Crossref]
  13. J. Neddersen, G. Chumanov, and T. M. Cotton, “Laser ablation of metals: a new method for preparing SERS active colloids,” Appl. Spectrosc. 47, 1959–1964 (1993).
    [Crossref]
  14. M. S. Sibbald, G. Chumanov, and T. M. Cotton, “Reduction of cytochrome c by halide-modified, laser ablated silver colloids,” J. Phys. Chem. 100, 4672–4678 (1996).
    [Crossref]
  15. J. Perriere, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, “Nanoparticles formation by femtosecond laser ablation,” J. Phys. D 40, 7069–7076 (2007).
    [Crossref]
  16. A. Montaser, Inductively Coupled Plasma Mass Spectrometry (Wiley-VCH, 1998).
  17. X. L. Mao, A. C. Ciocan, and R. E. Russo, “Preferential vaporization during laser ablation inductively coupled plasma atomic emission spectroscopy,” Appl. Spectrosc. 52, 913–918 (1998).
    [Crossref]
  18. C. B. Arnold and M. J. Aziz, “Stoichiometry issues in pulsed laser deposition of alloys grown from multicomponent targets,” Appl. Phys. A 69, S23–S27 (1999).
  19. H.-R. Kuhn and D. Günther, “Elemental fractionation studies in laser ablation inductively coupled plasma mass spectrometry on laser-induced brass aerosols,” Anal. Chem. 75, 747–753 (2003).
    [Crossref]
  20. J. Koch, A. von Bohlen, R. Hergenroder, and K. Niemax, “Particles size distributions and compositions of aerosols produced by near-IR femto- and nanosecond laser ablation of brass,” J. Anal. At. Spectrom. 19, 267–272 (2004).
    [Crossref]
  21. A. Pyatenko, K. Shimokawa, M. Yamaguchi, O. Nishimura, and M. Suzuki, “Synthesis of silver nanoparticles by laser ablation in pure water,” Appl. Phys. A 79, 803–806 (2004).
    [Crossref]
  22. F. Mafune, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation,” J. Phys. Chem. B 104, 8333–8337 (2000).
    [Crossref]
  23. Y. Takeuchi, T. Ida, and K. Kimura, “Colloidal stability of gold nanoparticles in 2-propanol under laser irradiation,” J. Phys. Chem. B 101, 1322–1327 (1997).
    [Crossref]
  24. J. P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. Luong, “Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins,” J. Am. Chem. Soc. 126, 7176–7177 (2004).
    [Crossref]
  25. S. H. Tsa, Y. H. Liu, P. L. Wu, and C. S. Yeh, “Preparation of Au-Ag-Pd trimetallic nanoparticles and their application as catalysts,” J. Mater. Chem. 13, 978–980 (2003).
    [Crossref]
  26. F. Mafune, J. Y. Kohno, Y. Takeda, and T. Kondow, “Dissociation and aggregation of gold nanoparticles under laser irradiation,” J. Phys. Chem. B 105, 9050–9056 (2001).
    [Crossref]
  27. N. Satoh, H. Hasegawa, K. Tsujii, and K. Kimura, “Photoinduced coagulation Au nanoparticles,” J. Phys. Chem. B 98, 2143–2147 (1994).
    [Crossref]
  28. C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasma resonant illumination,” J. Phys. Chem. B 108, 7040–7045 (2004).
    [Crossref]
  29. S. Link, C. Burda, B. Nikoobakht, and M. A. E. Sayed, “Laser induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000).
    [Crossref]
  30. J. Bosbach, D. Martin, F. Stietz, T. Wenzel, and F. Trager, “Laser based method for fabricating monodisperse metallic nanoparticles,” Appl. Phys. Lett. 74, 2605–2607 (1999).
    [Crossref]
  31. T. Tsujia, N. Watanabeb, and M. Tsuji, “Laser induced morphology change of silver colloids: formation of nano-size wires,” Appl. Surf. Sci. 211, 189–193 (2003).
    [Crossref]
  32. D. N. Patel, P. K. Pandey, and R. K. Thareja, “Stoichiometric investigations of laser ablated brass plasma,” Appl. Opt. 51, B192–B200 (2012).
    [Crossref]
  33. S. I. Dolgaev, A. V. Simokin, V. V. Voronov, G. A. Shafeev, and F. Bozon-Verduraz, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Surf. Sci. 186, 546–551 (2002).
    [Crossref]
  34. B. Wu and Y. C. Shin, “Two dimensional hydrodynamic simulations of high pressures induced by high power nanosecond laser-matter interactions under water,” J. Appl. Phys. 101, 103514 (2007).
    [Crossref]
  35. M. von Allmen, W. Luthy, M. T. Siregar, K. Affolter, and M. A. Nicolet, “Annealing of silicon with 1.06  μm laser pulses,” in Laser-Solid Interactions and Laser Processing-1978, S. D. Ferris, H. J. Leamy, and J. M. Poate, ed. (American Institute of Physics, 1979), p. 43.
  36. J. F. Ready, Effects of High-Power Laser Radiation (Academic, 1971), p. 73.
  37. L. Muldawer, “Spectral reflectivity as a function of temperature of β-brass type alloys,” Phys. Rev. 127, 1551–1559 (1962).
    [Crossref]
  38. M. Gustavsson, E. Karawacki, and S. E. Gustafsson, “Thermal conductivity, thermal diffusivity, and specific heat of thin samples from transient measurements with hot disk sensors,” Rev. Sci. Instrum. 65, 3856–3859 (1994).
    [Crossref]
  39. J. M. Laskar, S. Bagavathiappan, M. Sardar, T. Jayakumar, J. Philip, and B. Raj, “Measurement of thermal diffusivity of solids using infrared thermography,” Mater. Lett. 62, 2740–2742 (2008).
    [Crossref]
  40. G. W. Yang, “Laser ablation in liquids: applications in the synthesis of nanocrystals,” Prog. Mater. Sci. 52, 648–698 (2007).
    [Crossref]
  41. A. Ashkin and J. M. Dziedzic, “Radiation pressure on a free liquid surface,” Phys. Rev. Lett. 30, 139–142 (1973).
    [Crossref]
  42. Y. Liu, M. Q. Jiang, G. W. Wang, J. H. Chen, Y. J. Guan, and L. H. Dai, “Saffman–Taylor fingering in nanosecond pulse laser ablating bulk metallic glass in water,” Intermetallics 31, 325–329 (2012).
    [Crossref]
  43. H. W. Kang, H. Lee, and A. J. Welch, “Laser ablation in a liquid confined environment using a nanosecond laser pulse,” J. Appl. Phys. 103, 083101 (2008).
    [Crossref]
  44. D. Devaux, R. Fabbro, L. Tollier, and E. Bartnicki, “Generation of shock waves by laser induced plasma in confined geometry,” J. Appl. Phys. 74, 2268–2273 (1993).
    [Crossref]
  45. B. Kumar and R. K. Thareja, “Synthesis of nanoparticles in laser ablation of aluminum in liquid,” J. Appl. Phys. 108, 064906 (2010).
    [Crossref]
  46. A. J. Effenberger and J. R. Scott, “Effect of atmospheric conditions on LIBS spectra,” Sensors 10, 4907–4925 (2010).
    [Crossref]
  47. O. Svelto, Principles of Lasers, 4th ed. (Springer, 1998), p. 425.
  48. J. K. Burdett and S. Sevov, “Stability of the oxidation states of copper,” J. Am. Chem. Soc. 117, 12788–12792 (1995).
    [Crossref]
  49. H. R. Griem, Plasma Spectroscopy (McGraw-Hill, 1964).
  50. W. Lochte-Holtgreven, Plasma Diagnostics (Wiley-Interscience, 1968).
  51. G. Bekefi, Principles of Laser Plasmas (Wiley-Interscience, 1976).
  52. E. M. Babina, G. G. Il’In, O. A. Konovalova, M. K. Salakiiov, and E. V. Sarandaev, “The complete calculation of Stark broadening parameters for the neutral copper atoms spectral lines of 4s2 S-4p2 P0 multiplets in the dipole approximation,” Bull. Obs. Astron. Belgrade 76, 163–166 (2003).
  53. C. Liu, X. Mao, S. S. Mao, R. Greif, and R. E. Russo, “Particle size dependent chemistry from laser ablation of brass,” Anal. Chem. 77, 6687–6691 (2005).
    [Crossref]
  54. L. J. Radziemski, “From LASER to LIBS, the path of technology development,” Spectrochim. Acta B 57, 1109–1113 (2002).
    [Crossref]
  55. R. L. Webb, J. T. Dickinson, and G. J. Exarhos, “Characterization of particulates accompanying laser ablation of NaNO3,” Appl. Spectrosc. 51, 707–717 (1997).
    [Crossref]
  56. R. Kelly and J. E. Rothenberg, “Laser sputtering Part III. The mechanism of the sputtering of metals low energy densities,” Nucl. Instrum. Methods Phys. Res. 7–8, 755–763 (1985).
    [Crossref]
  57. Y. Zhu, C.-H. Sow, T. Yu, Q. Zhao, P. Li, Z. Shen, D. Yu, and J. T.-L. Thong, “Co-synthesis of ZnO-CuO nanostructures by directly heating brass in air,” Adv. Funct. Mater. 16, 2415–2422 (2006).
    [Crossref]
  58. G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923–7936 (1986).
    [Crossref]
  59. J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys. 73, 3023–3037 (1980).
    [Crossref]
  60. K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandin, “Micro-Raman investigation of optical phonons in ZnO nanocrystals,” J. Appl. Phys. 97, 124313 (2005).
    [Crossref]
  61. K. Tapily, D. Gu, H. Baumgart, M. Rigo, and J. Seo, “Raman spectroscopy of ZnO thin films by atomic layer deposition,” ECS Trans. 33, 117–123 (2010).
  62. H. K. Yadav, R. S. Katiyar, and V. Gupta, “Temperature dependent dynamics of ZnO nanoparticles probed by Raman scattering: a big divergence in the functional areas of the nanoparticles and bulk materials,” Appl. Phys. Lett. 100, 051906 (2012).
    [Crossref]

2012 (3)

D. N. Patel, P. K. Pandey, and R. K. Thareja, “Stoichiometric investigations of laser ablated brass plasma,” Appl. Opt. 51, B192–B200 (2012).
[Crossref]

Y. Liu, M. Q. Jiang, G. W. Wang, J. H. Chen, Y. J. Guan, and L. H. Dai, “Saffman–Taylor fingering in nanosecond pulse laser ablating bulk metallic glass in water,” Intermetallics 31, 325–329 (2012).
[Crossref]

H. K. Yadav, R. S. Katiyar, and V. Gupta, “Temperature dependent dynamics of ZnO nanoparticles probed by Raman scattering: a big divergence in the functional areas of the nanoparticles and bulk materials,” Appl. Phys. Lett. 100, 051906 (2012).
[Crossref]

2011 (1)

P. K. Pandey and R. K. Thareja, “Surface nanostructuring of laser ablated copper in ambient gas atmosphere and magnetic field,” Phys. Plasmas 18, 033505 (2011).
[Crossref]

2010 (4)

J. Hermann, L. Mercadier, E. Mothe, G. Socol, and P. Alloncle, “On the stoichiometry of mass transfer from solid to plasma during pulsed laser ablation of brass,” Spectrochim. Acta B 65, 636–641 (2010).
[Crossref]

K. Tapily, D. Gu, H. Baumgart, M. Rigo, and J. Seo, “Raman spectroscopy of ZnO thin films by atomic layer deposition,” ECS Trans. 33, 117–123 (2010).

B. Kumar and R. K. Thareja, “Synthesis of nanoparticles in laser ablation of aluminum in liquid,” J. Appl. Phys. 108, 064906 (2010).
[Crossref]

A. J. Effenberger and J. R. Scott, “Effect of atmospheric conditions on LIBS spectra,” Sensors 10, 4907–4925 (2010).
[Crossref]

2008 (2)

H. W. Kang, H. Lee, and A. J. Welch, “Laser ablation in a liquid confined environment using a nanosecond laser pulse,” J. Appl. Phys. 103, 083101 (2008).
[Crossref]

J. M. Laskar, S. Bagavathiappan, M. Sardar, T. Jayakumar, J. Philip, and B. Raj, “Measurement of thermal diffusivity of solids using infrared thermography,” Mater. Lett. 62, 2740–2742 (2008).
[Crossref]

2007 (4)

G. W. Yang, “Laser ablation in liquids: applications in the synthesis of nanocrystals,” Prog. Mater. Sci. 52, 648–698 (2007).
[Crossref]

B. Wu and Y. C. Shin, “Two dimensional hydrodynamic simulations of high pressures induced by high power nanosecond laser-matter interactions under water,” J. Appl. Phys. 101, 103514 (2007).
[Crossref]

P. V. Kazakevich, A. V. Simakin, G. A. Shafeev, F. Monteverde, and M. Wautelet, “Phase diagrams of laser-processed nanoparticles of brass,” Appl. Surf. Sci. 253, 7724–7728 (2007).
[Crossref]

J. Perriere, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, “Nanoparticles formation by femtosecond laser ablation,” J. Phys. D 40, 7069–7076 (2007).
[Crossref]

2006 (1)

Y. Zhu, C.-H. Sow, T. Yu, Q. Zhao, P. Li, Z. Shen, D. Yu, and J. T.-L. Thong, “Co-synthesis of ZnO-CuO nanostructures by directly heating brass in air,” Adv. Funct. Mater. 16, 2415–2422 (2006).
[Crossref]

2005 (2)

K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandin, “Micro-Raman investigation of optical phonons in ZnO nanocrystals,” J. Appl. Phys. 97, 124313 (2005).
[Crossref]

C. Liu, X. Mao, S. S. Mao, R. Greif, and R. E. Russo, “Particle size dependent chemistry from laser ablation of brass,” Anal. Chem. 77, 6687–6691 (2005).
[Crossref]

2004 (6)

J. Koch, A. von Bohlen, R. Hergenroder, and K. Niemax, “Particles size distributions and compositions of aerosols produced by near-IR femto- and nanosecond laser ablation of brass,” J. Anal. At. Spectrom. 19, 267–272 (2004).
[Crossref]

A. Pyatenko, K. Shimokawa, M. Yamaguchi, O. Nishimura, and M. Suzuki, “Synthesis of silver nanoparticles by laser ablation in pure water,” Appl. Phys. A 79, 803–806 (2004).
[Crossref]

A. V. Simakin, V. V. Voronov, N. A. Kirichenko, and G. A. Shafeev, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Phys. A 79, 1127–1132 (2004).
[Crossref]

T. Szorenyi and Zs. Geretovszky, “Comparison of growth rate and surface structure of carbon nitride films, pulsed laser deposition in parallel, on axis planes,” Thin Solid Films 453–454, 431–435 (2004).
[Crossref]

J. P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. Luong, “Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins,” J. Am. Chem. Soc. 126, 7176–7177 (2004).
[Crossref]

C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasma resonant illumination,” J. Phys. Chem. B 108, 7040–7045 (2004).
[Crossref]

2003 (4)

H.-R. Kuhn and D. Günther, “Elemental fractionation studies in laser ablation inductively coupled plasma mass spectrometry on laser-induced brass aerosols,” Anal. Chem. 75, 747–753 (2003).
[Crossref]

T. Tsujia, N. Watanabeb, and M. Tsuji, “Laser induced morphology change of silver colloids: formation of nano-size wires,” Appl. Surf. Sci. 211, 189–193 (2003).
[Crossref]

S. H. Tsa, Y. H. Liu, P. L. Wu, and C. S. Yeh, “Preparation of Au-Ag-Pd trimetallic nanoparticles and their application as catalysts,” J. Mater. Chem. 13, 978–980 (2003).
[Crossref]

E. M. Babina, G. G. Il’In, O. A. Konovalova, M. K. Salakiiov, and E. V. Sarandaev, “The complete calculation of Stark broadening parameters for the neutral copper atoms spectral lines of 4s2 S-4p2 P0 multiplets in the dipole approximation,” Bull. Obs. Astron. Belgrade 76, 163–166 (2003).

2002 (2)

L. J. Radziemski, “From LASER to LIBS, the path of technology development,” Spectrochim. Acta B 57, 1109–1113 (2002).
[Crossref]

S. I. Dolgaev, A. V. Simokin, V. V. Voronov, G. A. Shafeev, and F. Bozon-Verduraz, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Surf. Sci. 186, 546–551 (2002).
[Crossref]

2001 (3)

F. Mafune, J. Y. Kohno, Y. Takeda, and T. Kondow, “Dissociation and aggregation of gold nanoparticles under laser irradiation,” J. Phys. Chem. B 105, 9050–9056 (2001).
[Crossref]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[Crossref]

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size dependent nanoparticle optics,” J. Phys. Chem. B 105, 5599–5611 (2001).
[Crossref]

2000 (2)

F. Mafune, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation,” J. Phys. Chem. B 104, 8333–8337 (2000).
[Crossref]

S. Link, C. Burda, B. Nikoobakht, and M. A. E. Sayed, “Laser induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000).
[Crossref]

1999 (2)

J. Bosbach, D. Martin, F. Stietz, T. Wenzel, and F. Trager, “Laser based method for fabricating monodisperse metallic nanoparticles,” Appl. Phys. Lett. 74, 2605–2607 (1999).
[Crossref]

C. B. Arnold and M. J. Aziz, “Stoichiometry issues in pulsed laser deposition of alloys grown from multicomponent targets,” Appl. Phys. A 69, S23–S27 (1999).

1998 (2)

X. L. Mao, A. C. Ciocan, and R. E. Russo, “Preferential vaporization during laser ablation inductively coupled plasma atomic emission spectroscopy,” Appl. Spectrosc. 52, 913–918 (1998).
[Crossref]

T. E. Itina, A. A. Katassonov, W. Marine, and M. Autric, “Numerical study of the role of background gas and system geometry in pulsed laser deposition,” J. Appl. Phys. 83, 6050–6054 (1998).
[Crossref]

1997 (2)

Y. Takeuchi, T. Ida, and K. Kimura, “Colloidal stability of gold nanoparticles in 2-propanol under laser irradiation,” J. Phys. Chem. B 101, 1322–1327 (1997).
[Crossref]

R. L. Webb, J. T. Dickinson, and G. J. Exarhos, “Characterization of particulates accompanying laser ablation of NaNO3,” Appl. Spectrosc. 51, 707–717 (1997).
[Crossref]

1996 (1)

M. S. Sibbald, G. Chumanov, and T. M. Cotton, “Reduction of cytochrome c by halide-modified, laser ablated silver colloids,” J. Phys. Chem. 100, 4672–4678 (1996).
[Crossref]

1995 (1)

J. K. Burdett and S. Sevov, “Stability of the oxidation states of copper,” J. Am. Chem. Soc. 117, 12788–12792 (1995).
[Crossref]

1994 (2)

M. Gustavsson, E. Karawacki, and S. E. Gustafsson, “Thermal conductivity, thermal diffusivity, and specific heat of thin samples from transient measurements with hot disk sensors,” Rev. Sci. Instrum. 65, 3856–3859 (1994).
[Crossref]

N. Satoh, H. Hasegawa, K. Tsujii, and K. Kimura, “Photoinduced coagulation Au nanoparticles,” J. Phys. Chem. B 98, 2143–2147 (1994).
[Crossref]

1993 (3)

D. Devaux, R. Fabbro, L. Tollier, and E. Bartnicki, “Generation of shock waves by laser induced plasma in confined geometry,” J. Appl. Phys. 74, 2268–2273 (1993).
[Crossref]

A. Fojtik, M. Giersig, and A. Henglein, “Formation of nanometer-size silicon particles in a laser induced plasma in SiH4,” Ber. Bunsenges. Phys. Chem. 97, 1493–1496 (1993).
[Crossref]

J. Neddersen, G. Chumanov, and T. M. Cotton, “Laser ablation of metals: a new method for preparing SERS active colloids,” Appl. Spectrosc. 47, 1959–1964 (1993).
[Crossref]

1986 (1)

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923–7936 (1986).
[Crossref]

1985 (1)

R. Kelly and J. E. Rothenberg, “Laser sputtering Part III. The mechanism of the sputtering of metals low energy densities,” Nucl. Instrum. Methods Phys. Res. 7–8, 755–763 (1985).
[Crossref]

1980 (1)

J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys. 73, 3023–3037 (1980).
[Crossref]

1973 (1)

A. Ashkin and J. M. Dziedzic, “Radiation pressure on a free liquid surface,” Phys. Rev. Lett. 30, 139–142 (1973).
[Crossref]

1962 (1)

L. Muldawer, “Spectral reflectivity as a function of temperature of β-brass type alloys,” Phys. Rev. 127, 1551–1559 (1962).
[Crossref]

Affolter, K.

M. von Allmen, W. Luthy, M. T. Siregar, K. Affolter, and M. A. Nicolet, “Annealing of silicon with 1.06  μm laser pulses,” in Laser-Solid Interactions and Laser Processing-1978, S. D. Ferris, H. J. Leamy, and J. M. Poate, ed. (American Institute of Physics, 1979), p. 43.

Aguirre, C. M.

C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasma resonant illumination,” J. Phys. Chem. B 108, 7040–7045 (2004).
[Crossref]

Alim, K. A.

K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandin, “Micro-Raman investigation of optical phonons in ZnO nanocrystals,” J. Appl. Phys. 97, 124313 (2005).
[Crossref]

Alloncle, P.

J. Hermann, L. Mercadier, E. Mothe, G. Socol, and P. Alloncle, “On the stoichiometry of mass transfer from solid to plasma during pulsed laser ablation of brass,” Spectrochim. Acta B 65, 636–641 (2010).
[Crossref]

Arnold, C. B.

C. B. Arnold and M. J. Aziz, “Stoichiometry issues in pulsed laser deposition of alloys grown from multicomponent targets,” Appl. Phys. A 69, S23–S27 (1999).

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Radiation pressure on a free liquid surface,” Phys. Rev. Lett. 30, 139–142 (1973).
[Crossref]

Atwater, H. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[Crossref]

Autric, M.

T. E. Itina, A. A. Katassonov, W. Marine, and M. Autric, “Numerical study of the role of background gas and system geometry in pulsed laser deposition,” J. Appl. Phys. 83, 6050–6054 (1998).
[Crossref]

Aziz, M. J.

C. B. Arnold and M. J. Aziz, “Stoichiometry issues in pulsed laser deposition of alloys grown from multicomponent targets,” Appl. Phys. A 69, S23–S27 (1999).

Babina, E. M.

E. M. Babina, G. G. Il’In, O. A. Konovalova, M. K. Salakiiov, and E. V. Sarandaev, “The complete calculation of Stark broadening parameters for the neutral copper atoms spectral lines of 4s2 S-4p2 P0 multiplets in the dipole approximation,” Bull. Obs. Astron. Belgrade 76, 163–166 (2003).

Bagavathiappan, S.

J. M. Laskar, S. Bagavathiappan, M. Sardar, T. Jayakumar, J. Philip, and B. Raj, “Measurement of thermal diffusivity of solids using infrared thermography,” Mater. Lett. 62, 2740–2742 (2008).
[Crossref]

Balandin, A. A.

K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandin, “Micro-Raman investigation of optical phonons in ZnO nanocrystals,” J. Appl. Phys. 97, 124313 (2005).
[Crossref]

Bartnicki, E.

D. Devaux, R. Fabbro, L. Tollier, and E. Bartnicki, “Generation of shock waves by laser induced plasma in confined geometry,” J. Appl. Phys. 74, 2268–2273 (1993).
[Crossref]

Bauerle, D.

D. Bauerle, Laser Processing and Chemistry (Springer-Verlag, 2000).

Baumgart, H.

K. Tapily, D. Gu, H. Baumgart, M. Rigo, and J. Seo, “Raman spectroscopy of ZnO thin films by atomic layer deposition,” ECS Trans. 33, 117–123 (2010).

Bekefi, G.

G. Bekefi, Principles of Laser Plasmas (Wiley-Interscience, 1976).

Benzerga, R.

J. Perriere, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, “Nanoparticles formation by femtosecond laser ablation,” J. Phys. D 40, 7069–7076 (2007).
[Crossref]

Bosbach, J.

J. Bosbach, D. Martin, F. Stietz, T. Wenzel, and F. Trager, “Laser based method for fabricating monodisperse metallic nanoparticles,” Appl. Phys. Lett. 74, 2605–2607 (1999).
[Crossref]

Boulmer-Leborgne, C.

J. Perriere, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, “Nanoparticles formation by femtosecond laser ablation,” J. Phys. D 40, 7069–7076 (2007).
[Crossref]

Boyd, G. T.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923–7936 (1986).
[Crossref]

Bozon-Verduraz, F.

S. I. Dolgaev, A. V. Simokin, V. V. Voronov, G. A. Shafeev, and F. Bozon-Verduraz, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Surf. Sci. 186, 546–551 (2002).
[Crossref]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[Crossref]

Burda, C.

S. Link, C. Burda, B. Nikoobakht, and M. A. E. Sayed, “Laser induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000).
[Crossref]

Burdett, J. K.

J. K. Burdett and S. Sevov, “Stability of the oxidation states of copper,” J. Am. Chem. Soc. 117, 12788–12792 (1995).
[Crossref]

Chen, J. H.

Y. Liu, M. Q. Jiang, G. W. Wang, J. H. Chen, Y. J. Guan, and L. H. Dai, “Saffman–Taylor fingering in nanosecond pulse laser ablating bulk metallic glass in water,” Intermetallics 31, 325–329 (2012).
[Crossref]

Chrisey, D. B.

D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, 1994).

Chumanov, G.

M. S. Sibbald, G. Chumanov, and T. M. Cotton, “Reduction of cytochrome c by halide-modified, laser ablated silver colloids,” J. Phys. Chem. 100, 4672–4678 (1996).
[Crossref]

J. Neddersen, G. Chumanov, and T. M. Cotton, “Laser ablation of metals: a new method for preparing SERS active colloids,” Appl. Spectrosc. 47, 1959–1964 (1993).
[Crossref]

Ciocan, A. C.

Cotton, T. M.

M. S. Sibbald, G. Chumanov, and T. M. Cotton, “Reduction of cytochrome c by halide-modified, laser ablated silver colloids,” J. Phys. Chem. 100, 4672–4678 (1996).
[Crossref]

J. Neddersen, G. Chumanov, and T. M. Cotton, “Laser ablation of metals: a new method for preparing SERS active colloids,” Appl. Spectrosc. 47, 1959–1964 (1993).
[Crossref]

Dai, L. H.

Y. Liu, M. Q. Jiang, G. W. Wang, J. H. Chen, Y. J. Guan, and L. H. Dai, “Saffman–Taylor fingering in nanosecond pulse laser ablating bulk metallic glass in water,” Intermetallics 31, 325–329 (2012).
[Crossref]

Devaux, D.

D. Devaux, R. Fabbro, L. Tollier, and E. Bartnicki, “Generation of shock waves by laser induced plasma in confined geometry,” J. Appl. Phys. 74, 2268–2273 (1993).
[Crossref]

Dickinson, J. T.

Dolgaev, S. I.

S. I. Dolgaev, A. V. Simokin, V. V. Voronov, G. A. Shafeev, and F. Bozon-Verduraz, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Surf. Sci. 186, 546–551 (2002).
[Crossref]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Radiation pressure on a free liquid surface,” Phys. Rev. Lett. 30, 139–142 (1973).
[Crossref]

Effenberger, A. J.

A. J. Effenberger and J. R. Scott, “Effect of atmospheric conditions on LIBS spectra,” Sensors 10, 4907–4925 (2010).
[Crossref]

Exarhos, G. J.

Fabbro, R.

D. Devaux, R. Fabbro, L. Tollier, and E. Bartnicki, “Generation of shock waves by laser induced plasma in confined geometry,” J. Appl. Phys. 74, 2268–2273 (1993).
[Crossref]

Fojtik, A.

A. Fojtik, M. Giersig, and A. Henglein, “Formation of nanometer-size silicon particles in a laser induced plasma in SiH4,” Ber. Bunsenges. Phys. Chem. 97, 1493–1496 (1993).
[Crossref]

Fonoberov, V. A.

K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandin, “Micro-Raman investigation of optical phonons in ZnO nanocrystals,” J. Appl. Phys. 97, 124313 (2005).
[Crossref]

Geretovszky, Zs.

T. Szorenyi and Zs. Geretovszky, “Comparison of growth rate and surface structure of carbon nitride films, pulsed laser deposition in parallel, on axis planes,” Thin Solid Films 453–454, 431–435 (2004).
[Crossref]

Gersten, J.

J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys. 73, 3023–3037 (1980).
[Crossref]

Giersig, M.

A. Fojtik, M. Giersig, and A. Henglein, “Formation of nanometer-size silicon particles in a laser induced plasma in SiH4,” Ber. Bunsenges. Phys. Chem. 97, 1493–1496 (1993).
[Crossref]

Greif, R.

C. Liu, X. Mao, S. S. Mao, R. Greif, and R. E. Russo, “Particle size dependent chemistry from laser ablation of brass,” Anal. Chem. 77, 6687–6691 (2005).
[Crossref]

Griem, H. R.

H. R. Griem, Plasma Spectroscopy (McGraw-Hill, 1964).

Gu, D.

K. Tapily, D. Gu, H. Baumgart, M. Rigo, and J. Seo, “Raman spectroscopy of ZnO thin films by atomic layer deposition,” ECS Trans. 33, 117–123 (2010).

Guan, Y. J.

Y. Liu, M. Q. Jiang, G. W. Wang, J. H. Chen, Y. J. Guan, and L. H. Dai, “Saffman–Taylor fingering in nanosecond pulse laser ablating bulk metallic glass in water,” Intermetallics 31, 325–329 (2012).
[Crossref]

Günther, D.

H.-R. Kuhn and D. Günther, “Elemental fractionation studies in laser ablation inductively coupled plasma mass spectrometry on laser-induced brass aerosols,” Anal. Chem. 75, 747–753 (2003).
[Crossref]

Gupta, V.

H. K. Yadav, R. S. Katiyar, and V. Gupta, “Temperature dependent dynamics of ZnO nanoparticles probed by Raman scattering: a big divergence in the functional areas of the nanoparticles and bulk materials,” Appl. Phys. Lett. 100, 051906 (2012).
[Crossref]

Gustafsson, S. E.

M. Gustavsson, E. Karawacki, and S. E. Gustafsson, “Thermal conductivity, thermal diffusivity, and specific heat of thin samples from transient measurements with hot disk sensors,” Rev. Sci. Instrum. 65, 3856–3859 (1994).
[Crossref]

Gustavsson, M.

M. Gustavsson, E. Karawacki, and S. E. Gustafsson, “Thermal conductivity, thermal diffusivity, and specific heat of thin samples from transient measurements with hot disk sensors,” Rev. Sci. Instrum. 65, 3856–3859 (1994).
[Crossref]

Halas, N. J.

C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasma resonant illumination,” J. Phys. Chem. B 108, 7040–7045 (2004).
[Crossref]

Hasegawa, H.

N. Satoh, H. Hasegawa, K. Tsujii, and K. Kimura, “Photoinduced coagulation Au nanoparticles,” J. Phys. Chem. B 98, 2143–2147 (1994).
[Crossref]

Haynes, C. L.

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size dependent nanoparticle optics,” J. Phys. Chem. B 105, 5599–5611 (2001).
[Crossref]

Henglein, A.

A. Fojtik, M. Giersig, and A. Henglein, “Formation of nanometer-size silicon particles in a laser induced plasma in SiH4,” Ber. Bunsenges. Phys. Chem. 97, 1493–1496 (1993).
[Crossref]

Hergenroder, R.

J. Koch, A. von Bohlen, R. Hergenroder, and K. Niemax, “Particles size distributions and compositions of aerosols produced by near-IR femto- and nanosecond laser ablation of brass,” J. Anal. At. Spectrom. 19, 267–272 (2004).
[Crossref]

Hermann, J.

J. Hermann, L. Mercadier, E. Mothe, G. Socol, and P. Alloncle, “On the stoichiometry of mass transfer from solid to plasma during pulsed laser ablation of brass,” Spectrochim. Acta B 65, 636–641 (2010).
[Crossref]

Hubler, G. K.

D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, 1994).

Ida, T.

Y. Takeuchi, T. Ida, and K. Kimura, “Colloidal stability of gold nanoparticles in 2-propanol under laser irradiation,” J. Phys. Chem. B 101, 1322–1327 (1997).
[Crossref]

Il’In, G. G.

E. M. Babina, G. G. Il’In, O. A. Konovalova, M. K. Salakiiov, and E. V. Sarandaev, “The complete calculation of Stark broadening parameters for the neutral copper atoms spectral lines of 4s2 S-4p2 P0 multiplets in the dipole approximation,” Bull. Obs. Astron. Belgrade 76, 163–166 (2003).

Itina, T. E.

T. E. Itina, A. A. Katassonov, W. Marine, and M. Autric, “Numerical study of the role of background gas and system geometry in pulsed laser deposition,” J. Appl. Phys. 83, 6050–6054 (1998).
[Crossref]

Jayakumar, T.

J. M. Laskar, S. Bagavathiappan, M. Sardar, T. Jayakumar, J. Philip, and B. Raj, “Measurement of thermal diffusivity of solids using infrared thermography,” Mater. Lett. 62, 2740–2742 (2008).
[Crossref]

Jiang, M. Q.

Y. Liu, M. Q. Jiang, G. W. Wang, J. H. Chen, Y. J. Guan, and L. H. Dai, “Saffman–Taylor fingering in nanosecond pulse laser ablating bulk metallic glass in water,” Intermetallics 31, 325–329 (2012).
[Crossref]

Kabashin, A. V.

J. P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. Luong, “Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins,” J. Am. Chem. Soc. 126, 7176–7177 (2004).
[Crossref]

Kang, H. W.

H. W. Kang, H. Lee, and A. J. Welch, “Laser ablation in a liquid confined environment using a nanosecond laser pulse,” J. Appl. Phys. 103, 083101 (2008).
[Crossref]

Karawacki, E.

M. Gustavsson, E. Karawacki, and S. E. Gustafsson, “Thermal conductivity, thermal diffusivity, and specific heat of thin samples from transient measurements with hot disk sensors,” Rev. Sci. Instrum. 65, 3856–3859 (1994).
[Crossref]

Katassonov, A. A.

T. E. Itina, A. A. Katassonov, W. Marine, and M. Autric, “Numerical study of the role of background gas and system geometry in pulsed laser deposition,” J. Appl. Phys. 83, 6050–6054 (1998).
[Crossref]

Katiyar, R. S.

H. K. Yadav, R. S. Katiyar, and V. Gupta, “Temperature dependent dynamics of ZnO nanoparticles probed by Raman scattering: a big divergence in the functional areas of the nanoparticles and bulk materials,” Appl. Phys. Lett. 100, 051906 (2012).
[Crossref]

Kazakevich, P. V.

P. V. Kazakevich, A. V. Simakin, G. A. Shafeev, F. Monteverde, and M. Wautelet, “Phase diagrams of laser-processed nanoparticles of brass,” Appl. Surf. Sci. 253, 7724–7728 (2007).
[Crossref]

Kelly, R.

R. Kelly and J. E. Rothenberg, “Laser sputtering Part III. The mechanism of the sputtering of metals low energy densities,” Nucl. Instrum. Methods Phys. Res. 7–8, 755–763 (1985).
[Crossref]

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[Crossref]

Kimura, K.

Y. Takeuchi, T. Ida, and K. Kimura, “Colloidal stability of gold nanoparticles in 2-propanol under laser irradiation,” J. Phys. Chem. B 101, 1322–1327 (1997).
[Crossref]

N. Satoh, H. Hasegawa, K. Tsujii, and K. Kimura, “Photoinduced coagulation Au nanoparticles,” J. Phys. Chem. B 98, 2143–2147 (1994).
[Crossref]

Kirichenko, N. A.

A. V. Simakin, V. V. Voronov, N. A. Kirichenko, and G. A. Shafeev, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Phys. A 79, 1127–1132 (2004).
[Crossref]

Koch, J.

J. Koch, A. von Bohlen, R. Hergenroder, and K. Niemax, “Particles size distributions and compositions of aerosols produced by near-IR femto- and nanosecond laser ablation of brass,” J. Anal. At. Spectrom. 19, 267–272 (2004).
[Crossref]

Kohno, J. Y.

F. Mafune, J. Y. Kohno, Y. Takeda, and T. Kondow, “Dissociation and aggregation of gold nanoparticles under laser irradiation,” J. Phys. Chem. B 105, 9050–9056 (2001).
[Crossref]

F. Mafune, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation,” J. Phys. Chem. B 104, 8333–8337 (2000).
[Crossref]

Kondow, T.

F. Mafune, J. Y. Kohno, Y. Takeda, and T. Kondow, “Dissociation and aggregation of gold nanoparticles under laser irradiation,” J. Phys. Chem. B 105, 9050–9056 (2001).
[Crossref]

F. Mafune, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation,” J. Phys. Chem. B 104, 8333–8337 (2000).
[Crossref]

Konovalova, O. A.

E. M. Babina, G. G. Il’In, O. A. Konovalova, M. K. Salakiiov, and E. V. Sarandaev, “The complete calculation of Stark broadening parameters for the neutral copper atoms spectral lines of 4s2 S-4p2 P0 multiplets in the dipole approximation,” Bull. Obs. Astron. Belgrade 76, 163–166 (2003).

Kuhn, H.-R.

H.-R. Kuhn and D. Günther, “Elemental fractionation studies in laser ablation inductively coupled plasma mass spectrometry on laser-induced brass aerosols,” Anal. Chem. 75, 747–753 (2003).
[Crossref]

Kumar, B.

B. Kumar and R. K. Thareja, “Synthesis of nanoparticles in laser ablation of aluminum in liquid,” J. Appl. Phys. 108, 064906 (2010).
[Crossref]

Laskar, J. M.

J. M. Laskar, S. Bagavathiappan, M. Sardar, T. Jayakumar, J. Philip, and B. Raj, “Measurement of thermal diffusivity of solids using infrared thermography,” Mater. Lett. 62, 2740–2742 (2008).
[Crossref]

Lee, H.

H. W. Kang, H. Lee, and A. J. Welch, “Laser ablation in a liquid confined environment using a nanosecond laser pulse,” J. Appl. Phys. 103, 083101 (2008).
[Crossref]

Li, P.

Y. Zhu, C.-H. Sow, T. Yu, Q. Zhao, P. Li, Z. Shen, D. Yu, and J. T.-L. Thong, “Co-synthesis of ZnO-CuO nanostructures by directly heating brass in air,” Adv. Funct. Mater. 16, 2415–2422 (2006).
[Crossref]

Link, S.

S. Link, C. Burda, B. Nikoobakht, and M. A. E. Sayed, “Laser induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000).
[Crossref]

Liu, C.

C. Liu, X. Mao, S. S. Mao, R. Greif, and R. E. Russo, “Particle size dependent chemistry from laser ablation of brass,” Anal. Chem. 77, 6687–6691 (2005).
[Crossref]

Liu, Y.

Y. Liu, M. Q. Jiang, G. W. Wang, J. H. Chen, Y. J. Guan, and L. H. Dai, “Saffman–Taylor fingering in nanosecond pulse laser ablating bulk metallic glass in water,” Intermetallics 31, 325–329 (2012).
[Crossref]

Liu, Y. H.

S. H. Tsa, Y. H. Liu, P. L. Wu, and C. S. Yeh, “Preparation of Au-Ag-Pd trimetallic nanoparticles and their application as catalysts,” J. Mater. Chem. 13, 978–980 (2003).
[Crossref]

Lochte-Holtgreven, W.

W. Lochte-Holtgreven, Plasma Diagnostics (Wiley-Interscience, 1968).

Luong, J. H.

J. P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. Luong, “Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins,” J. Am. Chem. Soc. 126, 7176–7177 (2004).
[Crossref]

Luthy, W.

M. von Allmen, W. Luthy, M. T. Siregar, K. Affolter, and M. A. Nicolet, “Annealing of silicon with 1.06  μm laser pulses,” in Laser-Solid Interactions and Laser Processing-1978, S. D. Ferris, H. J. Leamy, and J. M. Poate, ed. (American Institute of Physics, 1979), p. 43.

Mafune, F.

F. Mafune, J. Y. Kohno, Y. Takeda, and T. Kondow, “Dissociation and aggregation of gold nanoparticles under laser irradiation,” J. Phys. Chem. B 105, 9050–9056 (2001).
[Crossref]

F. Mafune, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation,” J. Phys. Chem. B 104, 8333–8337 (2000).
[Crossref]

Maier, S. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[Crossref]

Mao, S. S.

C. Liu, X. Mao, S. S. Mao, R. Greif, and R. E. Russo, “Particle size dependent chemistry from laser ablation of brass,” Anal. Chem. 77, 6687–6691 (2005).
[Crossref]

Mao, X.

C. Liu, X. Mao, S. S. Mao, R. Greif, and R. E. Russo, “Particle size dependent chemistry from laser ablation of brass,” Anal. Chem. 77, 6687–6691 (2005).
[Crossref]

Mao, X. L.

Marine, W.

T. E. Itina, A. A. Katassonov, W. Marine, and M. Autric, “Numerical study of the role of background gas and system geometry in pulsed laser deposition,” J. Appl. Phys. 83, 6050–6054 (1998).
[Crossref]

Martin, D.

J. Bosbach, D. Martin, F. Stietz, T. Wenzel, and F. Trager, “Laser based method for fabricating monodisperse metallic nanoparticles,” Appl. Phys. Lett. 74, 2605–2607 (1999).
[Crossref]

Meltzer, S.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[Crossref]

Mercadier, L.

J. Hermann, L. Mercadier, E. Mothe, G. Socol, and P. Alloncle, “On the stoichiometry of mass transfer from solid to plasma during pulsed laser ablation of brass,” Spectrochim. Acta B 65, 636–641 (2010).
[Crossref]

Meunier, M.

J. P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. Luong, “Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins,” J. Am. Chem. Soc. 126, 7176–7177 (2004).
[Crossref]

Montaser, A.

A. Montaser, Inductively Coupled Plasma Mass Spectrometry (Wiley-VCH, 1998).

Monteverde, F.

P. V. Kazakevich, A. V. Simakin, G. A. Shafeev, F. Monteverde, and M. Wautelet, “Phase diagrams of laser-processed nanoparticles of brass,” Appl. Surf. Sci. 253, 7724–7728 (2007).
[Crossref]

Moran, C. E.

C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasma resonant illumination,” J. Phys. Chem. B 108, 7040–7045 (2004).
[Crossref]

Mothe, E.

J. Hermann, L. Mercadier, E. Mothe, G. Socol, and P. Alloncle, “On the stoichiometry of mass transfer from solid to plasma during pulsed laser ablation of brass,” Spectrochim. Acta B 65, 636–641 (2010).
[Crossref]

Muldawer, L.

L. Muldawer, “Spectral reflectivity as a function of temperature of β-brass type alloys,” Phys. Rev. 127, 1551–1559 (1962).
[Crossref]

Neddersen, J.

Nicolet, M. A.

M. von Allmen, W. Luthy, M. T. Siregar, K. Affolter, and M. A. Nicolet, “Annealing of silicon with 1.06  μm laser pulses,” in Laser-Solid Interactions and Laser Processing-1978, S. D. Ferris, H. J. Leamy, and J. M. Poate, ed. (American Institute of Physics, 1979), p. 43.

Niemax, K.

J. Koch, A. von Bohlen, R. Hergenroder, and K. Niemax, “Particles size distributions and compositions of aerosols produced by near-IR femto- and nanosecond laser ablation of brass,” J. Anal. At. Spectrom. 19, 267–272 (2004).
[Crossref]

Nikoobakht, B.

S. Link, C. Burda, B. Nikoobakht, and M. A. E. Sayed, “Laser induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000).
[Crossref]

Nishimura, O.

A. Pyatenko, K. Shimokawa, M. Yamaguchi, O. Nishimura, and M. Suzuki, “Synthesis of silver nanoparticles by laser ablation in pure water,” Appl. Phys. A 79, 803–806 (2004).
[Crossref]

Nitzan, A.

J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys. 73, 3023–3037 (1980).
[Crossref]

Pandey, P. K.

D. N. Patel, P. K. Pandey, and R. K. Thareja, “Stoichiometric investigations of laser ablated brass plasma,” Appl. Opt. 51, B192–B200 (2012).
[Crossref]

P. K. Pandey and R. K. Thareja, “Surface nanostructuring of laser ablated copper in ambient gas atmosphere and magnetic field,” Phys. Plasmas 18, 033505 (2011).
[Crossref]

Patel, D. N.

Perriere, J.

J. Perriere, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, “Nanoparticles formation by femtosecond laser ablation,” J. Phys. D 40, 7069–7076 (2007).
[Crossref]

Philip, J.

J. M. Laskar, S. Bagavathiappan, M. Sardar, T. Jayakumar, J. Philip, and B. Raj, “Measurement of thermal diffusivity of solids using infrared thermography,” Mater. Lett. 62, 2740–2742 (2008).
[Crossref]

Pyatenko, A.

A. Pyatenko, K. Shimokawa, M. Yamaguchi, O. Nishimura, and M. Suzuki, “Synthesis of silver nanoparticles by laser ablation in pure water,” Appl. Phys. A 79, 803–806 (2004).
[Crossref]

Radziemski, L. J.

L. J. Radziemski, “From LASER to LIBS, the path of technology development,” Spectrochim. Acta B 57, 1109–1113 (2002).
[Crossref]

Raj, B.

J. M. Laskar, S. Bagavathiappan, M. Sardar, T. Jayakumar, J. Philip, and B. Raj, “Measurement of thermal diffusivity of solids using infrared thermography,” Mater. Lett. 62, 2740–2742 (2008).
[Crossref]

Ready, J. F.

J. F. Ready, Effects of High-Power Laser Radiation (Academic, 1971), p. 73.

Requicha, A. A. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[Crossref]

Rigo, M.

K. Tapily, D. Gu, H. Baumgart, M. Rigo, and J. Seo, “Raman spectroscopy of ZnO thin films by atomic layer deposition,” ECS Trans. 33, 117–123 (2010).

Rothenberg, J. E.

R. Kelly and J. E. Rothenberg, “Laser sputtering Part III. The mechanism of the sputtering of metals low energy densities,” Nucl. Instrum. Methods Phys. Res. 7–8, 755–763 (1985).
[Crossref]

Russo, R. E.

C. Liu, X. Mao, S. S. Mao, R. Greif, and R. E. Russo, “Particle size dependent chemistry from laser ablation of brass,” Anal. Chem. 77, 6687–6691 (2005).
[Crossref]

X. L. Mao, A. C. Ciocan, and R. E. Russo, “Preferential vaporization during laser ablation inductively coupled plasma atomic emission spectroscopy,” Appl. Spectrosc. 52, 913–918 (1998).
[Crossref]

Sacher, E.

J. P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. Luong, “Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins,” J. Am. Chem. Soc. 126, 7176–7177 (2004).
[Crossref]

Salakiiov, M. K.

E. M. Babina, G. G. Il’In, O. A. Konovalova, M. K. Salakiiov, and E. V. Sarandaev, “The complete calculation of Stark broadening parameters for the neutral copper atoms spectral lines of 4s2 S-4p2 P0 multiplets in the dipole approximation,” Bull. Obs. Astron. Belgrade 76, 163–166 (2003).

Sarandaev, E. V.

E. M. Babina, G. G. Il’In, O. A. Konovalova, M. K. Salakiiov, and E. V. Sarandaev, “The complete calculation of Stark broadening parameters for the neutral copper atoms spectral lines of 4s2 S-4p2 P0 multiplets in the dipole approximation,” Bull. Obs. Astron. Belgrade 76, 163–166 (2003).

Sardar, M.

J. M. Laskar, S. Bagavathiappan, M. Sardar, T. Jayakumar, J. Philip, and B. Raj, “Measurement of thermal diffusivity of solids using infrared thermography,” Mater. Lett. 62, 2740–2742 (2008).
[Crossref]

Satoh, N.

N. Satoh, H. Hasegawa, K. Tsujii, and K. Kimura, “Photoinduced coagulation Au nanoparticles,” J. Phys. Chem. B 98, 2143–2147 (1994).
[Crossref]

Sawabe, H.

F. Mafune, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation,” J. Phys. Chem. B 104, 8333–8337 (2000).
[Crossref]

Sayed, M. A. E.

S. Link, C. Burda, B. Nikoobakht, and M. A. E. Sayed, “Laser induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000).
[Crossref]

Scott, J. R.

A. J. Effenberger and J. R. Scott, “Effect of atmospheric conditions on LIBS spectra,” Sensors 10, 4907–4925 (2010).
[Crossref]

Seo, J.

K. Tapily, D. Gu, H. Baumgart, M. Rigo, and J. Seo, “Raman spectroscopy of ZnO thin films by atomic layer deposition,” ECS Trans. 33, 117–123 (2010).

Sevov, S.

J. K. Burdett and S. Sevov, “Stability of the oxidation states of copper,” J. Am. Chem. Soc. 117, 12788–12792 (1995).
[Crossref]

Shafeev, G. A.

P. V. Kazakevich, A. V. Simakin, G. A. Shafeev, F. Monteverde, and M. Wautelet, “Phase diagrams of laser-processed nanoparticles of brass,” Appl. Surf. Sci. 253, 7724–7728 (2007).
[Crossref]

A. V. Simakin, V. V. Voronov, N. A. Kirichenko, and G. A. Shafeev, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Phys. A 79, 1127–1132 (2004).
[Crossref]

S. I. Dolgaev, A. V. Simokin, V. V. Voronov, G. A. Shafeev, and F. Bozon-Verduraz, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Surf. Sci. 186, 546–551 (2002).
[Crossref]

Shamsa, M.

K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandin, “Micro-Raman investigation of optical phonons in ZnO nanocrystals,” J. Appl. Phys. 97, 124313 (2005).
[Crossref]

Shen, Y. R.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923–7936 (1986).
[Crossref]

Shen, Z.

Y. Zhu, C.-H. Sow, T. Yu, Q. Zhao, P. Li, Z. Shen, D. Yu, and J. T.-L. Thong, “Co-synthesis of ZnO-CuO nanostructures by directly heating brass in air,” Adv. Funct. Mater. 16, 2415–2422 (2006).
[Crossref]

Shimokawa, K.

A. Pyatenko, K. Shimokawa, M. Yamaguchi, O. Nishimura, and M. Suzuki, “Synthesis of silver nanoparticles by laser ablation in pure water,” Appl. Phys. A 79, 803–806 (2004).
[Crossref]

Shin, Y. C.

B. Wu and Y. C. Shin, “Two dimensional hydrodynamic simulations of high pressures induced by high power nanosecond laser-matter interactions under water,” J. Appl. Phys. 101, 103514 (2007).
[Crossref]

Sibbald, M. S.

M. S. Sibbald, G. Chumanov, and T. M. Cotton, “Reduction of cytochrome c by halide-modified, laser ablated silver colloids,” J. Phys. Chem. 100, 4672–4678 (1996).
[Crossref]

Simakin, A. V.

P. V. Kazakevich, A. V. Simakin, G. A. Shafeev, F. Monteverde, and M. Wautelet, “Phase diagrams of laser-processed nanoparticles of brass,” Appl. Surf. Sci. 253, 7724–7728 (2007).
[Crossref]

A. V. Simakin, V. V. Voronov, N. A. Kirichenko, and G. A. Shafeev, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Phys. A 79, 1127–1132 (2004).
[Crossref]

Simokin, A. V.

S. I. Dolgaev, A. V. Simokin, V. V. Voronov, G. A. Shafeev, and F. Bozon-Verduraz, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Surf. Sci. 186, 546–551 (2002).
[Crossref]

Siregar, M. T.

M. von Allmen, W. Luthy, M. T. Siregar, K. Affolter, and M. A. Nicolet, “Annealing of silicon with 1.06  μm laser pulses,” in Laser-Solid Interactions and Laser Processing-1978, S. D. Ferris, H. J. Leamy, and J. M. Poate, ed. (American Institute of Physics, 1979), p. 43.

Socol, G.

J. Hermann, L. Mercadier, E. Mothe, G. Socol, and P. Alloncle, “On the stoichiometry of mass transfer from solid to plasma during pulsed laser ablation of brass,” Spectrochim. Acta B 65, 636–641 (2010).
[Crossref]

Sow, C.-H.

Y. Zhu, C.-H. Sow, T. Yu, Q. Zhao, P. Li, Z. Shen, D. Yu, and J. T.-L. Thong, “Co-synthesis of ZnO-CuO nanostructures by directly heating brass in air,” Adv. Funct. Mater. 16, 2415–2422 (2006).
[Crossref]

Stietz, F.

J. Bosbach, D. Martin, F. Stietz, T. Wenzel, and F. Trager, “Laser based method for fabricating monodisperse metallic nanoparticles,” Appl. Phys. Lett. 74, 2605–2607 (1999).
[Crossref]

Suzuki, M.

A. Pyatenko, K. Shimokawa, M. Yamaguchi, O. Nishimura, and M. Suzuki, “Synthesis of silver nanoparticles by laser ablation in pure water,” Appl. Phys. A 79, 803–806 (2004).
[Crossref]

Svelto, O.

O. Svelto, Principles of Lasers, 4th ed. (Springer, 1998), p. 425.

Sylvestre, J. P.

J. P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. Luong, “Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins,” J. Am. Chem. Soc. 126, 7176–7177 (2004).
[Crossref]

Szorenyi, T.

T. Szorenyi and Zs. Geretovszky, “Comparison of growth rate and surface structure of carbon nitride films, pulsed laser deposition in parallel, on axis planes,” Thin Solid Films 453–454, 431–435 (2004).
[Crossref]

Takeda, Y.

F. Mafune, J. Y. Kohno, Y. Takeda, and T. Kondow, “Dissociation and aggregation of gold nanoparticles under laser irradiation,” J. Phys. Chem. B 105, 9050–9056 (2001).
[Crossref]

F. Mafune, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation,” J. Phys. Chem. B 104, 8333–8337 (2000).
[Crossref]

Takeuchi, Y.

Y. Takeuchi, T. Ida, and K. Kimura, “Colloidal stability of gold nanoparticles in 2-propanol under laser irradiation,” J. Phys. Chem. B 101, 1322–1327 (1997).
[Crossref]

Tapily, K.

K. Tapily, D. Gu, H. Baumgart, M. Rigo, and J. Seo, “Raman spectroscopy of ZnO thin films by atomic layer deposition,” ECS Trans. 33, 117–123 (2010).

Thareja, R. K.

D. N. Patel, P. K. Pandey, and R. K. Thareja, “Stoichiometric investigations of laser ablated brass plasma,” Appl. Opt. 51, B192–B200 (2012).
[Crossref]

P. K. Pandey and R. K. Thareja, “Surface nanostructuring of laser ablated copper in ambient gas atmosphere and magnetic field,” Phys. Plasmas 18, 033505 (2011).
[Crossref]

B. Kumar and R. K. Thareja, “Synthesis of nanoparticles in laser ablation of aluminum in liquid,” J. Appl. Phys. 108, 064906 (2010).
[Crossref]

Thong, J. T.-L.

Y. Zhu, C.-H. Sow, T. Yu, Q. Zhao, P. Li, Z. Shen, D. Yu, and J. T.-L. Thong, “Co-synthesis of ZnO-CuO nanostructures by directly heating brass in air,” Adv. Funct. Mater. 16, 2415–2422 (2006).
[Crossref]

Tollier, L.

D. Devaux, R. Fabbro, L. Tollier, and E. Bartnicki, “Generation of shock waves by laser induced plasma in confined geometry,” J. Appl. Phys. 74, 2268–2273 (1993).
[Crossref]

Trager, F.

J. Bosbach, D. Martin, F. Stietz, T. Wenzel, and F. Trager, “Laser based method for fabricating monodisperse metallic nanoparticles,” Appl. Phys. Lett. 74, 2605–2607 (1999).
[Crossref]

Tricot, S.

J. Perriere, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, “Nanoparticles formation by femtosecond laser ablation,” J. Phys. D 40, 7069–7076 (2007).
[Crossref]

Tsa, S. H.

S. H. Tsa, Y. H. Liu, P. L. Wu, and C. S. Yeh, “Preparation of Au-Ag-Pd trimetallic nanoparticles and their application as catalysts,” J. Mater. Chem. 13, 978–980 (2003).
[Crossref]

Tsuji, M.

T. Tsujia, N. Watanabeb, and M. Tsuji, “Laser induced morphology change of silver colloids: formation of nano-size wires,” Appl. Surf. Sci. 211, 189–193 (2003).
[Crossref]

Tsujia, T.

T. Tsujia, N. Watanabeb, and M. Tsuji, “Laser induced morphology change of silver colloids: formation of nano-size wires,” Appl. Surf. Sci. 211, 189–193 (2003).
[Crossref]

Tsujii, K.

N. Satoh, H. Hasegawa, K. Tsujii, and K. Kimura, “Photoinduced coagulation Au nanoparticles,” J. Phys. Chem. B 98, 2143–2147 (1994).
[Crossref]

Van Duyne, R. P.

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size dependent nanoparticle optics,” J. Phys. Chem. B 105, 5599–5611 (2001).
[Crossref]

von Allmen, M.

M. von Allmen, W. Luthy, M. T. Siregar, K. Affolter, and M. A. Nicolet, “Annealing of silicon with 1.06  μm laser pulses,” in Laser-Solid Interactions and Laser Processing-1978, S. D. Ferris, H. J. Leamy, and J. M. Poate, ed. (American Institute of Physics, 1979), p. 43.

von Bohlen, A.

J. Koch, A. von Bohlen, R. Hergenroder, and K. Niemax, “Particles size distributions and compositions of aerosols produced by near-IR femto- and nanosecond laser ablation of brass,” J. Anal. At. Spectrom. 19, 267–272 (2004).
[Crossref]

Voronov, V. V.

A. V. Simakin, V. V. Voronov, N. A. Kirichenko, and G. A. Shafeev, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Phys. A 79, 1127–1132 (2004).
[Crossref]

S. I. Dolgaev, A. V. Simokin, V. V. Voronov, G. A. Shafeev, and F. Bozon-Verduraz, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Surf. Sci. 186, 546–551 (2002).
[Crossref]

Wang, G. W.

Y. Liu, M. Q. Jiang, G. W. Wang, J. H. Chen, Y. J. Guan, and L. H. Dai, “Saffman–Taylor fingering in nanosecond pulse laser ablating bulk metallic glass in water,” Intermetallics 31, 325–329 (2012).
[Crossref]

Watanabeb, N.

T. Tsujia, N. Watanabeb, and M. Tsuji, “Laser induced morphology change of silver colloids: formation of nano-size wires,” Appl. Surf. Sci. 211, 189–193 (2003).
[Crossref]

Wautelet, M.

P. V. Kazakevich, A. V. Simakin, G. A. Shafeev, F. Monteverde, and M. Wautelet, “Phase diagrams of laser-processed nanoparticles of brass,” Appl. Surf. Sci. 253, 7724–7728 (2007).
[Crossref]

Webb, R. L.

Welch, A. J.

H. W. Kang, H. Lee, and A. J. Welch, “Laser ablation in a liquid confined environment using a nanosecond laser pulse,” J. Appl. Phys. 103, 083101 (2008).
[Crossref]

Wenzel, T.

J. Bosbach, D. Martin, F. Stietz, T. Wenzel, and F. Trager, “Laser based method for fabricating monodisperse metallic nanoparticles,” Appl. Phys. Lett. 74, 2605–2607 (1999).
[Crossref]

Wu, B.

B. Wu and Y. C. Shin, “Two dimensional hydrodynamic simulations of high pressures induced by high power nanosecond laser-matter interactions under water,” J. Appl. Phys. 101, 103514 (2007).
[Crossref]

Wu, P. L.

S. H. Tsa, Y. H. Liu, P. L. Wu, and C. S. Yeh, “Preparation of Au-Ag-Pd trimetallic nanoparticles and their application as catalysts,” J. Mater. Chem. 13, 978–980 (2003).
[Crossref]

Yadav, H. K.

H. K. Yadav, R. S. Katiyar, and V. Gupta, “Temperature dependent dynamics of ZnO nanoparticles probed by Raman scattering: a big divergence in the functional areas of the nanoparticles and bulk materials,” Appl. Phys. Lett. 100, 051906 (2012).
[Crossref]

Yamaguchi, M.

A. Pyatenko, K. Shimokawa, M. Yamaguchi, O. Nishimura, and M. Suzuki, “Synthesis of silver nanoparticles by laser ablation in pure water,” Appl. Phys. A 79, 803–806 (2004).
[Crossref]

Yang, G. W.

G. W. Yang, “Laser ablation in liquids: applications in the synthesis of nanocrystals,” Prog. Mater. Sci. 52, 648–698 (2007).
[Crossref]

Yeh, C. S.

S. H. Tsa, Y. H. Liu, P. L. Wu, and C. S. Yeh, “Preparation of Au-Ag-Pd trimetallic nanoparticles and their application as catalysts,” J. Mater. Chem. 13, 978–980 (2003).
[Crossref]

Young, J. F.

C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasma resonant illumination,” J. Phys. Chem. B 108, 7040–7045 (2004).
[Crossref]

Yu, D.

Y. Zhu, C.-H. Sow, T. Yu, Q. Zhao, P. Li, Z. Shen, D. Yu, and J. T.-L. Thong, “Co-synthesis of ZnO-CuO nanostructures by directly heating brass in air,” Adv. Funct. Mater. 16, 2415–2422 (2006).
[Crossref]

Yu, T.

Y. Zhu, C.-H. Sow, T. Yu, Q. Zhao, P. Li, Z. Shen, D. Yu, and J. T.-L. Thong, “Co-synthesis of ZnO-CuO nanostructures by directly heating brass in air,” Adv. Funct. Mater. 16, 2415–2422 (2006).
[Crossref]

Yu, Z. H.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923–7936 (1986).
[Crossref]

Zhao, Q.

Y. Zhu, C.-H. Sow, T. Yu, Q. Zhao, P. Li, Z. Shen, D. Yu, and J. T.-L. Thong, “Co-synthesis of ZnO-CuO nanostructures by directly heating brass in air,” Adv. Funct. Mater. 16, 2415–2422 (2006).
[Crossref]

Zhu, Y.

Y. Zhu, C.-H. Sow, T. Yu, Q. Zhao, P. Li, Z. Shen, D. Yu, and J. T.-L. Thong, “Co-synthesis of ZnO-CuO nanostructures by directly heating brass in air,” Adv. Funct. Mater. 16, 2415–2422 (2006).
[Crossref]

Adv. Funct. Mater. (1)

Y. Zhu, C.-H. Sow, T. Yu, Q. Zhao, P. Li, Z. Shen, D. Yu, and J. T.-L. Thong, “Co-synthesis of ZnO-CuO nanostructures by directly heating brass in air,” Adv. Funct. Mater. 16, 2415–2422 (2006).
[Crossref]

Adv. Mater. (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[Crossref]

Anal. Chem. (2)

H.-R. Kuhn and D. Günther, “Elemental fractionation studies in laser ablation inductively coupled plasma mass spectrometry on laser-induced brass aerosols,” Anal. Chem. 75, 747–753 (2003).
[Crossref]

C. Liu, X. Mao, S. S. Mao, R. Greif, and R. E. Russo, “Particle size dependent chemistry from laser ablation of brass,” Anal. Chem. 77, 6687–6691 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (3)

A. Pyatenko, K. Shimokawa, M. Yamaguchi, O. Nishimura, and M. Suzuki, “Synthesis of silver nanoparticles by laser ablation in pure water,” Appl. Phys. A 79, 803–806 (2004).
[Crossref]

A. V. Simakin, V. V. Voronov, N. A. Kirichenko, and G. A. Shafeev, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Phys. A 79, 1127–1132 (2004).
[Crossref]

C. B. Arnold and M. J. Aziz, “Stoichiometry issues in pulsed laser deposition of alloys grown from multicomponent targets,” Appl. Phys. A 69, S23–S27 (1999).

Appl. Phys. Lett. (2)

H. K. Yadav, R. S. Katiyar, and V. Gupta, “Temperature dependent dynamics of ZnO nanoparticles probed by Raman scattering: a big divergence in the functional areas of the nanoparticles and bulk materials,” Appl. Phys. Lett. 100, 051906 (2012).
[Crossref]

J. Bosbach, D. Martin, F. Stietz, T. Wenzel, and F. Trager, “Laser based method for fabricating monodisperse metallic nanoparticles,” Appl. Phys. Lett. 74, 2605–2607 (1999).
[Crossref]

Appl. Spectrosc. (3)

Appl. Surf. Sci. (3)

P. V. Kazakevich, A. V. Simakin, G. A. Shafeev, F. Monteverde, and M. Wautelet, “Phase diagrams of laser-processed nanoparticles of brass,” Appl. Surf. Sci. 253, 7724–7728 (2007).
[Crossref]

T. Tsujia, N. Watanabeb, and M. Tsuji, “Laser induced morphology change of silver colloids: formation of nano-size wires,” Appl. Surf. Sci. 211, 189–193 (2003).
[Crossref]

S. I. Dolgaev, A. V. Simokin, V. V. Voronov, G. A. Shafeev, and F. Bozon-Verduraz, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Surf. Sci. 186, 546–551 (2002).
[Crossref]

Ber. Bunsenges. Phys. Chem. (1)

A. Fojtik, M. Giersig, and A. Henglein, “Formation of nanometer-size silicon particles in a laser induced plasma in SiH4,” Ber. Bunsenges. Phys. Chem. 97, 1493–1496 (1993).
[Crossref]

Bull. Obs. Astron. Belgrade (1)

E. M. Babina, G. G. Il’In, O. A. Konovalova, M. K. Salakiiov, and E. V. Sarandaev, “The complete calculation of Stark broadening parameters for the neutral copper atoms spectral lines of 4s2 S-4p2 P0 multiplets in the dipole approximation,” Bull. Obs. Astron. Belgrade 76, 163–166 (2003).

ECS Trans. (1)

K. Tapily, D. Gu, H. Baumgart, M. Rigo, and J. Seo, “Raman spectroscopy of ZnO thin films by atomic layer deposition,” ECS Trans. 33, 117–123 (2010).

Intermetallics (1)

Y. Liu, M. Q. Jiang, G. W. Wang, J. H. Chen, Y. J. Guan, and L. H. Dai, “Saffman–Taylor fingering in nanosecond pulse laser ablating bulk metallic glass in water,” Intermetallics 31, 325–329 (2012).
[Crossref]

J. Am. Chem. Soc. (2)

J. K. Burdett and S. Sevov, “Stability of the oxidation states of copper,” J. Am. Chem. Soc. 117, 12788–12792 (1995).
[Crossref]

J. P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. Luong, “Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins,” J. Am. Chem. Soc. 126, 7176–7177 (2004).
[Crossref]

J. Anal. At. Spectrom. (1)

J. Koch, A. von Bohlen, R. Hergenroder, and K. Niemax, “Particles size distributions and compositions of aerosols produced by near-IR femto- and nanosecond laser ablation of brass,” J. Anal. At. Spectrom. 19, 267–272 (2004).
[Crossref]

J. Appl. Phys. (6)

B. Wu and Y. C. Shin, “Two dimensional hydrodynamic simulations of high pressures induced by high power nanosecond laser-matter interactions under water,” J. Appl. Phys. 101, 103514 (2007).
[Crossref]

T. E. Itina, A. A. Katassonov, W. Marine, and M. Autric, “Numerical study of the role of background gas and system geometry in pulsed laser deposition,” J. Appl. Phys. 83, 6050–6054 (1998).
[Crossref]

H. W. Kang, H. Lee, and A. J. Welch, “Laser ablation in a liquid confined environment using a nanosecond laser pulse,” J. Appl. Phys. 103, 083101 (2008).
[Crossref]

D. Devaux, R. Fabbro, L. Tollier, and E. Bartnicki, “Generation of shock waves by laser induced plasma in confined geometry,” J. Appl. Phys. 74, 2268–2273 (1993).
[Crossref]

B. Kumar and R. K. Thareja, “Synthesis of nanoparticles in laser ablation of aluminum in liquid,” J. Appl. Phys. 108, 064906 (2010).
[Crossref]

K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandin, “Micro-Raman investigation of optical phonons in ZnO nanocrystals,” J. Appl. Phys. 97, 124313 (2005).
[Crossref]

J. Chem. Phys. (1)

J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys. 73, 3023–3037 (1980).
[Crossref]

J. Mater. Chem. (1)

S. H. Tsa, Y. H. Liu, P. L. Wu, and C. S. Yeh, “Preparation of Au-Ag-Pd trimetallic nanoparticles and their application as catalysts,” J. Mater. Chem. 13, 978–980 (2003).
[Crossref]

J. Phys. Chem. (1)

M. S. Sibbald, G. Chumanov, and T. M. Cotton, “Reduction of cytochrome c by halide-modified, laser ablated silver colloids,” J. Phys. Chem. 100, 4672–4678 (1996).
[Crossref]

J. Phys. Chem. B (7)

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size dependent nanoparticle optics,” J. Phys. Chem. B 105, 5599–5611 (2001).
[Crossref]

F. Mafune, J. Y. Kohno, Y. Takeda, and T. Kondow, “Dissociation and aggregation of gold nanoparticles under laser irradiation,” J. Phys. Chem. B 105, 9050–9056 (2001).
[Crossref]

N. Satoh, H. Hasegawa, K. Tsujii, and K. Kimura, “Photoinduced coagulation Au nanoparticles,” J. Phys. Chem. B 98, 2143–2147 (1994).
[Crossref]

C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasma resonant illumination,” J. Phys. Chem. B 108, 7040–7045 (2004).
[Crossref]

S. Link, C. Burda, B. Nikoobakht, and M. A. E. Sayed, “Laser induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000).
[Crossref]

F. Mafune, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation,” J. Phys. Chem. B 104, 8333–8337 (2000).
[Crossref]

Y. Takeuchi, T. Ida, and K. Kimura, “Colloidal stability of gold nanoparticles in 2-propanol under laser irradiation,” J. Phys. Chem. B 101, 1322–1327 (1997).
[Crossref]

J. Phys. D (1)

J. Perriere, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, “Nanoparticles formation by femtosecond laser ablation,” J. Phys. D 40, 7069–7076 (2007).
[Crossref]

Mater. Lett. (1)

J. M. Laskar, S. Bagavathiappan, M. Sardar, T. Jayakumar, J. Philip, and B. Raj, “Measurement of thermal diffusivity of solids using infrared thermography,” Mater. Lett. 62, 2740–2742 (2008).
[Crossref]

Nucl. Instrum. Methods Phys. Res. (1)

R. Kelly and J. E. Rothenberg, “Laser sputtering Part III. The mechanism of the sputtering of metals low energy densities,” Nucl. Instrum. Methods Phys. Res. 7–8, 755–763 (1985).
[Crossref]

Phys. Plasmas (1)

P. K. Pandey and R. K. Thareja, “Surface nanostructuring of laser ablated copper in ambient gas atmosphere and magnetic field,” Phys. Plasmas 18, 033505 (2011).
[Crossref]

Phys. Rev. (1)

L. Muldawer, “Spectral reflectivity as a function of temperature of β-brass type alloys,” Phys. Rev. 127, 1551–1559 (1962).
[Crossref]

Phys. Rev. B (1)

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923–7936 (1986).
[Crossref]

Phys. Rev. Lett. (1)

A. Ashkin and J. M. Dziedzic, “Radiation pressure on a free liquid surface,” Phys. Rev. Lett. 30, 139–142 (1973).
[Crossref]

Prog. Mater. Sci. (1)

G. W. Yang, “Laser ablation in liquids: applications in the synthesis of nanocrystals,” Prog. Mater. Sci. 52, 648–698 (2007).
[Crossref]

Rev. Sci. Instrum. (1)

M. Gustavsson, E. Karawacki, and S. E. Gustafsson, “Thermal conductivity, thermal diffusivity, and specific heat of thin samples from transient measurements with hot disk sensors,” Rev. Sci. Instrum. 65, 3856–3859 (1994).
[Crossref]

Sensors (1)

A. J. Effenberger and J. R. Scott, “Effect of atmospheric conditions on LIBS spectra,” Sensors 10, 4907–4925 (2010).
[Crossref]

Spectrochim. Acta B (2)

L. J. Radziemski, “From LASER to LIBS, the path of technology development,” Spectrochim. Acta B 57, 1109–1113 (2002).
[Crossref]

J. Hermann, L. Mercadier, E. Mothe, G. Socol, and P. Alloncle, “On the stoichiometry of mass transfer from solid to plasma during pulsed laser ablation of brass,” Spectrochim. Acta B 65, 636–641 (2010).
[Crossref]

Thin Solid Films (1)

T. Szorenyi and Zs. Geretovszky, “Comparison of growth rate and surface structure of carbon nitride films, pulsed laser deposition in parallel, on axis planes,” Thin Solid Films 453–454, 431–435 (2004).
[Crossref]

Other (10)

D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, 1994).

D. Bauerle, Laser Processing and Chemistry (Springer-Verlag, 2000).

Istituto per l’Energetica e le Interfasi “Nanoparticle synthesis and characterization,” http://www.ieni.mi.cnr.it/research_themes/reactive-systems-and-advanced-diagnostics/nanoparticle-synthesis-and-characterization .

A. Montaser, Inductively Coupled Plasma Mass Spectrometry (Wiley-VCH, 1998).

M. von Allmen, W. Luthy, M. T. Siregar, K. Affolter, and M. A. Nicolet, “Annealing of silicon with 1.06  μm laser pulses,” in Laser-Solid Interactions and Laser Processing-1978, S. D. Ferris, H. J. Leamy, and J. M. Poate, ed. (American Institute of Physics, 1979), p. 43.

J. F. Ready, Effects of High-Power Laser Radiation (Academic, 1971), p. 73.

H. R. Griem, Plasma Spectroscopy (McGraw-Hill, 1964).

W. Lochte-Holtgreven, Plasma Diagnostics (Wiley-Interscience, 1968).

G. Bekefi, Principles of Laser Plasmas (Wiley-Interscience, 1976).

O. Svelto, Principles of Lasers, 4th ed. (Springer, 1998), p. 425.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Schematic of the experimental setup.

Fig. 2.
Fig. 2.

SEM images of the brass crater at 40 mJ pulse energy and 400 laser shots in (a) water and (b) air and the corresponding depth profiles in (c) water and (d) air.

Fig. 3.
Fig. 3.

(a) Mass ablation rate as a function of energy and (b) ablated depth with number of shots at 40 mJ energy in water.

Fig. 4.
Fig. 4.

Brass plasma plume images in water and ambient air and the corresponding R-t plots.

Fig. 5.
Fig. 5.

Time evolution of the Cu I line at different energies. The lines shown in the spectrum are 4pP23/23d94s2D25/2 at 510.5 nm, 4dD23/24pP21/2 at 515.3 nm, and 4dD25/24pP23/2 at 521.8 nm.

Fig. 6.
Fig. 6.

Time evolution of the Cu I and Zn I lines at different laser energies. The lines shown in the spectrum are Cu I at 465.1 nm (4s5sD7/244s4pF9/24), Zn I at 468.0 nm (4s5sS314s4pP30), 472.2 nm (4s5sS314s4pP31), and 481.1 nm (4s5sS314s4pP32).

Fig. 7.
Fig. 7.

Time evolution of the Cu I lines at 510.5 nm, 515.3 nm, and 521.8 nm in (a) water and (b) air and Zn I lines at 472.2 nm and 481.1 nm in (c) water and (d) air.

Fig. 8.
Fig. 8.

Temporal evolution of electron density in (a) water and (b) air. In both cases, electron density followed an exponential decay with a mean lifetime of 99±12ns in water and 86±8ns in air.

Fig. 9.
Fig. 9.

SEM images of NPs of brass deposited back onto the target surface in (a) water and (b) ambient air and particle size distributions in (c) water and (d) air.

Fig. 10.
Fig. 10.

Zn/Cu ratio versus particle diameter in (a) water and (b) air.

Fig. 11.
Fig. 11.

PL spectra of NPs in (a) water and (b) air. Inset shows the PL of the fresh brass target.

Fig. 12.
Fig. 12.

(a) Nanostructures of ZnO formed in water. The inset shows a zoomed image of the area in the red colored circle. (b) Raman spectrum of the nanostructures. The inset shows the new window of the circled part.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T(z,t)=T0+2(1R)IρCtDthierfc(z2Dtht),
T(0,t)=T0+2(1R)IKtDth/π.
P(kbar)=0.1[α(2α+3)(ZI0)]12,
ln(IkiλgkAki)=1kBTeEj+ln(hcne4πU(Te)),
Δλ1/2(nm)=2W[ne1016],

Metrics