Abstract

A study on effective laser cleaning of gold layer deposited on fused silica substrates used in beamlines of synchrotron radiation (SR) sources using nanosecond-pulsed Nd:YAG laser has been carried out. The influence of pulse duration, beam incidence angle, spot overlapping, laser fluence, and number of passes on cleaning efficiency has been investigated. An approximately 48 nm thick gold layer from a mirror surface area of 48cm2 has been cleaned in 3 min. Laser clean quality and efficiency has been analyzed using microscope, scanning electron microscope (SEM), and angle-dependent reflectivity measurement techniques using SR beamline. Optimization of cleaning parameters resulted in a cleaning efficiency of 98%. This study provides an alternate and low-cost solution for reuse of gold-coated, damaged mirrors.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Ursby, J. Unge, R. Appio, D. T. Logan, F. Fredslund, C. Svensson, K. Larsson, A. Labrador, and M. M. G. M. Thunnissen, “The macromolecular crystallography beamline I911-3 at the MAX IV laboratory,” J. Synchrotron Radiat. 20, 648–653 (2013).
    [CrossRef]
  2. Y. Xi, B. Kou, H. Sun, J. Qi, J. Sun, J. Mohr, M. Börner, J. Zhao, L. X. Xu, T. Xiao, and Y. Wang, “X-ray grating interferometer for biomedical imaging applications at Shanghai synchrotron radiation facility,” J. Synchrotron Radiat. 19, 821–826 (2012).
    [CrossRef]
  3. K. Codling, “Applications of synchrotron radiation (ultraviolet spectral light source),” Rep. Prog. Phys. 36, 541–624 (1973).
    [CrossRef]
  4. R. V. Nandedkar and K. J. S. Sawhney, “Status of Indus-1 and Indus-2 beamlines,” Nucl. Instrum. Methods Phys. Res., Sect. B 199, 541–545 (2003).
    [CrossRef]
  5. D. D. Bhawalkar, G. Singh, and R. V. Nandedkar, “Synchrotron radiation sources Indus I and Indus II,” Pramana 50, 467–484 (1998).
    [CrossRef]
  6. M. E. Couprie, M. Billardon, M. Velghe, C. Bazin, M. Bergher, H. Fang, J. M. Ortega, Y. Petrof, and R. Prazeres, “Optical properties of multilayer mirrors exposed to synchrotron radiation,” Nucl. Instrum. Methods Phys. Res., Sect. A 272, 166–173 (1988).
    [CrossRef]
  7. A. Toyoshima, T. Kikuchi, H. Tanaka, J. Adachi, K. Mase, and K. Amemiya, “In situ removal of carbon contamination from optics in a vacuum ultraviolet and soft X-ray undulator beamline using oxygen activated by zeroth-order synchrotron radiation,” J. Synchrotron Radiat. 19, 722–727 (2012).
    [CrossRef]
  8. F. Barkusky, A. Bayer, S. Döring, P. Grossmann, and K. Mann, “Damage threshold measurements on EUV optics using focused radiation from a table-top laser produced plasma source,” Opt. Express 18, 4346–4355 (2010).
    [CrossRef]
  9. C. Tarrio, “Method for the characterization of extreme-ultraviolet photoresist outgassing,” J. Res. Natl. Inst. Stand. Technol. 114, 179–183 (2009).
    [CrossRef]
  10. C. Tarrio and S. Grantham, “Synchrotron beamline for extreme-ultraviolet multilayer mirror endurance testing,” Rev. Sci. Instrum. 76, 056101 (2005).
    [CrossRef]
  11. K. Raiber, A. Terfort, C. Benndorf, N. Krings, and H.-H. Strehblow, “Removal of self-assembled monolayers of alkanethiolates on gold by plasma cleaning,” Surf. Sci. 595, 56–63 (2005).
    [CrossRef]
  12. Kh. Gholivand, M. Khosravi, S. G. Hosseini, and M. Fathollahi, “A novel surface cleaning method for chemical removal of fouling lead layer from chromium surfaces,” Appl. Surf. Sci. 256, 7457–7461 (2010).
    [CrossRef]
  13. A. Yerokhin, A. Pilkington, and A. Matthews, “Pulse current plasma assisted electrolytic cleaning of AISI 4340 steel,” J. Mater. Process. Technol. 210, 54–63 (2010).
    [CrossRef]
  14. F. Eggenstein, F. Senf, T. Zeschke, and W. Gudat, “Cleaning of contaminated XUV-optics at BESSY II,” Nucl. Instrum. Methods Phys. Res., Sect. A 467, 325–328 (2001).
    [CrossRef]
  15. J. M. Koo, J. B. Lee, Y. J. Moon, W. C. Moon, and S. B. Jung, “Atmospheric pressure plasma cleaning of gold flip chip bump for ultrasonic flip chip bonding,” J. Phys. Conf. Ser. 100, 012034 (2008).
    [CrossRef]
  16. Y.-S. Lin, “A surface analysis on oxygen plasma-cleaned gold pattern-plated substrates for wire bond ability,” Surf. Coat. Technol. 173, 47–57 (2003).
    [CrossRef]
  17. A. Singh, A. Choubey, M. H. Modi, B. N. Upadhyaya, S. M. Oak, G. S. Lodha, and S. K. Deb, “Cleaning of carbon layer from the gold films using a pulsed Nd:YAG laser,” Appl. Surf. Sci. 283, 612–616 (2013).
    [CrossRef]
  18. A. C. Tam, W. P. Leung, W. Zapka, and W. Ziemlich, “Laser cleaning techniques for removal of surface particulates,” J. Appl. Phys. 71, 3515–3523 (1992).
    [CrossRef]
  19. Y. Ye, X. Yuan, X. Xiang, X. Cheng, and X. Miao, “Laser cleaning of particle and grease contaminations on the surface of optics,” Optik 123, 1056–1060 (2012).
    [CrossRef]
  20. J. P. Nilaya, P. Raote, A. Kumar, and D. J. Biswas, “Laser-assisted decontamination—A wavelength dependent study,” Appl. Surf. Sci. 254, 7377–7380 (2008).
    [CrossRef]
  21. J. Zhang, Y. Wang, P. Cheng, and Y. L. Yao, “Effect of pulsing parameters on laser ablative cleaning of copper oxides,” J. Appl. Phys. 99, 064902 (2006).
    [CrossRef]
  22. T. X. Phuoc, “A comparative study of the photon pressure force, the photophoretic force, and the adhesion van der Waals force,” Opt. Commun. 245, 27–35 (2005).
    [CrossRef]
  23. M. P. Mateo, T. Ctvrtnickova, E. Fernandez, J. A. Ramos, A. Yanez, and G. Nicolas, “Laser cleaning of varnishes and contaminants on brass,” Appl. Surf. Sci. 255, 5579–5583 (2009).
    [CrossRef]
  24. H. Garbacz, E. Fortuna-Zalesna, J. Marczak, A. Koss, A. Zatorska, G. Z. Zukowska, T. Onyszczuk, and K. J. Kurzydlowski, “Effect of laser treatment on the surface of copper alloys,” Appl. Surf. Sci. 257, 7369–7374 (2011).
    [CrossRef]
  25. N. Arnold, “Theoretical description of dry laser cleaning,” Appl. Surf. Sci. 208, 15–22 (2003).
    [CrossRef]
  26. V. V. Golovlev, M. J. Gresalfi, J. C. Miller, G. Romer, and P. Messier, “Laser characterization and cleaning of nineteenth century daguerreotypes,” J. Cult. Herit. 1, S139–S144 (2000).
    [CrossRef]
  27. P. Mazzinghi and F. Margheri, “A short pulse, free running, Nd:YAG laser for the cleaning of stone cultural heritage,” Opt. Lasers Eng. 39, 191–202 (2003).
    [CrossRef]
  28. R. Iffländer, Solid State Lasers for Material Processing, Springer Series in Optical Sciences (Springer-Verlag, 1990).
  29. L. Torrisi, A. Borrielli, and D. Margarone, “Study on the ablation threshold induced by pulsed lasers at different wavelengths,” Nucl. Instrum. Methods Phys. Res., Sect. B 255, 373–379 (2007).
    [CrossRef]
  30. N. N. Nedialkov, P. A. Atanasov, S. Amoruso, R. Bruzzese, and X. Wang, “Laser ablation of metals by femtosecond pulses: theoretical and experimental study,” Appl. Surf. Sci. 253, 7761–7766 (2007).
    [CrossRef]
  31. S. I. Kudryashov, S. D. Allen, S. Papernov, and A. W. Schmid, “Nanoscale laser-induced spallation in SiO2 films containing gold nanoparticles,” Appl. Phys. B 82, 523–527 (2006).
    [CrossRef]
  32. Y. Gan and J. K. Chen, “An atomic-level study of material ablation and spallation in ultrafast laser processing of gold films,” J. Appl. Phys. 108, 103102 (2010).
    [CrossRef]
  33. S. H. Ko, Y. Choi, D. J. Hwang, C. P. Grigoropoulosa, J. Chungb, and D. Poulikakos, “Nanosecond laser ablation of gold nanoparticle films,” Appl. Phys. Lett. 89, 141126 (2006).
    [CrossRef]
  34. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
  35. J. Marczak, A. Koss, P. Targowski, M. Góra, M. Strzelec, A. Sarzyński, W. Skrzeczanowski, R. Ostrowski, and A. Rycyk, “Characterization of laser cleaning of artworks,” Sensors 8, 6507–6548 (2008).
    [CrossRef]
  36. V. Popescu, I. Vida-Simiti, and N. Jumate, “The characteristics of gold films deposited on ceramic substrate,” Gold Bull. 38, 163–169 (2005).
    [CrossRef]
  37. P. N. Rao, M. H. Modi, and G. S. Lodha, “Optical properties of indium phosphide in the 50–200 Å wavelength region using a reflectivity technique,” Appl. Opt. 49, 5378–5383 (2010).
    [CrossRef]
  38. L. Nevot and P. Croce, “Characterisation of surfaces by grazing X-ray reflection application to the study of polishing some silicate glasses,” Rev. Phys. Appl. 15, 761–779 (1980).
    [CrossRef]
  39. L. G. Parratt, “Surface studies of solids by total reflection of x-rays,” Phys. Rev. 95, 359–369 (1954).
    [CrossRef]
  40. G. Vereecke, E. Rohr, and M. M. Heyns, “Influence of beam incidence angle on dry laser cleaning of surface particles,” Appl. Surf. Sci. 157, 67–73 (2000).
    [CrossRef]
  41. A. K. Nath, D. Hansdah, S. Roy, and A. R. Choudhury, “A study on laser drilling of thin steel sheet in air and underwater,” J. Appl. Phys. 107, 123103 (2010).
    [CrossRef]
  42. J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
    [CrossRef]
  43. B. Luk′yanchuk, Laser Cleaning (World Scientific, 2002).
  44. Y. F. Lu, W. D. Song, C. K. Tee, D. S. H. Chan, and T. S. Low, “Wavelength effects in the laser cleaning process,” Jpn. J. Appl. Phys. 37, 840–844 (1998).
    [CrossRef]
  45. E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Ultrafast ablation with high-pulse-rate lasers. Part I: theoretical considerations,” J. Appl. Phys. 85, 4213–4221 (1999).
    [CrossRef]
  46. B. H. Christensen, K. Vestentoft, and P. Balling, “Short-pulse ablation rates and the two temperature model,” Appl. Surf. Sci. 253, 6347–6352 (2007).
    [CrossRef]
  47. J.-Y. Natoli, L. Gallais, B. Bertussi, A. During, M. Commandré, J.-L. Rullier, F. Bonneau, and P. Combis, “Localized pulsed laser interaction with submicronic gold particles embedded in silica: a method for investigating laser damage initiation,” Opt. Express 11, 824–829 (2003).
    [CrossRef]
  48. K. G. Watkins, C. Curran, and J.-M. Lee, “Two new mechanisms for laser cleaning using Nd:YAG sources,” J. Cult. Herit. 4, 59–64 (2003).
    [CrossRef]
  49. M. H. Modi, G. S. Lodha, M. K. Tiwari, S. Rai, C. Mukharjee, P. Magudapathy, K. G. M. Nair, and R. V. Nandedkar, “Ion irradiation damage on tin side surface of float glass,” Nucl. Instrum. Methods Phys. Res., Sect. B 239, 383–390 (2005).
    [CrossRef]

2013 (3)

A. Singh, A. Choubey, M. H. Modi, B. N. Upadhyaya, S. M. Oak, G. S. Lodha, and S. K. Deb, “Cleaning of carbon layer from the gold films using a pulsed Nd:YAG laser,” Appl. Surf. Sci. 283, 612–616 (2013).
[CrossRef]

T. Ursby, J. Unge, R. Appio, D. T. Logan, F. Fredslund, C. Svensson, K. Larsson, A. Labrador, and M. M. G. M. Thunnissen, “The macromolecular crystallography beamline I911-3 at the MAX IV laboratory,” J. Synchrotron Radiat. 20, 648–653 (2013).
[CrossRef]

J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[CrossRef]

2012 (3)

A. Toyoshima, T. Kikuchi, H. Tanaka, J. Adachi, K. Mase, and K. Amemiya, “In situ removal of carbon contamination from optics in a vacuum ultraviolet and soft X-ray undulator beamline using oxygen activated by zeroth-order synchrotron radiation,” J. Synchrotron Radiat. 19, 722–727 (2012).
[CrossRef]

Y. Xi, B. Kou, H. Sun, J. Qi, J. Sun, J. Mohr, M. Börner, J. Zhao, L. X. Xu, T. Xiao, and Y. Wang, “X-ray grating interferometer for biomedical imaging applications at Shanghai synchrotron radiation facility,” J. Synchrotron Radiat. 19, 821–826 (2012).
[CrossRef]

Y. Ye, X. Yuan, X. Xiang, X. Cheng, and X. Miao, “Laser cleaning of particle and grease contaminations on the surface of optics,” Optik 123, 1056–1060 (2012).
[CrossRef]

2011 (1)

H. Garbacz, E. Fortuna-Zalesna, J. Marczak, A. Koss, A. Zatorska, G. Z. Zukowska, T. Onyszczuk, and K. J. Kurzydlowski, “Effect of laser treatment on the surface of copper alloys,” Appl. Surf. Sci. 257, 7369–7374 (2011).
[CrossRef]

2010 (6)

Kh. Gholivand, M. Khosravi, S. G. Hosseini, and M. Fathollahi, “A novel surface cleaning method for chemical removal of fouling lead layer from chromium surfaces,” Appl. Surf. Sci. 256, 7457–7461 (2010).
[CrossRef]

A. Yerokhin, A. Pilkington, and A. Matthews, “Pulse current plasma assisted electrolytic cleaning of AISI 4340 steel,” J. Mater. Process. Technol. 210, 54–63 (2010).
[CrossRef]

Y. Gan and J. K. Chen, “An atomic-level study of material ablation and spallation in ultrafast laser processing of gold films,” J. Appl. Phys. 108, 103102 (2010).
[CrossRef]

A. K. Nath, D. Hansdah, S. Roy, and A. R. Choudhury, “A study on laser drilling of thin steel sheet in air and underwater,” J. Appl. Phys. 107, 123103 (2010).
[CrossRef]

F. Barkusky, A. Bayer, S. Döring, P. Grossmann, and K. Mann, “Damage threshold measurements on EUV optics using focused radiation from a table-top laser produced plasma source,” Opt. Express 18, 4346–4355 (2010).
[CrossRef]

P. N. Rao, M. H. Modi, and G. S. Lodha, “Optical properties of indium phosphide in the 50–200 Å wavelength region using a reflectivity technique,” Appl. Opt. 49, 5378–5383 (2010).
[CrossRef]

2009 (2)

C. Tarrio, “Method for the characterization of extreme-ultraviolet photoresist outgassing,” J. Res. Natl. Inst. Stand. Technol. 114, 179–183 (2009).
[CrossRef]

M. P. Mateo, T. Ctvrtnickova, E. Fernandez, J. A. Ramos, A. Yanez, and G. Nicolas, “Laser cleaning of varnishes and contaminants on brass,” Appl. Surf. Sci. 255, 5579–5583 (2009).
[CrossRef]

2008 (3)

J. P. Nilaya, P. Raote, A. Kumar, and D. J. Biswas, “Laser-assisted decontamination—A wavelength dependent study,” Appl. Surf. Sci. 254, 7377–7380 (2008).
[CrossRef]

J. M. Koo, J. B. Lee, Y. J. Moon, W. C. Moon, and S. B. Jung, “Atmospheric pressure plasma cleaning of gold flip chip bump for ultrasonic flip chip bonding,” J. Phys. Conf. Ser. 100, 012034 (2008).
[CrossRef]

J. Marczak, A. Koss, P. Targowski, M. Góra, M. Strzelec, A. Sarzyński, W. Skrzeczanowski, R. Ostrowski, and A. Rycyk, “Characterization of laser cleaning of artworks,” Sensors 8, 6507–6548 (2008).
[CrossRef]

2007 (3)

L. Torrisi, A. Borrielli, and D. Margarone, “Study on the ablation threshold induced by pulsed lasers at different wavelengths,” Nucl. Instrum. Methods Phys. Res., Sect. B 255, 373–379 (2007).
[CrossRef]

N. N. Nedialkov, P. A. Atanasov, S. Amoruso, R. Bruzzese, and X. Wang, “Laser ablation of metals by femtosecond pulses: theoretical and experimental study,” Appl. Surf. Sci. 253, 7761–7766 (2007).
[CrossRef]

B. H. Christensen, K. Vestentoft, and P. Balling, “Short-pulse ablation rates and the two temperature model,” Appl. Surf. Sci. 253, 6347–6352 (2007).
[CrossRef]

2006 (3)

S. I. Kudryashov, S. D. Allen, S. Papernov, and A. W. Schmid, “Nanoscale laser-induced spallation in SiO2 films containing gold nanoparticles,” Appl. Phys. B 82, 523–527 (2006).
[CrossRef]

S. H. Ko, Y. Choi, D. J. Hwang, C. P. Grigoropoulosa, J. Chungb, and D. Poulikakos, “Nanosecond laser ablation of gold nanoparticle films,” Appl. Phys. Lett. 89, 141126 (2006).
[CrossRef]

J. Zhang, Y. Wang, P. Cheng, and Y. L. Yao, “Effect of pulsing parameters on laser ablative cleaning of copper oxides,” J. Appl. Phys. 99, 064902 (2006).
[CrossRef]

2005 (5)

T. X. Phuoc, “A comparative study of the photon pressure force, the photophoretic force, and the adhesion van der Waals force,” Opt. Commun. 245, 27–35 (2005).
[CrossRef]

C. Tarrio and S. Grantham, “Synchrotron beamline for extreme-ultraviolet multilayer mirror endurance testing,” Rev. Sci. Instrum. 76, 056101 (2005).
[CrossRef]

K. Raiber, A. Terfort, C. Benndorf, N. Krings, and H.-H. Strehblow, “Removal of self-assembled monolayers of alkanethiolates on gold by plasma cleaning,” Surf. Sci. 595, 56–63 (2005).
[CrossRef]

V. Popescu, I. Vida-Simiti, and N. Jumate, “The characteristics of gold films deposited on ceramic substrate,” Gold Bull. 38, 163–169 (2005).
[CrossRef]

M. H. Modi, G. S. Lodha, M. K. Tiwari, S. Rai, C. Mukharjee, P. Magudapathy, K. G. M. Nair, and R. V. Nandedkar, “Ion irradiation damage on tin side surface of float glass,” Nucl. Instrum. Methods Phys. Res., Sect. B 239, 383–390 (2005).
[CrossRef]

2003 (6)

J.-Y. Natoli, L. Gallais, B. Bertussi, A. During, M. Commandré, J.-L. Rullier, F. Bonneau, and P. Combis, “Localized pulsed laser interaction with submicronic gold particles embedded in silica: a method for investigating laser damage initiation,” Opt. Express 11, 824–829 (2003).
[CrossRef]

K. G. Watkins, C. Curran, and J.-M. Lee, “Two new mechanisms for laser cleaning using Nd:YAG sources,” J. Cult. Herit. 4, 59–64 (2003).
[CrossRef]

R. V. Nandedkar and K. J. S. Sawhney, “Status of Indus-1 and Indus-2 beamlines,” Nucl. Instrum. Methods Phys. Res., Sect. B 199, 541–545 (2003).
[CrossRef]

Y.-S. Lin, “A surface analysis on oxygen plasma-cleaned gold pattern-plated substrates for wire bond ability,” Surf. Coat. Technol. 173, 47–57 (2003).
[CrossRef]

P. Mazzinghi and F. Margheri, “A short pulse, free running, Nd:YAG laser for the cleaning of stone cultural heritage,” Opt. Lasers Eng. 39, 191–202 (2003).
[CrossRef]

N. Arnold, “Theoretical description of dry laser cleaning,” Appl. Surf. Sci. 208, 15–22 (2003).
[CrossRef]

2001 (1)

F. Eggenstein, F. Senf, T. Zeschke, and W. Gudat, “Cleaning of contaminated XUV-optics at BESSY II,” Nucl. Instrum. Methods Phys. Res., Sect. A 467, 325–328 (2001).
[CrossRef]

2000 (2)

V. V. Golovlev, M. J. Gresalfi, J. C. Miller, G. Romer, and P. Messier, “Laser characterization and cleaning of nineteenth century daguerreotypes,” J. Cult. Herit. 1, S139–S144 (2000).
[CrossRef]

G. Vereecke, E. Rohr, and M. M. Heyns, “Influence of beam incidence angle on dry laser cleaning of surface particles,” Appl. Surf. Sci. 157, 67–73 (2000).
[CrossRef]

1999 (1)

E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Ultrafast ablation with high-pulse-rate lasers. Part I: theoretical considerations,” J. Appl. Phys. 85, 4213–4221 (1999).
[CrossRef]

1998 (2)

Y. F. Lu, W. D. Song, C. K. Tee, D. S. H. Chan, and T. S. Low, “Wavelength effects in the laser cleaning process,” Jpn. J. Appl. Phys. 37, 840–844 (1998).
[CrossRef]

D. D. Bhawalkar, G. Singh, and R. V. Nandedkar, “Synchrotron radiation sources Indus I and Indus II,” Pramana 50, 467–484 (1998).
[CrossRef]

1992 (1)

A. C. Tam, W. P. Leung, W. Zapka, and W. Ziemlich, “Laser cleaning techniques for removal of surface particulates,” J. Appl. Phys. 71, 3515–3523 (1992).
[CrossRef]

1988 (1)

M. E. Couprie, M. Billardon, M. Velghe, C. Bazin, M. Bergher, H. Fang, J. M. Ortega, Y. Petrof, and R. Prazeres, “Optical properties of multilayer mirrors exposed to synchrotron radiation,” Nucl. Instrum. Methods Phys. Res., Sect. A 272, 166–173 (1988).
[CrossRef]

1980 (1)

L. Nevot and P. Croce, “Characterisation of surfaces by grazing X-ray reflection application to the study of polishing some silicate glasses,” Rev. Phys. Appl. 15, 761–779 (1980).
[CrossRef]

1973 (1)

K. Codling, “Applications of synchrotron radiation (ultraviolet spectral light source),” Rep. Prog. Phys. 36, 541–624 (1973).
[CrossRef]

1954 (1)

L. G. Parratt, “Surface studies of solids by total reflection of x-rays,” Phys. Rev. 95, 359–369 (1954).
[CrossRef]

Adachi, J.

A. Toyoshima, T. Kikuchi, H. Tanaka, J. Adachi, K. Mase, and K. Amemiya, “In situ removal of carbon contamination from optics in a vacuum ultraviolet and soft X-ray undulator beamline using oxygen activated by zeroth-order synchrotron radiation,” J. Synchrotron Radiat. 19, 722–727 (2012).
[CrossRef]

Allen, S. D.

S. I. Kudryashov, S. D. Allen, S. Papernov, and A. W. Schmid, “Nanoscale laser-induced spallation in SiO2 films containing gold nanoparticles,” Appl. Phys. B 82, 523–527 (2006).
[CrossRef]

Amemiya, K.

A. Toyoshima, T. Kikuchi, H. Tanaka, J. Adachi, K. Mase, and K. Amemiya, “In situ removal of carbon contamination from optics in a vacuum ultraviolet and soft X-ray undulator beamline using oxygen activated by zeroth-order synchrotron radiation,” J. Synchrotron Radiat. 19, 722–727 (2012).
[CrossRef]

Amoruso, S.

N. N. Nedialkov, P. A. Atanasov, S. Amoruso, R. Bruzzese, and X. Wang, “Laser ablation of metals by femtosecond pulses: theoretical and experimental study,” Appl. Surf. Sci. 253, 7761–7766 (2007).
[CrossRef]

Appio, R.

T. Ursby, J. Unge, R. Appio, D. T. Logan, F. Fredslund, C. Svensson, K. Larsson, A. Labrador, and M. M. G. M. Thunnissen, “The macromolecular crystallography beamline I911-3 at the MAX IV laboratory,” J. Synchrotron Radiat. 20, 648–653 (2013).
[CrossRef]

Arnold, N.

N. Arnold, “Theoretical description of dry laser cleaning,” Appl. Surf. Sci. 208, 15–22 (2003).
[CrossRef]

Atanasov, P. A.

N. N. Nedialkov, P. A. Atanasov, S. Amoruso, R. Bruzzese, and X. Wang, “Laser ablation of metals by femtosecond pulses: theoretical and experimental study,” Appl. Surf. Sci. 253, 7761–7766 (2007).
[CrossRef]

Balling, P.

B. H. Christensen, K. Vestentoft, and P. Balling, “Short-pulse ablation rates and the two temperature model,” Appl. Surf. Sci. 253, 6347–6352 (2007).
[CrossRef]

Barkusky, F.

Bayer, A.

Bazin, C.

M. E. Couprie, M. Billardon, M. Velghe, C. Bazin, M. Bergher, H. Fang, J. M. Ortega, Y. Petrof, and R. Prazeres, “Optical properties of multilayer mirrors exposed to synchrotron radiation,” Nucl. Instrum. Methods Phys. Res., Sect. A 272, 166–173 (1988).
[CrossRef]

Benndorf, C.

K. Raiber, A. Terfort, C. Benndorf, N. Krings, and H.-H. Strehblow, “Removal of self-assembled monolayers of alkanethiolates on gold by plasma cleaning,” Surf. Sci. 595, 56–63 (2005).
[CrossRef]

Bergher, M.

M. E. Couprie, M. Billardon, M. Velghe, C. Bazin, M. Bergher, H. Fang, J. M. Ortega, Y. Petrof, and R. Prazeres, “Optical properties of multilayer mirrors exposed to synchrotron radiation,” Nucl. Instrum. Methods Phys. Res., Sect. A 272, 166–173 (1988).
[CrossRef]

Bertussi, B.

Bhawalkar, D. D.

D. D. Bhawalkar, G. Singh, and R. V. Nandedkar, “Synchrotron radiation sources Indus I and Indus II,” Pramana 50, 467–484 (1998).
[CrossRef]

Billardon, M.

M. E. Couprie, M. Billardon, M. Velghe, C. Bazin, M. Bergher, H. Fang, J. M. Ortega, Y. Petrof, and R. Prazeres, “Optical properties of multilayer mirrors exposed to synchrotron radiation,” Nucl. Instrum. Methods Phys. Res., Sect. A 272, 166–173 (1988).
[CrossRef]

Biswas, D. J.

J. P. Nilaya, P. Raote, A. Kumar, and D. J. Biswas, “Laser-assisted decontamination—A wavelength dependent study,” Appl. Surf. Sci. 254, 7377–7380 (2008).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

Bonneau, F.

Börner, M.

Y. Xi, B. Kou, H. Sun, J. Qi, J. Sun, J. Mohr, M. Börner, J. Zhao, L. X. Xu, T. Xiao, and Y. Wang, “X-ray grating interferometer for biomedical imaging applications at Shanghai synchrotron radiation facility,” J. Synchrotron Radiat. 19, 821–826 (2012).
[CrossRef]

Borrielli, A.

L. Torrisi, A. Borrielli, and D. Margarone, “Study on the ablation threshold induced by pulsed lasers at different wavelengths,” Nucl. Instrum. Methods Phys. Res., Sect. B 255, 373–379 (2007).
[CrossRef]

Bruzzese, R.

N. N. Nedialkov, P. A. Atanasov, S. Amoruso, R. Bruzzese, and X. Wang, “Laser ablation of metals by femtosecond pulses: theoretical and experimental study,” Appl. Surf. Sci. 253, 7761–7766 (2007).
[CrossRef]

Chan, D. S. H.

Y. F. Lu, W. D. Song, C. K. Tee, D. S. H. Chan, and T. S. Low, “Wavelength effects in the laser cleaning process,” Jpn. J. Appl. Phys. 37, 840–844 (1998).
[CrossRef]

Chen, J. K.

Y. Gan and J. K. Chen, “An atomic-level study of material ablation and spallation in ultrafast laser processing of gold films,” J. Appl. Phys. 108, 103102 (2010).
[CrossRef]

Cheng, J.

J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[CrossRef]

Cheng, P.

J. Zhang, Y. Wang, P. Cheng, and Y. L. Yao, “Effect of pulsing parameters on laser ablative cleaning of copper oxides,” J. Appl. Phys. 99, 064902 (2006).
[CrossRef]

Cheng, X.

Y. Ye, X. Yuan, X. Xiang, X. Cheng, and X. Miao, “Laser cleaning of particle and grease contaminations on the surface of optics,” Optik 123, 1056–1060 (2012).
[CrossRef]

Choi, Y.

S. H. Ko, Y. Choi, D. J. Hwang, C. P. Grigoropoulosa, J. Chungb, and D. Poulikakos, “Nanosecond laser ablation of gold nanoparticle films,” Appl. Phys. Lett. 89, 141126 (2006).
[CrossRef]

Choubey, A.

A. Singh, A. Choubey, M. H. Modi, B. N. Upadhyaya, S. M. Oak, G. S. Lodha, and S. K. Deb, “Cleaning of carbon layer from the gold films using a pulsed Nd:YAG laser,” Appl. Surf. Sci. 283, 612–616 (2013).
[CrossRef]

Choudhury, A. R.

A. K. Nath, D. Hansdah, S. Roy, and A. R. Choudhury, “A study on laser drilling of thin steel sheet in air and underwater,” J. Appl. Phys. 107, 123103 (2010).
[CrossRef]

Christensen, B. H.

B. H. Christensen, K. Vestentoft, and P. Balling, “Short-pulse ablation rates and the two temperature model,” Appl. Surf. Sci. 253, 6347–6352 (2007).
[CrossRef]

Chungb, J.

S. H. Ko, Y. Choi, D. J. Hwang, C. P. Grigoropoulosa, J. Chungb, and D. Poulikakos, “Nanosecond laser ablation of gold nanoparticle films,” Appl. Phys. Lett. 89, 141126 (2006).
[CrossRef]

Codling, K.

K. Codling, “Applications of synchrotron radiation (ultraviolet spectral light source),” Rep. Prog. Phys. 36, 541–624 (1973).
[CrossRef]

Combis, P.

Commandré, M.

Couprie, M. E.

M. E. Couprie, M. Billardon, M. Velghe, C. Bazin, M. Bergher, H. Fang, J. M. Ortega, Y. Petrof, and R. Prazeres, “Optical properties of multilayer mirrors exposed to synchrotron radiation,” Nucl. Instrum. Methods Phys. Res., Sect. A 272, 166–173 (1988).
[CrossRef]

Croce, P.

L. Nevot and P. Croce, “Characterisation of surfaces by grazing X-ray reflection application to the study of polishing some silicate glasses,” Rev. Phys. Appl. 15, 761–779 (1980).
[CrossRef]

Ctvrtnickova, T.

M. P. Mateo, T. Ctvrtnickova, E. Fernandez, J. A. Ramos, A. Yanez, and G. Nicolas, “Laser cleaning of varnishes and contaminants on brass,” Appl. Surf. Sci. 255, 5579–5583 (2009).
[CrossRef]

Curran, C.

K. G. Watkins, C. Curran, and J.-M. Lee, “Two new mechanisms for laser cleaning using Nd:YAG sources,” J. Cult. Herit. 4, 59–64 (2003).
[CrossRef]

Dearden, G.

J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[CrossRef]

Deb, S. K.

A. Singh, A. Choubey, M. H. Modi, B. N. Upadhyaya, S. M. Oak, G. S. Lodha, and S. K. Deb, “Cleaning of carbon layer from the gold films using a pulsed Nd:YAG laser,” Appl. Surf. Sci. 283, 612–616 (2013).
[CrossRef]

Döring, S.

During, A.

Eggenstein, F.

F. Eggenstein, F. Senf, T. Zeschke, and W. Gudat, “Cleaning of contaminated XUV-optics at BESSY II,” Nucl. Instrum. Methods Phys. Res., Sect. A 467, 325–328 (2001).
[CrossRef]

Fang, H.

M. E. Couprie, M. Billardon, M. Velghe, C. Bazin, M. Bergher, H. Fang, J. M. Ortega, Y. Petrof, and R. Prazeres, “Optical properties of multilayer mirrors exposed to synchrotron radiation,” Nucl. Instrum. Methods Phys. Res., Sect. A 272, 166–173 (1988).
[CrossRef]

Fathollahi, M.

Kh. Gholivand, M. Khosravi, S. G. Hosseini, and M. Fathollahi, “A novel surface cleaning method for chemical removal of fouling lead layer from chromium surfaces,” Appl. Surf. Sci. 256, 7457–7461 (2010).
[CrossRef]

Fernandez, E.

M. P. Mateo, T. Ctvrtnickova, E. Fernandez, J. A. Ramos, A. Yanez, and G. Nicolas, “Laser cleaning of varnishes and contaminants on brass,” Appl. Surf. Sci. 255, 5579–5583 (2009).
[CrossRef]

Fortuna-Zalesna, E.

H. Garbacz, E. Fortuna-Zalesna, J. Marczak, A. Koss, A. Zatorska, G. Z. Zukowska, T. Onyszczuk, and K. J. Kurzydlowski, “Effect of laser treatment on the surface of copper alloys,” Appl. Surf. Sci. 257, 7369–7374 (2011).
[CrossRef]

Fredslund, F.

T. Ursby, J. Unge, R. Appio, D. T. Logan, F. Fredslund, C. Svensson, K. Larsson, A. Labrador, and M. M. G. M. Thunnissen, “The macromolecular crystallography beamline I911-3 at the MAX IV laboratory,” J. Synchrotron Radiat. 20, 648–653 (2013).
[CrossRef]

Gallais, L.

Gamaly, E. G.

E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Ultrafast ablation with high-pulse-rate lasers. Part I: theoretical considerations,” J. Appl. Phys. 85, 4213–4221 (1999).
[CrossRef]

Gan, Y.

Y. Gan and J. K. Chen, “An atomic-level study of material ablation and spallation in ultrafast laser processing of gold films,” J. Appl. Phys. 108, 103102 (2010).
[CrossRef]

Garbacz, H.

H. Garbacz, E. Fortuna-Zalesna, J. Marczak, A. Koss, A. Zatorska, G. Z. Zukowska, T. Onyszczuk, and K. J. Kurzydlowski, “Effect of laser treatment on the surface of copper alloys,” Appl. Surf. Sci. 257, 7369–7374 (2011).
[CrossRef]

Gholivand, Kh.

Kh. Gholivand, M. Khosravi, S. G. Hosseini, and M. Fathollahi, “A novel surface cleaning method for chemical removal of fouling lead layer from chromium surfaces,” Appl. Surf. Sci. 256, 7457–7461 (2010).
[CrossRef]

Golovlev, V. V.

V. V. Golovlev, M. J. Gresalfi, J. C. Miller, G. Romer, and P. Messier, “Laser characterization and cleaning of nineteenth century daguerreotypes,” J. Cult. Herit. 1, S139–S144 (2000).
[CrossRef]

Góra, M.

J. Marczak, A. Koss, P. Targowski, M. Góra, M. Strzelec, A. Sarzyński, W. Skrzeczanowski, R. Ostrowski, and A. Rycyk, “Characterization of laser cleaning of artworks,” Sensors 8, 6507–6548 (2008).
[CrossRef]

Grantham, S.

C. Tarrio and S. Grantham, “Synchrotron beamline for extreme-ultraviolet multilayer mirror endurance testing,” Rev. Sci. Instrum. 76, 056101 (2005).
[CrossRef]

Gresalfi, M. J.

V. V. Golovlev, M. J. Gresalfi, J. C. Miller, G. Romer, and P. Messier, “Laser characterization and cleaning of nineteenth century daguerreotypes,” J. Cult. Herit. 1, S139–S144 (2000).
[CrossRef]

Grigoropoulosa, C. P.

S. H. Ko, Y. Choi, D. J. Hwang, C. P. Grigoropoulosa, J. Chungb, and D. Poulikakos, “Nanosecond laser ablation of gold nanoparticle films,” Appl. Phys. Lett. 89, 141126 (2006).
[CrossRef]

Grossmann, P.

Gudat, W.

F. Eggenstein, F. Senf, T. Zeschke, and W. Gudat, “Cleaning of contaminated XUV-optics at BESSY II,” Nucl. Instrum. Methods Phys. Res., Sect. A 467, 325–328 (2001).
[CrossRef]

Hansdah, D.

A. K. Nath, D. Hansdah, S. Roy, and A. R. Choudhury, “A study on laser drilling of thin steel sheet in air and underwater,” J. Appl. Phys. 107, 123103 (2010).
[CrossRef]

Heyns, M. M.

G. Vereecke, E. Rohr, and M. M. Heyns, “Influence of beam incidence angle on dry laser cleaning of surface particles,” Appl. Surf. Sci. 157, 67–73 (2000).
[CrossRef]

Hosseini, S. G.

Kh. Gholivand, M. Khosravi, S. G. Hosseini, and M. Fathollahi, “A novel surface cleaning method for chemical removal of fouling lead layer from chromium surfaces,” Appl. Surf. Sci. 256, 7457–7461 (2010).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

Hwang, D. J.

S. H. Ko, Y. Choi, D. J. Hwang, C. P. Grigoropoulosa, J. Chungb, and D. Poulikakos, “Nanosecond laser ablation of gold nanoparticle films,” Appl. Phys. Lett. 89, 141126 (2006).
[CrossRef]

Iffländer, R.

R. Iffländer, Solid State Lasers for Material Processing, Springer Series in Optical Sciences (Springer-Verlag, 1990).

Jumate, N.

V. Popescu, I. Vida-Simiti, and N. Jumate, “The characteristics of gold films deposited on ceramic substrate,” Gold Bull. 38, 163–169 (2005).
[CrossRef]

Jung, S. B.

J. M. Koo, J. B. Lee, Y. J. Moon, W. C. Moon, and S. B. Jung, “Atmospheric pressure plasma cleaning of gold flip chip bump for ultrasonic flip chip bonding,” J. Phys. Conf. Ser. 100, 012034 (2008).
[CrossRef]

Khosravi, M.

Kh. Gholivand, M. Khosravi, S. G. Hosseini, and M. Fathollahi, “A novel surface cleaning method for chemical removal of fouling lead layer from chromium surfaces,” Appl. Surf. Sci. 256, 7457–7461 (2010).
[CrossRef]

Kikuchi, T.

A. Toyoshima, T. Kikuchi, H. Tanaka, J. Adachi, K. Mase, and K. Amemiya, “In situ removal of carbon contamination from optics in a vacuum ultraviolet and soft X-ray undulator beamline using oxygen activated by zeroth-order synchrotron radiation,” J. Synchrotron Radiat. 19, 722–727 (2012).
[CrossRef]

Ko, S. H.

S. H. Ko, Y. Choi, D. J. Hwang, C. P. Grigoropoulosa, J. Chungb, and D. Poulikakos, “Nanosecond laser ablation of gold nanoparticle films,” Appl. Phys. Lett. 89, 141126 (2006).
[CrossRef]

Koo, J. M.

J. M. Koo, J. B. Lee, Y. J. Moon, W. C. Moon, and S. B. Jung, “Atmospheric pressure plasma cleaning of gold flip chip bump for ultrasonic flip chip bonding,” J. Phys. Conf. Ser. 100, 012034 (2008).
[CrossRef]

Koss, A.

H. Garbacz, E. Fortuna-Zalesna, J. Marczak, A. Koss, A. Zatorska, G. Z. Zukowska, T. Onyszczuk, and K. J. Kurzydlowski, “Effect of laser treatment on the surface of copper alloys,” Appl. Surf. Sci. 257, 7369–7374 (2011).
[CrossRef]

J. Marczak, A. Koss, P. Targowski, M. Góra, M. Strzelec, A. Sarzyński, W. Skrzeczanowski, R. Ostrowski, and A. Rycyk, “Characterization of laser cleaning of artworks,” Sensors 8, 6507–6548 (2008).
[CrossRef]

Kou, B.

Y. Xi, B. Kou, H. Sun, J. Qi, J. Sun, J. Mohr, M. Börner, J. Zhao, L. X. Xu, T. Xiao, and Y. Wang, “X-ray grating interferometer for biomedical imaging applications at Shanghai synchrotron radiation facility,” J. Synchrotron Radiat. 19, 821–826 (2012).
[CrossRef]

Krings, N.

K. Raiber, A. Terfort, C. Benndorf, N. Krings, and H.-H. Strehblow, “Removal of self-assembled monolayers of alkanethiolates on gold by plasma cleaning,” Surf. Sci. 595, 56–63 (2005).
[CrossRef]

Kudryashov, S. I.

S. I. Kudryashov, S. D. Allen, S. Papernov, and A. W. Schmid, “Nanoscale laser-induced spallation in SiO2 films containing gold nanoparticles,” Appl. Phys. B 82, 523–527 (2006).
[CrossRef]

Kumar, A.

J. P. Nilaya, P. Raote, A. Kumar, and D. J. Biswas, “Laser-assisted decontamination—A wavelength dependent study,” Appl. Surf. Sci. 254, 7377–7380 (2008).
[CrossRef]

Kurzydlowski, K. J.

H. Garbacz, E. Fortuna-Zalesna, J. Marczak, A. Koss, A. Zatorska, G. Z. Zukowska, T. Onyszczuk, and K. J. Kurzydlowski, “Effect of laser treatment on the surface of copper alloys,” Appl. Surf. Sci. 257, 7369–7374 (2011).
[CrossRef]

Labrador, A.

T. Ursby, J. Unge, R. Appio, D. T. Logan, F. Fredslund, C. Svensson, K. Larsson, A. Labrador, and M. M. G. M. Thunnissen, “The macromolecular crystallography beamline I911-3 at the MAX IV laboratory,” J. Synchrotron Radiat. 20, 648–653 (2013).
[CrossRef]

Larsson, K.

T. Ursby, J. Unge, R. Appio, D. T. Logan, F. Fredslund, C. Svensson, K. Larsson, A. Labrador, and M. M. G. M. Thunnissen, “The macromolecular crystallography beamline I911-3 at the MAX IV laboratory,” J. Synchrotron Radiat. 20, 648–653 (2013).
[CrossRef]

Lee, J. B.

J. M. Koo, J. B. Lee, Y. J. Moon, W. C. Moon, and S. B. Jung, “Atmospheric pressure plasma cleaning of gold flip chip bump for ultrasonic flip chip bonding,” J. Phys. Conf. Ser. 100, 012034 (2008).
[CrossRef]

Lee, J.-M.

K. G. Watkins, C. Curran, and J.-M. Lee, “Two new mechanisms for laser cleaning using Nd:YAG sources,” J. Cult. Herit. 4, 59–64 (2003).
[CrossRef]

Leung, W. P.

A. C. Tam, W. P. Leung, W. Zapka, and W. Ziemlich, “Laser cleaning techniques for removal of surface particulates,” J. Appl. Phys. 71, 3515–3523 (1992).
[CrossRef]

Lin, Y.-S.

Y.-S. Lin, “A surface analysis on oxygen plasma-cleaned gold pattern-plated substrates for wire bond ability,” Surf. Coat. Technol. 173, 47–57 (2003).
[CrossRef]

Liu, C.-S.

J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[CrossRef]

Liu, D.

J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[CrossRef]

Lodha, G. S.

A. Singh, A. Choubey, M. H. Modi, B. N. Upadhyaya, S. M. Oak, G. S. Lodha, and S. K. Deb, “Cleaning of carbon layer from the gold films using a pulsed Nd:YAG laser,” Appl. Surf. Sci. 283, 612–616 (2013).
[CrossRef]

P. N. Rao, M. H. Modi, and G. S. Lodha, “Optical properties of indium phosphide in the 50–200 Å wavelength region using a reflectivity technique,” Appl. Opt. 49, 5378–5383 (2010).
[CrossRef]

M. H. Modi, G. S. Lodha, M. K. Tiwari, S. Rai, C. Mukharjee, P. Magudapathy, K. G. M. Nair, and R. V. Nandedkar, “Ion irradiation damage on tin side surface of float glass,” Nucl. Instrum. Methods Phys. Res., Sect. B 239, 383–390 (2005).
[CrossRef]

Logan, D. T.

T. Ursby, J. Unge, R. Appio, D. T. Logan, F. Fredslund, C. Svensson, K. Larsson, A. Labrador, and M. M. G. M. Thunnissen, “The macromolecular crystallography beamline I911-3 at the MAX IV laboratory,” J. Synchrotron Radiat. 20, 648–653 (2013).
[CrossRef]

Low, T. S.

Y. F. Lu, W. D. Song, C. K. Tee, D. S. H. Chan, and T. S. Low, “Wavelength effects in the laser cleaning process,” Jpn. J. Appl. Phys. 37, 840–844 (1998).
[CrossRef]

Lu, Y. F.

Y. F. Lu, W. D. Song, C. K. Tee, D. S. H. Chan, and T. S. Low, “Wavelength effects in the laser cleaning process,” Jpn. J. Appl. Phys. 37, 840–844 (1998).
[CrossRef]

Luk'yanchuk, B.

B. Luk′yanchuk, Laser Cleaning (World Scientific, 2002).

Luther-Davies, B.

E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Ultrafast ablation with high-pulse-rate lasers. Part I: theoretical considerations,” J. Appl. Phys. 85, 4213–4221 (1999).
[CrossRef]

Magudapathy, P.

M. H. Modi, G. S. Lodha, M. K. Tiwari, S. Rai, C. Mukharjee, P. Magudapathy, K. G. M. Nair, and R. V. Nandedkar, “Ion irradiation damage on tin side surface of float glass,” Nucl. Instrum. Methods Phys. Res., Sect. B 239, 383–390 (2005).
[CrossRef]

Mann, K.

Marczak, J.

H. Garbacz, E. Fortuna-Zalesna, J. Marczak, A. Koss, A. Zatorska, G. Z. Zukowska, T. Onyszczuk, and K. J. Kurzydlowski, “Effect of laser treatment on the surface of copper alloys,” Appl. Surf. Sci. 257, 7369–7374 (2011).
[CrossRef]

J. Marczak, A. Koss, P. Targowski, M. Góra, M. Strzelec, A. Sarzyński, W. Skrzeczanowski, R. Ostrowski, and A. Rycyk, “Characterization of laser cleaning of artworks,” Sensors 8, 6507–6548 (2008).
[CrossRef]

Margarone, D.

L. Torrisi, A. Borrielli, and D. Margarone, “Study on the ablation threshold induced by pulsed lasers at different wavelengths,” Nucl. Instrum. Methods Phys. Res., Sect. B 255, 373–379 (2007).
[CrossRef]

Margheri, F.

P. Mazzinghi and F. Margheri, “A short pulse, free running, Nd:YAG laser for the cleaning of stone cultural heritage,” Opt. Lasers Eng. 39, 191–202 (2003).
[CrossRef]

Mase, K.

A. Toyoshima, T. Kikuchi, H. Tanaka, J. Adachi, K. Mase, and K. Amemiya, “In situ removal of carbon contamination from optics in a vacuum ultraviolet and soft X-ray undulator beamline using oxygen activated by zeroth-order synchrotron radiation,” J. Synchrotron Radiat. 19, 722–727 (2012).
[CrossRef]

Mateo, M. P.

M. P. Mateo, T. Ctvrtnickova, E. Fernandez, J. A. Ramos, A. Yanez, and G. Nicolas, “Laser cleaning of varnishes and contaminants on brass,” Appl. Surf. Sci. 255, 5579–5583 (2009).
[CrossRef]

Matthews, A.

A. Yerokhin, A. Pilkington, and A. Matthews, “Pulse current plasma assisted electrolytic cleaning of AISI 4340 steel,” J. Mater. Process. Technol. 210, 54–63 (2010).
[CrossRef]

Mazzinghi, P.

P. Mazzinghi and F. Margheri, “A short pulse, free running, Nd:YAG laser for the cleaning of stone cultural heritage,” Opt. Lasers Eng. 39, 191–202 (2003).
[CrossRef]

Messier, P.

V. V. Golovlev, M. J. Gresalfi, J. C. Miller, G. Romer, and P. Messier, “Laser characterization and cleaning of nineteenth century daguerreotypes,” J. Cult. Herit. 1, S139–S144 (2000).
[CrossRef]

Miao, X.

Y. Ye, X. Yuan, X. Xiang, X. Cheng, and X. Miao, “Laser cleaning of particle and grease contaminations on the surface of optics,” Optik 123, 1056–1060 (2012).
[CrossRef]

Miller, J. C.

V. V. Golovlev, M. J. Gresalfi, J. C. Miller, G. Romer, and P. Messier, “Laser characterization and cleaning of nineteenth century daguerreotypes,” J. Cult. Herit. 1, S139–S144 (2000).
[CrossRef]

Modi, M. H.

A. Singh, A. Choubey, M. H. Modi, B. N. Upadhyaya, S. M. Oak, G. S. Lodha, and S. K. Deb, “Cleaning of carbon layer from the gold films using a pulsed Nd:YAG laser,” Appl. Surf. Sci. 283, 612–616 (2013).
[CrossRef]

P. N. Rao, M. H. Modi, and G. S. Lodha, “Optical properties of indium phosphide in the 50–200 Å wavelength region using a reflectivity technique,” Appl. Opt. 49, 5378–5383 (2010).
[CrossRef]

M. H. Modi, G. S. Lodha, M. K. Tiwari, S. Rai, C. Mukharjee, P. Magudapathy, K. G. M. Nair, and R. V. Nandedkar, “Ion irradiation damage on tin side surface of float glass,” Nucl. Instrum. Methods Phys. Res., Sect. B 239, 383–390 (2005).
[CrossRef]

Mohr, J.

Y. Xi, B. Kou, H. Sun, J. Qi, J. Sun, J. Mohr, M. Börner, J. Zhao, L. X. Xu, T. Xiao, and Y. Wang, “X-ray grating interferometer for biomedical imaging applications at Shanghai synchrotron radiation facility,” J. Synchrotron Radiat. 19, 821–826 (2012).
[CrossRef]

Moon, W. C.

J. M. Koo, J. B. Lee, Y. J. Moon, W. C. Moon, and S. B. Jung, “Atmospheric pressure plasma cleaning of gold flip chip bump for ultrasonic flip chip bonding,” J. Phys. Conf. Ser. 100, 012034 (2008).
[CrossRef]

Moon, Y. J.

J. M. Koo, J. B. Lee, Y. J. Moon, W. C. Moon, and S. B. Jung, “Atmospheric pressure plasma cleaning of gold flip chip bump for ultrasonic flip chip bonding,” J. Phys. Conf. Ser. 100, 012034 (2008).
[CrossRef]

Mukharjee, C.

M. H. Modi, G. S. Lodha, M. K. Tiwari, S. Rai, C. Mukharjee, P. Magudapathy, K. G. M. Nair, and R. V. Nandedkar, “Ion irradiation damage on tin side surface of float glass,” Nucl. Instrum. Methods Phys. Res., Sect. B 239, 383–390 (2005).
[CrossRef]

Nair, K. G. M.

M. H. Modi, G. S. Lodha, M. K. Tiwari, S. Rai, C. Mukharjee, P. Magudapathy, K. G. M. Nair, and R. V. Nandedkar, “Ion irradiation damage on tin side surface of float glass,” Nucl. Instrum. Methods Phys. Res., Sect. B 239, 383–390 (2005).
[CrossRef]

Nandedkar, R. V.

M. H. Modi, G. S. Lodha, M. K. Tiwari, S. Rai, C. Mukharjee, P. Magudapathy, K. G. M. Nair, and R. V. Nandedkar, “Ion irradiation damage on tin side surface of float glass,” Nucl. Instrum. Methods Phys. Res., Sect. B 239, 383–390 (2005).
[CrossRef]

R. V. Nandedkar and K. J. S. Sawhney, “Status of Indus-1 and Indus-2 beamlines,” Nucl. Instrum. Methods Phys. Res., Sect. B 199, 541–545 (2003).
[CrossRef]

D. D. Bhawalkar, G. Singh, and R. V. Nandedkar, “Synchrotron radiation sources Indus I and Indus II,” Pramana 50, 467–484 (1998).
[CrossRef]

Nath, A. K.

A. K. Nath, D. Hansdah, S. Roy, and A. R. Choudhury, “A study on laser drilling of thin steel sheet in air and underwater,” J. Appl. Phys. 107, 123103 (2010).
[CrossRef]

Natoli, J.-Y.

Nedialkov, N. N.

N. N. Nedialkov, P. A. Atanasov, S. Amoruso, R. Bruzzese, and X. Wang, “Laser ablation of metals by femtosecond pulses: theoretical and experimental study,” Appl. Surf. Sci. 253, 7761–7766 (2007).
[CrossRef]

Nevot, L.

L. Nevot and P. Croce, “Characterisation of surfaces by grazing X-ray reflection application to the study of polishing some silicate glasses,” Rev. Phys. Appl. 15, 761–779 (1980).
[CrossRef]

Nicolas, G.

M. P. Mateo, T. Ctvrtnickova, E. Fernandez, J. A. Ramos, A. Yanez, and G. Nicolas, “Laser cleaning of varnishes and contaminants on brass,” Appl. Surf. Sci. 255, 5579–5583 (2009).
[CrossRef]

Nilaya, J. P.

J. P. Nilaya, P. Raote, A. Kumar, and D. J. Biswas, “Laser-assisted decontamination—A wavelength dependent study,” Appl. Surf. Sci. 254, 7377–7380 (2008).
[CrossRef]

Oak, S. M.

A. Singh, A. Choubey, M. H. Modi, B. N. Upadhyaya, S. M. Oak, G. S. Lodha, and S. K. Deb, “Cleaning of carbon layer from the gold films using a pulsed Nd:YAG laser,” Appl. Surf. Sci. 283, 612–616 (2013).
[CrossRef]

Onyszczuk, T.

H. Garbacz, E. Fortuna-Zalesna, J. Marczak, A. Koss, A. Zatorska, G. Z. Zukowska, T. Onyszczuk, and K. J. Kurzydlowski, “Effect of laser treatment on the surface of copper alloys,” Appl. Surf. Sci. 257, 7369–7374 (2011).
[CrossRef]

Ortega, J. M.

M. E. Couprie, M. Billardon, M. Velghe, C. Bazin, M. Bergher, H. Fang, J. M. Ortega, Y. Petrof, and R. Prazeres, “Optical properties of multilayer mirrors exposed to synchrotron radiation,” Nucl. Instrum. Methods Phys. Res., Sect. A 272, 166–173 (1988).
[CrossRef]

Ostrowski, R.

J. Marczak, A. Koss, P. Targowski, M. Góra, M. Strzelec, A. Sarzyński, W. Skrzeczanowski, R. Ostrowski, and A. Rycyk, “Characterization of laser cleaning of artworks,” Sensors 8, 6507–6548 (2008).
[CrossRef]

Papernov, S.

S. I. Kudryashov, S. D. Allen, S. Papernov, and A. W. Schmid, “Nanoscale laser-induced spallation in SiO2 films containing gold nanoparticles,” Appl. Phys. B 82, 523–527 (2006).
[CrossRef]

Parratt, L. G.

L. G. Parratt, “Surface studies of solids by total reflection of x-rays,” Phys. Rev. 95, 359–369 (1954).
[CrossRef]

Perrie, W.

J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[CrossRef]

Petrof, Y.

M. E. Couprie, M. Billardon, M. Velghe, C. Bazin, M. Bergher, H. Fang, J. M. Ortega, Y. Petrof, and R. Prazeres, “Optical properties of multilayer mirrors exposed to synchrotron radiation,” Nucl. Instrum. Methods Phys. Res., Sect. A 272, 166–173 (1988).
[CrossRef]

Phuoc, T. X.

T. X. Phuoc, “A comparative study of the photon pressure force, the photophoretic force, and the adhesion van der Waals force,” Opt. Commun. 245, 27–35 (2005).
[CrossRef]

Pilkington, A.

A. Yerokhin, A. Pilkington, and A. Matthews, “Pulse current plasma assisted electrolytic cleaning of AISI 4340 steel,” J. Mater. Process. Technol. 210, 54–63 (2010).
[CrossRef]

Popescu, V.

V. Popescu, I. Vida-Simiti, and N. Jumate, “The characteristics of gold films deposited on ceramic substrate,” Gold Bull. 38, 163–169 (2005).
[CrossRef]

Poulikakos, D.

S. H. Ko, Y. Choi, D. J. Hwang, C. P. Grigoropoulosa, J. Chungb, and D. Poulikakos, “Nanosecond laser ablation of gold nanoparticle films,” Appl. Phys. Lett. 89, 141126 (2006).
[CrossRef]

Prazeres, R.

M. E. Couprie, M. Billardon, M. Velghe, C. Bazin, M. Bergher, H. Fang, J. M. Ortega, Y. Petrof, and R. Prazeres, “Optical properties of multilayer mirrors exposed to synchrotron radiation,” Nucl. Instrum. Methods Phys. Res., Sect. A 272, 166–173 (1988).
[CrossRef]

Qi, J.

Y. Xi, B. Kou, H. Sun, J. Qi, J. Sun, J. Mohr, M. Börner, J. Zhao, L. X. Xu, T. Xiao, and Y. Wang, “X-ray grating interferometer for biomedical imaging applications at Shanghai synchrotron radiation facility,” J. Synchrotron Radiat. 19, 821–826 (2012).
[CrossRef]

Rai, S.

M. H. Modi, G. S. Lodha, M. K. Tiwari, S. Rai, C. Mukharjee, P. Magudapathy, K. G. M. Nair, and R. V. Nandedkar, “Ion irradiation damage on tin side surface of float glass,” Nucl. Instrum. Methods Phys. Res., Sect. B 239, 383–390 (2005).
[CrossRef]

Raiber, K.

K. Raiber, A. Terfort, C. Benndorf, N. Krings, and H.-H. Strehblow, “Removal of self-assembled monolayers of alkanethiolates on gold by plasma cleaning,” Surf. Sci. 595, 56–63 (2005).
[CrossRef]

Ramos, J. A.

M. P. Mateo, T. Ctvrtnickova, E. Fernandez, J. A. Ramos, A. Yanez, and G. Nicolas, “Laser cleaning of varnishes and contaminants on brass,” Appl. Surf. Sci. 255, 5579–5583 (2009).
[CrossRef]

Rao, P. N.

Raote, P.

J. P. Nilaya, P. Raote, A. Kumar, and D. J. Biswas, “Laser-assisted decontamination—A wavelength dependent study,” Appl. Surf. Sci. 254, 7377–7380 (2008).
[CrossRef]

Rode, A. V.

E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Ultrafast ablation with high-pulse-rate lasers. Part I: theoretical considerations,” J. Appl. Phys. 85, 4213–4221 (1999).
[CrossRef]

Rohr, E.

G. Vereecke, E. Rohr, and M. M. Heyns, “Influence of beam incidence angle on dry laser cleaning of surface particles,” Appl. Surf. Sci. 157, 67–73 (2000).
[CrossRef]

Romer, G.

V. V. Golovlev, M. J. Gresalfi, J. C. Miller, G. Romer, and P. Messier, “Laser characterization and cleaning of nineteenth century daguerreotypes,” J. Cult. Herit. 1, S139–S144 (2000).
[CrossRef]

Roy, S.

A. K. Nath, D. Hansdah, S. Roy, and A. R. Choudhury, “A study on laser drilling of thin steel sheet in air and underwater,” J. Appl. Phys. 107, 123103 (2010).
[CrossRef]

Rullier, J.-L.

Rycyk, A.

J. Marczak, A. Koss, P. Targowski, M. Góra, M. Strzelec, A. Sarzyński, W. Skrzeczanowski, R. Ostrowski, and A. Rycyk, “Characterization of laser cleaning of artworks,” Sensors 8, 6507–6548 (2008).
[CrossRef]

Sarzynski, A.

J. Marczak, A. Koss, P. Targowski, M. Góra, M. Strzelec, A. Sarzyński, W. Skrzeczanowski, R. Ostrowski, and A. Rycyk, “Characterization of laser cleaning of artworks,” Sensors 8, 6507–6548 (2008).
[CrossRef]

Sawhney, K. J. S.

R. V. Nandedkar and K. J. S. Sawhney, “Status of Indus-1 and Indus-2 beamlines,” Nucl. Instrum. Methods Phys. Res., Sect. B 199, 541–545 (2003).
[CrossRef]

Schmid, A. W.

S. I. Kudryashov, S. D. Allen, S. Papernov, and A. W. Schmid, “Nanoscale laser-induced spallation in SiO2 films containing gold nanoparticles,” Appl. Phys. B 82, 523–527 (2006).
[CrossRef]

Senf, F.

F. Eggenstein, F. Senf, T. Zeschke, and W. Gudat, “Cleaning of contaminated XUV-optics at BESSY II,” Nucl. Instrum. Methods Phys. Res., Sect. A 467, 325–328 (2001).
[CrossRef]

Shang, S.

J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[CrossRef]

Singh, A.

A. Singh, A. Choubey, M. H. Modi, B. N. Upadhyaya, S. M. Oak, G. S. Lodha, and S. K. Deb, “Cleaning of carbon layer from the gold films using a pulsed Nd:YAG laser,” Appl. Surf. Sci. 283, 612–616 (2013).
[CrossRef]

Singh, G.

D. D. Bhawalkar, G. Singh, and R. V. Nandedkar, “Synchrotron radiation sources Indus I and Indus II,” Pramana 50, 467–484 (1998).
[CrossRef]

Skrzeczanowski, W.

J. Marczak, A. Koss, P. Targowski, M. Góra, M. Strzelec, A. Sarzyński, W. Skrzeczanowski, R. Ostrowski, and A. Rycyk, “Characterization of laser cleaning of artworks,” Sensors 8, 6507–6548 (2008).
[CrossRef]

Song, W. D.

Y. F. Lu, W. D. Song, C. K. Tee, D. S. H. Chan, and T. S. Low, “Wavelength effects in the laser cleaning process,” Jpn. J. Appl. Phys. 37, 840–844 (1998).
[CrossRef]

Strehblow, H.-H.

K. Raiber, A. Terfort, C. Benndorf, N. Krings, and H.-H. Strehblow, “Removal of self-assembled monolayers of alkanethiolates on gold by plasma cleaning,” Surf. Sci. 595, 56–63 (2005).
[CrossRef]

Strzelec, M.

J. Marczak, A. Koss, P. Targowski, M. Góra, M. Strzelec, A. Sarzyński, W. Skrzeczanowski, R. Ostrowski, and A. Rycyk, “Characterization of laser cleaning of artworks,” Sensors 8, 6507–6548 (2008).
[CrossRef]

Sun, H.

Y. Xi, B. Kou, H. Sun, J. Qi, J. Sun, J. Mohr, M. Börner, J. Zhao, L. X. Xu, T. Xiao, and Y. Wang, “X-ray grating interferometer for biomedical imaging applications at Shanghai synchrotron radiation facility,” J. Synchrotron Radiat. 19, 821–826 (2012).
[CrossRef]

Sun, J.

Y. Xi, B. Kou, H. Sun, J. Qi, J. Sun, J. Mohr, M. Börner, J. Zhao, L. X. Xu, T. Xiao, and Y. Wang, “X-ray grating interferometer for biomedical imaging applications at Shanghai synchrotron radiation facility,” J. Synchrotron Radiat. 19, 821–826 (2012).
[CrossRef]

Svensson, C.

T. Ursby, J. Unge, R. Appio, D. T. Logan, F. Fredslund, C. Svensson, K. Larsson, A. Labrador, and M. M. G. M. Thunnissen, “The macromolecular crystallography beamline I911-3 at the MAX IV laboratory,” J. Synchrotron Radiat. 20, 648–653 (2013).
[CrossRef]

Tam, A. C.

A. C. Tam, W. P. Leung, W. Zapka, and W. Ziemlich, “Laser cleaning techniques for removal of surface particulates,” J. Appl. Phys. 71, 3515–3523 (1992).
[CrossRef]

Tanaka, H.

A. Toyoshima, T. Kikuchi, H. Tanaka, J. Adachi, K. Mase, and K. Amemiya, “In situ removal of carbon contamination from optics in a vacuum ultraviolet and soft X-ray undulator beamline using oxygen activated by zeroth-order synchrotron radiation,” J. Synchrotron Radiat. 19, 722–727 (2012).
[CrossRef]

Targowski, P.

J. Marczak, A. Koss, P. Targowski, M. Góra, M. Strzelec, A. Sarzyński, W. Skrzeczanowski, R. Ostrowski, and A. Rycyk, “Characterization of laser cleaning of artworks,” Sensors 8, 6507–6548 (2008).
[CrossRef]

Tarrio, C.

C. Tarrio, “Method for the characterization of extreme-ultraviolet photoresist outgassing,” J. Res. Natl. Inst. Stand. Technol. 114, 179–183 (2009).
[CrossRef]

C. Tarrio and S. Grantham, “Synchrotron beamline for extreme-ultraviolet multilayer mirror endurance testing,” Rev. Sci. Instrum. 76, 056101 (2005).
[CrossRef]

Tee, C. K.

Y. F. Lu, W. D. Song, C. K. Tee, D. S. H. Chan, and T. S. Low, “Wavelength effects in the laser cleaning process,” Jpn. J. Appl. Phys. 37, 840–844 (1998).
[CrossRef]

Terfort, A.

K. Raiber, A. Terfort, C. Benndorf, N. Krings, and H.-H. Strehblow, “Removal of self-assembled monolayers of alkanethiolates on gold by plasma cleaning,” Surf. Sci. 595, 56–63 (2005).
[CrossRef]

Thunnissen, M. M. G. M.

T. Ursby, J. Unge, R. Appio, D. T. Logan, F. Fredslund, C. Svensson, K. Larsson, A. Labrador, and M. M. G. M. Thunnissen, “The macromolecular crystallography beamline I911-3 at the MAX IV laboratory,” J. Synchrotron Radiat. 20, 648–653 (2013).
[CrossRef]

Tiwari, M. K.

M. H. Modi, G. S. Lodha, M. K. Tiwari, S. Rai, C. Mukharjee, P. Magudapathy, K. G. M. Nair, and R. V. Nandedkar, “Ion irradiation damage on tin side surface of float glass,” Nucl. Instrum. Methods Phys. Res., Sect. B 239, 383–390 (2005).
[CrossRef]

Torrisi, L.

L. Torrisi, A. Borrielli, and D. Margarone, “Study on the ablation threshold induced by pulsed lasers at different wavelengths,” Nucl. Instrum. Methods Phys. Res., Sect. B 255, 373–379 (2007).
[CrossRef]

Toyoshima, A.

A. Toyoshima, T. Kikuchi, H. Tanaka, J. Adachi, K. Mase, and K. Amemiya, “In situ removal of carbon contamination from optics in a vacuum ultraviolet and soft X-ray undulator beamline using oxygen activated by zeroth-order synchrotron radiation,” J. Synchrotron Radiat. 19, 722–727 (2012).
[CrossRef]

Unge, J.

T. Ursby, J. Unge, R. Appio, D. T. Logan, F. Fredslund, C. Svensson, K. Larsson, A. Labrador, and M. M. G. M. Thunnissen, “The macromolecular crystallography beamline I911-3 at the MAX IV laboratory,” J. Synchrotron Radiat. 20, 648–653 (2013).
[CrossRef]

Upadhyaya, B. N.

A. Singh, A. Choubey, M. H. Modi, B. N. Upadhyaya, S. M. Oak, G. S. Lodha, and S. K. Deb, “Cleaning of carbon layer from the gold films using a pulsed Nd:YAG laser,” Appl. Surf. Sci. 283, 612–616 (2013).
[CrossRef]

Ursby, T.

T. Ursby, J. Unge, R. Appio, D. T. Logan, F. Fredslund, C. Svensson, K. Larsson, A. Labrador, and M. M. G. M. Thunnissen, “The macromolecular crystallography beamline I911-3 at the MAX IV laboratory,” J. Synchrotron Radiat. 20, 648–653 (2013).
[CrossRef]

Velghe, M.

M. E. Couprie, M. Billardon, M. Velghe, C. Bazin, M. Bergher, H. Fang, J. M. Ortega, Y. Petrof, and R. Prazeres, “Optical properties of multilayer mirrors exposed to synchrotron radiation,” Nucl. Instrum. Methods Phys. Res., Sect. A 272, 166–173 (1988).
[CrossRef]

Vereecke, G.

G. Vereecke, E. Rohr, and M. M. Heyns, “Influence of beam incidence angle on dry laser cleaning of surface particles,” Appl. Surf. Sci. 157, 67–73 (2000).
[CrossRef]

Vestentoft, K.

B. H. Christensen, K. Vestentoft, and P. Balling, “Short-pulse ablation rates and the two temperature model,” Appl. Surf. Sci. 253, 6347–6352 (2007).
[CrossRef]

Vida-Simiti, I.

V. Popescu, I. Vida-Simiti, and N. Jumate, “The characteristics of gold films deposited on ceramic substrate,” Gold Bull. 38, 163–169 (2005).
[CrossRef]

Wang, X.

N. N. Nedialkov, P. A. Atanasov, S. Amoruso, R. Bruzzese, and X. Wang, “Laser ablation of metals by femtosecond pulses: theoretical and experimental study,” Appl. Surf. Sci. 253, 7761–7766 (2007).
[CrossRef]

Wang, Y.

Y. Xi, B. Kou, H. Sun, J. Qi, J. Sun, J. Mohr, M. Börner, J. Zhao, L. X. Xu, T. Xiao, and Y. Wang, “X-ray grating interferometer for biomedical imaging applications at Shanghai synchrotron radiation facility,” J. Synchrotron Radiat. 19, 821–826 (2012).
[CrossRef]

J. Zhang, Y. Wang, P. Cheng, and Y. L. Yao, “Effect of pulsing parameters on laser ablative cleaning of copper oxides,” J. Appl. Phys. 99, 064902 (2006).
[CrossRef]

Watkins, K.

J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[CrossRef]

Watkins, K. G.

K. G. Watkins, C. Curran, and J.-M. Lee, “Two new mechanisms for laser cleaning using Nd:YAG sources,” J. Cult. Herit. 4, 59–64 (2003).
[CrossRef]

Xi, Y.

Y. Xi, B. Kou, H. Sun, J. Qi, J. Sun, J. Mohr, M. Börner, J. Zhao, L. X. Xu, T. Xiao, and Y. Wang, “X-ray grating interferometer for biomedical imaging applications at Shanghai synchrotron radiation facility,” J. Synchrotron Radiat. 19, 821–826 (2012).
[CrossRef]

Xiang, X.

Y. Ye, X. Yuan, X. Xiang, X. Cheng, and X. Miao, “Laser cleaning of particle and grease contaminations on the surface of optics,” Optik 123, 1056–1060 (2012).
[CrossRef]

Xiao, T.

Y. Xi, B. Kou, H. Sun, J. Qi, J. Sun, J. Mohr, M. Börner, J. Zhao, L. X. Xu, T. Xiao, and Y. Wang, “X-ray grating interferometer for biomedical imaging applications at Shanghai synchrotron radiation facility,” J. Synchrotron Radiat. 19, 821–826 (2012).
[CrossRef]

Xu, L. X.

Y. Xi, B. Kou, H. Sun, J. Qi, J. Sun, J. Mohr, M. Börner, J. Zhao, L. X. Xu, T. Xiao, and Y. Wang, “X-ray grating interferometer for biomedical imaging applications at Shanghai synchrotron radiation facility,” J. Synchrotron Radiat. 19, 821–826 (2012).
[CrossRef]

Yanez, A.

M. P. Mateo, T. Ctvrtnickova, E. Fernandez, J. A. Ramos, A. Yanez, and G. Nicolas, “Laser cleaning of varnishes and contaminants on brass,” Appl. Surf. Sci. 255, 5579–5583 (2009).
[CrossRef]

Yao, Y. L.

J. Zhang, Y. Wang, P. Cheng, and Y. L. Yao, “Effect of pulsing parameters on laser ablative cleaning of copper oxides,” J. Appl. Phys. 99, 064902 (2006).
[CrossRef]

Ye, Y.

Y. Ye, X. Yuan, X. Xiang, X. Cheng, and X. Miao, “Laser cleaning of particle and grease contaminations on the surface of optics,” Optik 123, 1056–1060 (2012).
[CrossRef]

Yerokhin, A.

A. Yerokhin, A. Pilkington, and A. Matthews, “Pulse current plasma assisted electrolytic cleaning of AISI 4340 steel,” J. Mater. Process. Technol. 210, 54–63 (2010).
[CrossRef]

Yuan, X.

Y. Ye, X. Yuan, X. Xiang, X. Cheng, and X. Miao, “Laser cleaning of particle and grease contaminations on the surface of optics,” Optik 123, 1056–1060 (2012).
[CrossRef]

Zapka, W.

A. C. Tam, W. P. Leung, W. Zapka, and W. Ziemlich, “Laser cleaning techniques for removal of surface particulates,” J. Appl. Phys. 71, 3515–3523 (1992).
[CrossRef]

Zatorska, A.

H. Garbacz, E. Fortuna-Zalesna, J. Marczak, A. Koss, A. Zatorska, G. Z. Zukowska, T. Onyszczuk, and K. J. Kurzydlowski, “Effect of laser treatment on the surface of copper alloys,” Appl. Surf. Sci. 257, 7369–7374 (2011).
[CrossRef]

Zeschke, T.

F. Eggenstein, F. Senf, T. Zeschke, and W. Gudat, “Cleaning of contaminated XUV-optics at BESSY II,” Nucl. Instrum. Methods Phys. Res., Sect. A 467, 325–328 (2001).
[CrossRef]

Zhang, J.

J. Zhang, Y. Wang, P. Cheng, and Y. L. Yao, “Effect of pulsing parameters on laser ablative cleaning of copper oxides,” J. Appl. Phys. 99, 064902 (2006).
[CrossRef]

Zhao, J.

Y. Xi, B. Kou, H. Sun, J. Qi, J. Sun, J. Mohr, M. Börner, J. Zhao, L. X. Xu, T. Xiao, and Y. Wang, “X-ray grating interferometer for biomedical imaging applications at Shanghai synchrotron radiation facility,” J. Synchrotron Radiat. 19, 821–826 (2012).
[CrossRef]

Ziemlich, W.

A. C. Tam, W. P. Leung, W. Zapka, and W. Ziemlich, “Laser cleaning techniques for removal of surface particulates,” J. Appl. Phys. 71, 3515–3523 (1992).
[CrossRef]

Zukowska, G. Z.

H. Garbacz, E. Fortuna-Zalesna, J. Marczak, A. Koss, A. Zatorska, G. Z. Zukowska, T. Onyszczuk, and K. J. Kurzydlowski, “Effect of laser treatment on the surface of copper alloys,” Appl. Surf. Sci. 257, 7369–7374 (2011).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

S. I. Kudryashov, S. D. Allen, S. Papernov, and A. W. Schmid, “Nanoscale laser-induced spallation in SiO2 films containing gold nanoparticles,” Appl. Phys. B 82, 523–527 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

S. H. Ko, Y. Choi, D. J. Hwang, C. P. Grigoropoulosa, J. Chungb, and D. Poulikakos, “Nanosecond laser ablation of gold nanoparticle films,” Appl. Phys. Lett. 89, 141126 (2006).
[CrossRef]

Appl. Surf. Sci. (9)

G. Vereecke, E. Rohr, and M. M. Heyns, “Influence of beam incidence angle on dry laser cleaning of surface particles,” Appl. Surf. Sci. 157, 67–73 (2000).
[CrossRef]

Kh. Gholivand, M. Khosravi, S. G. Hosseini, and M. Fathollahi, “A novel surface cleaning method for chemical removal of fouling lead layer from chromium surfaces,” Appl. Surf. Sci. 256, 7457–7461 (2010).
[CrossRef]

A. Singh, A. Choubey, M. H. Modi, B. N. Upadhyaya, S. M. Oak, G. S. Lodha, and S. K. Deb, “Cleaning of carbon layer from the gold films using a pulsed Nd:YAG laser,” Appl. Surf. Sci. 283, 612–616 (2013).
[CrossRef]

M. P. Mateo, T. Ctvrtnickova, E. Fernandez, J. A. Ramos, A. Yanez, and G. Nicolas, “Laser cleaning of varnishes and contaminants on brass,” Appl. Surf. Sci. 255, 5579–5583 (2009).
[CrossRef]

H. Garbacz, E. Fortuna-Zalesna, J. Marczak, A. Koss, A. Zatorska, G. Z. Zukowska, T. Onyszczuk, and K. J. Kurzydlowski, “Effect of laser treatment on the surface of copper alloys,” Appl. Surf. Sci. 257, 7369–7374 (2011).
[CrossRef]

N. Arnold, “Theoretical description of dry laser cleaning,” Appl. Surf. Sci. 208, 15–22 (2003).
[CrossRef]

J. P. Nilaya, P. Raote, A. Kumar, and D. J. Biswas, “Laser-assisted decontamination—A wavelength dependent study,” Appl. Surf. Sci. 254, 7377–7380 (2008).
[CrossRef]

N. N. Nedialkov, P. A. Atanasov, S. Amoruso, R. Bruzzese, and X. Wang, “Laser ablation of metals by femtosecond pulses: theoretical and experimental study,” Appl. Surf. Sci. 253, 7761–7766 (2007).
[CrossRef]

B. H. Christensen, K. Vestentoft, and P. Balling, “Short-pulse ablation rates and the two temperature model,” Appl. Surf. Sci. 253, 6347–6352 (2007).
[CrossRef]

Gold Bull. (1)

V. Popescu, I. Vida-Simiti, and N. Jumate, “The characteristics of gold films deposited on ceramic substrate,” Gold Bull. 38, 163–169 (2005).
[CrossRef]

J. Appl. Phys. (5)

Y. Gan and J. K. Chen, “An atomic-level study of material ablation and spallation in ultrafast laser processing of gold films,” J. Appl. Phys. 108, 103102 (2010).
[CrossRef]

A. K. Nath, D. Hansdah, S. Roy, and A. R. Choudhury, “A study on laser drilling of thin steel sheet in air and underwater,” J. Appl. Phys. 107, 123103 (2010).
[CrossRef]

J. Zhang, Y. Wang, P. Cheng, and Y. L. Yao, “Effect of pulsing parameters on laser ablative cleaning of copper oxides,” J. Appl. Phys. 99, 064902 (2006).
[CrossRef]

A. C. Tam, W. P. Leung, W. Zapka, and W. Ziemlich, “Laser cleaning techniques for removal of surface particulates,” J. Appl. Phys. 71, 3515–3523 (1992).
[CrossRef]

E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Ultrafast ablation with high-pulse-rate lasers. Part I: theoretical considerations,” J. Appl. Phys. 85, 4213–4221 (1999).
[CrossRef]

J. Cult. Herit. (2)

K. G. Watkins, C. Curran, and J.-M. Lee, “Two new mechanisms for laser cleaning using Nd:YAG sources,” J. Cult. Herit. 4, 59–64 (2003).
[CrossRef]

V. V. Golovlev, M. J. Gresalfi, J. C. Miller, G. Romer, and P. Messier, “Laser characterization and cleaning of nineteenth century daguerreotypes,” J. Cult. Herit. 1, S139–S144 (2000).
[CrossRef]

J. Mater. Process. Technol. (1)

A. Yerokhin, A. Pilkington, and A. Matthews, “Pulse current plasma assisted electrolytic cleaning of AISI 4340 steel,” J. Mater. Process. Technol. 210, 54–63 (2010).
[CrossRef]

J. Phys. Conf. Ser. (1)

J. M. Koo, J. B. Lee, Y. J. Moon, W. C. Moon, and S. B. Jung, “Atmospheric pressure plasma cleaning of gold flip chip bump for ultrasonic flip chip bonding,” J. Phys. Conf. Ser. 100, 012034 (2008).
[CrossRef]

J. Res. Natl. Inst. Stand. Technol. (1)

C. Tarrio, “Method for the characterization of extreme-ultraviolet photoresist outgassing,” J. Res. Natl. Inst. Stand. Technol. 114, 179–183 (2009).
[CrossRef]

J. Synchrotron Radiat. (3)

T. Ursby, J. Unge, R. Appio, D. T. Logan, F. Fredslund, C. Svensson, K. Larsson, A. Labrador, and M. M. G. M. Thunnissen, “The macromolecular crystallography beamline I911-3 at the MAX IV laboratory,” J. Synchrotron Radiat. 20, 648–653 (2013).
[CrossRef]

Y. Xi, B. Kou, H. Sun, J. Qi, J. Sun, J. Mohr, M. Börner, J. Zhao, L. X. Xu, T. Xiao, and Y. Wang, “X-ray grating interferometer for biomedical imaging applications at Shanghai synchrotron radiation facility,” J. Synchrotron Radiat. 19, 821–826 (2012).
[CrossRef]

A. Toyoshima, T. Kikuchi, H. Tanaka, J. Adachi, K. Mase, and K. Amemiya, “In situ removal of carbon contamination from optics in a vacuum ultraviolet and soft X-ray undulator beamline using oxygen activated by zeroth-order synchrotron radiation,” J. Synchrotron Radiat. 19, 722–727 (2012).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. F. Lu, W. D. Song, C. K. Tee, D. S. H. Chan, and T. S. Low, “Wavelength effects in the laser cleaning process,” Jpn. J. Appl. Phys. 37, 840–844 (1998).
[CrossRef]

Nucl. Instrum. Methods Phys. Res., Sect. A (2)

M. E. Couprie, M. Billardon, M. Velghe, C. Bazin, M. Bergher, H. Fang, J. M. Ortega, Y. Petrof, and R. Prazeres, “Optical properties of multilayer mirrors exposed to synchrotron radiation,” Nucl. Instrum. Methods Phys. Res., Sect. A 272, 166–173 (1988).
[CrossRef]

F. Eggenstein, F. Senf, T. Zeschke, and W. Gudat, “Cleaning of contaminated XUV-optics at BESSY II,” Nucl. Instrum. Methods Phys. Res., Sect. A 467, 325–328 (2001).
[CrossRef]

Nucl. Instrum. Methods Phys. Res., Sect. B (3)

L. Torrisi, A. Borrielli, and D. Margarone, “Study on the ablation threshold induced by pulsed lasers at different wavelengths,” Nucl. Instrum. Methods Phys. Res., Sect. B 255, 373–379 (2007).
[CrossRef]

R. V. Nandedkar and K. J. S. Sawhney, “Status of Indus-1 and Indus-2 beamlines,” Nucl. Instrum. Methods Phys. Res., Sect. B 199, 541–545 (2003).
[CrossRef]

M. H. Modi, G. S. Lodha, M. K. Tiwari, S. Rai, C. Mukharjee, P. Magudapathy, K. G. M. Nair, and R. V. Nandedkar, “Ion irradiation damage on tin side surface of float glass,” Nucl. Instrum. Methods Phys. Res., Sect. B 239, 383–390 (2005).
[CrossRef]

Opt. Commun. (1)

T. X. Phuoc, “A comparative study of the photon pressure force, the photophoretic force, and the adhesion van der Waals force,” Opt. Commun. 245, 27–35 (2005).
[CrossRef]

Opt. Express (2)

Opt. Laser Technol. (1)

J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[CrossRef]

Opt. Lasers Eng. (1)

P. Mazzinghi and F. Margheri, “A short pulse, free running, Nd:YAG laser for the cleaning of stone cultural heritage,” Opt. Lasers Eng. 39, 191–202 (2003).
[CrossRef]

Optik (1)

Y. Ye, X. Yuan, X. Xiang, X. Cheng, and X. Miao, “Laser cleaning of particle and grease contaminations on the surface of optics,” Optik 123, 1056–1060 (2012).
[CrossRef]

Phys. Rev. (1)

L. G. Parratt, “Surface studies of solids by total reflection of x-rays,” Phys. Rev. 95, 359–369 (1954).
[CrossRef]

Pramana (1)

D. D. Bhawalkar, G. Singh, and R. V. Nandedkar, “Synchrotron radiation sources Indus I and Indus II,” Pramana 50, 467–484 (1998).
[CrossRef]

Rep. Prog. Phys. (1)

K. Codling, “Applications of synchrotron radiation (ultraviolet spectral light source),” Rep. Prog. Phys. 36, 541–624 (1973).
[CrossRef]

Rev. Phys. Appl. (1)

L. Nevot and P. Croce, “Characterisation of surfaces by grazing X-ray reflection application to the study of polishing some silicate glasses,” Rev. Phys. Appl. 15, 761–779 (1980).
[CrossRef]

Rev. Sci. Instrum. (1)

C. Tarrio and S. Grantham, “Synchrotron beamline for extreme-ultraviolet multilayer mirror endurance testing,” Rev. Sci. Instrum. 76, 056101 (2005).
[CrossRef]

Sensors (1)

J. Marczak, A. Koss, P. Targowski, M. Góra, M. Strzelec, A. Sarzyński, W. Skrzeczanowski, R. Ostrowski, and A. Rycyk, “Characterization of laser cleaning of artworks,” Sensors 8, 6507–6548 (2008).
[CrossRef]

Surf. Coat. Technol. (1)

Y.-S. Lin, “A surface analysis on oxygen plasma-cleaned gold pattern-plated substrates for wire bond ability,” Surf. Coat. Technol. 173, 47–57 (2003).
[CrossRef]

Surf. Sci. (1)

K. Raiber, A. Terfort, C. Benndorf, N. Krings, and H.-H. Strehblow, “Removal of self-assembled monolayers of alkanethiolates on gold by plasma cleaning,” Surf. Sci. 595, 56–63 (2005).
[CrossRef]

Other (3)

R. Iffländer, Solid State Lasers for Material Processing, Springer Series in Optical Sciences (Springer-Verlag, 1990).

B. Luk′yanchuk, Laser Cleaning (World Scientific, 2002).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic of experimental setup. 1, laser pump chamber; 2, AO Q switch; 3, X–Y scanner; 4, flat field lens; 5–6, optical windows; 7, sample; 8, tilting screws; 9, suction system.

Fig. 2.
Fig. 2.

View of laser-cleaned, gold-coated mirror in selected areas.

Fig. 3.
Fig. 3.

Variation of ablation depth as a function of laser fluence for single pass of 100ns duration pulses.

Fig. 4.
Fig. 4.

Plot of cleaning efficiency versus laser fluence for the single laser pass.

Fig. 5.
Fig. 5.

SEM image of single laser pass cleaned surface of the sample. Upper part shows cleaning in the presence of the suction system, and lower part shows image of the cleaned surface without the suction system.

Fig. 6.
Fig. 6.

(a) Microscope image of the cleaned surface when it was cleaned from the front surface. The upper part shows a good cleaned surface and the lower part shows gold-coated, uncleaned surface for comparison. (b) Microscope image of the cleaned surface when it was cleaned from the rear surface. Some gold particles remain on the cleaned surface (upper part), and the lower part shows gold-coated, uncleaned surface for comparison.

Fig. 7.
Fig. 7.

Variation of gold layer cleaning efficiency as a function of angle of incidence.

Fig. 8.
Fig. 8.

Optical microscope image showing the difference in cleaned layer for the normal incidence (left) and cleaned layer at 30° angle of incidence (right) with single pass of laser beam.

Fig. 9.
Fig. 9.

Soft x-ray reflectivity spectra of the sample before and after gold layer cleaning using 130 Å wavelength. Open circles represent the experimental data whereas continuous lines are corresponding to the best fit obtained using parameters given in Table 3. Curves are vertically shifted in the y axis for clarity. The vertical lines mark positions of the critical angle for Au film and fused silica substrate.

Fig. 10.
Fig. 10.

XPS spectrum of the gold layer shows that the peaks of gold disappear after the laser cleaning process.

Tables (3)

Tables Icon

Table 1. Specifications of the Nanosecond Pulse Duration Nd:YAG Laser Used for the Gold Layer Cleaning

Tables Icon

Table 2. Thermophysical Parameters of Gold (Deposition) and Fused Silica (Substrate) of Sample Mirror [27]

Tables Icon

Table 3. Angle-Dependent Reflectivity Measurements Data of Gold Coated Mirror Sample before and after Cleaning. (for 0° to 70° Incident Angle and 13 nm Wavelength of Soft X-ray)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ΔT=AFaCpρld=AIatpCpρld,
Ts(t)T0=[2aI/K]·(kt/π)1/2,
ηN1(1η)NL.
RevapIaεb,
d=1αp·ln(FFth),
v=(1P/100)·(S×R),

Metrics