Abstract

A simple photonic approach to generate ultrawideband (UWB) pulse signals utilizing a gain-switched semiconductor laser with optical feedback is proposed and demonstrated. The RF spectrum of the generated chaotic UWB signals has a 10dB bandwidth of 9 GHz and central frequency of 6.6 GHz (fractional bandwidth of 155%), which is consistent with the Federal Communications Commission indoor mask. The central frequency and 10dB bandwidth can be tuned by adjusting the bias current and feedback strength of the semiconductor laser. After transmission through a 30 km single-mode fiber, the spectrum shape of the chaotic UWB signals is almost unaffected by the chromatic dispersion of the fiber.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36–47 (2003).
    [CrossRef]
  2. S. Roy, J. R. Foerster, V. S. Somayazulu, and D. G. Leeper, “Ultrawideband radio design: the promise of high-speed, short-range wireless connectivity,” Proc. IEEE 92, 295–311 (2004).
    [CrossRef]
  3. D. Grodensky, D. Kravitz, and A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24, 839–841 (2012).
  4. J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25, 3219–3235 (2007).
    [CrossRef]
  5. S. L. Pan and J. P. Yao, “Optical generation of polarity- and shape-switchable ultrawideband pulses using a chirped intensity modulator and a first-order asymmetric Mach-Zehnder interferometer,” Opt. Lett. 34, 1312–1314 (2009).
    [CrossRef]
  6. F. Liu, T. Wang, Z. Zhang, M. Qiu, and Y. Su, “On-chip photonic generation of ultra-wideband monocycle pulses,” Electron. Lett. 45, 1247–1249 (2009).
    [CrossRef]
  7. Y. Yuan, J. J. Dong, X. Li, and X. L. Zhang, “Ultra-wideband generation based on cascaded Mach-Zehnder modulators,” IEEE Photonics Technol. Lett. 23, 1754–1756 (2011).
    [CrossRef]
  8. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express 17, 5023–5032 (2009).
    [CrossRef]
  9. F. Z. Zhang, J. Wu, S. N. Fu, Y. Li, X. B. Hong, P. Shum, and J. T. Lin, “Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber,” Opt. Express 18, 15870–15875 (2010).
    [CrossRef]
  10. E. B. Zhou, X. Xu, K. S. Lui, and K. K. Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photonics Technol. Lett. 22, 1063–1065 (2010).
    [CrossRef]
  11. M. Abtahi, M. Mirshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, “Ultra-wideband waveform generator based on optical pulse-shaping and FBG tuning,” IEEE Photonics Technol. Lett. 20, 135–137 (2008).
    [CrossRef]
  12. X. B. Yu, T. B. Gibbon, M. Pawlik, S. Blaabeg, and I. T. Monroy, “A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser,” Opt. Express 17, 9680–9687 (2009).
    [CrossRef]
  13. X. H. Feng, Z. H. Li, B. O. Guan, C. Lu, H. Y. Tam, and P. K. A. Wai, “Switchable UWB pulse generation using a polarization maintaining fiber Bragg grating as frequency discriminator,” Opt. Express 18, 3643–3648 (2010).
    [CrossRef]
  14. H. W. Chen, T. L. Wang, M. Li, M. H. Chen, and S. Z. Xie, “Optically tunable multiband UWB pulse generation,” Opt. Express 16, 7447–7452 (2008).
    [CrossRef]
  15. Y. S. Juan and F. Y. Lin, “Demonstration of ultra-wideband (UWB) over fiber based on optical pulse-injected semiconductor laser,” Opt. Express 18, 9664–9670 (2010).
    [CrossRef]
  16. J. Y. Zheng, N. H. Zhu, L. X. Wang, J. G. Liu, and H. G. Liang, “Photonic generation of ultrawideband (UWB) pulse with tunable notch-band behavior,” IEEE Photonics J. 4, 657–663 (2012).
    [CrossRef]
  17. W. Li, L. X. Wang, W. Hofmann, N. H. Zhu, and D. Bimberg, “Generation of ultra-wideband triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion,” Opt. Express 20, 20222–20227 (2012).
    [CrossRef]
  18. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
    [CrossRef]
  19. Y. Peled, M. Tur, and A. Zadok, “Generation and detection of ultra-wideband waveforms using stimulated Brillouin scattering amplified spontaneous emission,” IEEE Photonics Technol. Lett. 22, 1692–1694 (2010).
    [CrossRef]
  20. M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating,” IEEE Trans. Microwave Theor. Tech. 59, 3531–3537 (2011).
    [CrossRef]
  21. J. Y. Zheng, M. J. Zhang, A. B. Wang, and Y. C. Wang, “Photonic generation of ultrawideband pulse using semiconductor laser with optical feedback,” Opt. Lett. 35, 1734–1736 (2010).
    [CrossRef]
  22. M. J. Zhang, T. G. Liu, A. B. Wang, J. Y. Zheng, L. N. Meng, Z. X. Zhang, and Y. C. Wang, “Photonic ultrawideband signal generator using an optically injected chaotic semiconductor laser,” Opt. Lett. 36, 1008–1010 (2011).
    [CrossRef]
  23. H. Shams, A. K. Anandarajah, P. Perry, P. Anandarajah, and L. P. Barry, “Electro-optical generation and distribution of ultrawideband signals based on the gain switching technique,” J. Opt. Commun. Netw. 2, 122–130 (2010).
    [CrossRef]
  24. Y. Nakache and A. F. Molisch, “Spectral shape of UWB signals influence of modulation format, multiple access scheme and pulse shape,” in Proceedings of the IEEE Vehicular Technology Conference (2003), Vol. 4, pp. 2510–2516.
  25. A. S. Dmitriev, M. Hasler, A. I. Panas, and K. V. Zakharchenko, “Basic principles of direct chaotic communications,” Nonlinear Phenom. Complex Syst. 6, 488–501 (2003).
  26. J. P. Toomey, D. M. Kane, M. W. Lee, and K. A. Shore, “Nonlinear dynamics of semiconductor lasers with feedback and modulation,” Opt. Express 18, 16955–16972 (2010).
    [CrossRef]
  27. Y. Liu, N. Kikuchi, and J. Ohtsubo, “Controlling dynamical behavior of a semiconductor laser with external optical feedback,” Phys. Rev. E 51, R2697–R2700 (1995).
    [CrossRef]
  28. X. F. Wang, G. Q. Xia, and Z. M. Wu, “Theoretical investigations on the polarization performances of current-modulated VCSELs subject to weak optical feedback,” J. Opt. Soc. Am. B 26, 160–168 (2009).
    [CrossRef]

2012 (3)

D. Grodensky, D. Kravitz, and A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24, 839–841 (2012).

J. Y. Zheng, N. H. Zhu, L. X. Wang, J. G. Liu, and H. G. Liang, “Photonic generation of ultrawideband (UWB) pulse with tunable notch-band behavior,” IEEE Photonics J. 4, 657–663 (2012).
[CrossRef]

W. Li, L. X. Wang, W. Hofmann, N. H. Zhu, and D. Bimberg, “Generation of ultra-wideband triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion,” Opt. Express 20, 20222–20227 (2012).
[CrossRef]

2011 (3)

Y. Yuan, J. J. Dong, X. Li, and X. L. Zhang, “Ultra-wideband generation based on cascaded Mach-Zehnder modulators,” IEEE Photonics Technol. Lett. 23, 1754–1756 (2011).
[CrossRef]

M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating,” IEEE Trans. Microwave Theor. Tech. 59, 3531–3537 (2011).
[CrossRef]

M. J. Zhang, T. G. Liu, A. B. Wang, J. Y. Zheng, L. N. Meng, Z. X. Zhang, and Y. C. Wang, “Photonic ultrawideband signal generator using an optically injected chaotic semiconductor laser,” Opt. Lett. 36, 1008–1010 (2011).
[CrossRef]

2010 (9)

H. Shams, A. K. Anandarajah, P. Perry, P. Anandarajah, and L. P. Barry, “Electro-optical generation and distribution of ultrawideband signals based on the gain switching technique,” J. Opt. Commun. Netw. 2, 122–130 (2010).
[CrossRef]

J. P. Toomey, D. M. Kane, M. W. Lee, and K. A. Shore, “Nonlinear dynamics of semiconductor lasers with feedback and modulation,” Opt. Express 18, 16955–16972 (2010).
[CrossRef]

J. Y. Zheng, M. J. Zhang, A. B. Wang, and Y. C. Wang, “Photonic generation of ultrawideband pulse using semiconductor laser with optical feedback,” Opt. Lett. 35, 1734–1736 (2010).
[CrossRef]

Y. S. Juan and F. Y. Lin, “Demonstration of ultra-wideband (UWB) over fiber based on optical pulse-injected semiconductor laser,” Opt. Express 18, 9664–9670 (2010).
[CrossRef]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

Y. Peled, M. Tur, and A. Zadok, “Generation and detection of ultra-wideband waveforms using stimulated Brillouin scattering amplified spontaneous emission,” IEEE Photonics Technol. Lett. 22, 1692–1694 (2010).
[CrossRef]

F. Z. Zhang, J. Wu, S. N. Fu, Y. Li, X. B. Hong, P. Shum, and J. T. Lin, “Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber,” Opt. Express 18, 15870–15875 (2010).
[CrossRef]

E. B. Zhou, X. Xu, K. S. Lui, and K. K. Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photonics Technol. Lett. 22, 1063–1065 (2010).
[CrossRef]

X. H. Feng, Z. H. Li, B. O. Guan, C. Lu, H. Y. Tam, and P. K. A. Wai, “Switchable UWB pulse generation using a polarization maintaining fiber Bragg grating as frequency discriminator,” Opt. Express 18, 3643–3648 (2010).
[CrossRef]

2009 (5)

2008 (2)

H. W. Chen, T. L. Wang, M. Li, M. H. Chen, and S. Z. Xie, “Optically tunable multiband UWB pulse generation,” Opt. Express 16, 7447–7452 (2008).
[CrossRef]

M. Abtahi, M. Mirshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, “Ultra-wideband waveform generator based on optical pulse-shaping and FBG tuning,” IEEE Photonics Technol. Lett. 20, 135–137 (2008).
[CrossRef]

2007 (1)

2004 (1)

S. Roy, J. R. Foerster, V. S. Somayazulu, and D. G. Leeper, “Ultrawideband radio design: the promise of high-speed, short-range wireless connectivity,” Proc. IEEE 92, 295–311 (2004).
[CrossRef]

2003 (2)

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36–47 (2003).
[CrossRef]

A. S. Dmitriev, M. Hasler, A. I. Panas, and K. V. Zakharchenko, “Basic principles of direct chaotic communications,” Nonlinear Phenom. Complex Syst. 6, 488–501 (2003).

1995 (1)

Y. Liu, N. Kikuchi, and J. Ohtsubo, “Controlling dynamical behavior of a semiconductor laser with external optical feedback,” Phys. Rev. E 51, R2697–R2700 (1995).
[CrossRef]

Abtahi, M.

M. Abtahi, M. Mirshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, “Ultra-wideband waveform generator based on optical pulse-shaping and FBG tuning,” IEEE Photonics Technol. Lett. 20, 135–137 (2008).
[CrossRef]

Aiello, G. R.

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36–47 (2003).
[CrossRef]

Anandarajah, A. K.

Anandarajah, P.

Barry, L. P.

Bimberg, D.

Blaabeg, S.

Bolea, M.

Capmany, J.

Chen, H. W.

Chen, M. H.

Dmitriev, A. S.

A. S. Dmitriev, M. Hasler, A. I. Panas, and K. V. Zakharchenko, “Basic principles of direct chaotic communications,” Nonlinear Phenom. Complex Syst. 6, 488–501 (2003).

Dong, J. J.

Y. Yuan, J. J. Dong, X. Li, and X. L. Zhang, “Ultra-wideband generation based on cascaded Mach-Zehnder modulators,” IEEE Photonics Technol. Lett. 23, 1754–1756 (2011).
[CrossRef]

Feng, X. H.

Foerster, J. R.

S. Roy, J. R. Foerster, V. S. Somayazulu, and D. G. Leeper, “Ultrawideband radio design: the promise of high-speed, short-range wireless connectivity,” Proc. IEEE 92, 295–311 (2004).
[CrossRef]

Fu, S. N.

Gibbon, T. B.

Grodensky, D.

D. Grodensky, D. Kravitz, and A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24, 839–841 (2012).

Guan, B. O.

Hasler, M.

A. S. Dmitriev, M. Hasler, A. I. Panas, and K. V. Zakharchenko, “Basic principles of direct chaotic communications,” Nonlinear Phenom. Complex Syst. 6, 488–501 (2003).

Hofmann, W.

Hong, X. B.

Juan, Y. S.

Kane, D. M.

Khan, M. H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

Kikuchi, N.

Y. Liu, N. Kikuchi, and J. Ohtsubo, “Controlling dynamical behavior of a semiconductor laser with external optical feedback,” Phys. Rev. E 51, R2697–R2700 (1995).
[CrossRef]

Kravitz, D.

D. Grodensky, D. Kravitz, and A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24, 839–841 (2012).

LaRochelle, S.

M. Abtahi, M. Mirshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, “Ultra-wideband waveform generator based on optical pulse-shaping and FBG tuning,” IEEE Photonics Technol. Lett. 20, 135–137 (2008).
[CrossRef]

Leaird, D. E.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

Lee, M. W.

Leeper, D. G.

S. Roy, J. R. Foerster, V. S. Somayazulu, and D. G. Leeper, “Ultrawideband radio design: the promise of high-speed, short-range wireless connectivity,” Proc. IEEE 92, 295–311 (2004).
[CrossRef]

Li, M.

M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating,” IEEE Trans. Microwave Theor. Tech. 59, 3531–3537 (2011).
[CrossRef]

H. W. Chen, T. L. Wang, M. Li, M. H. Chen, and S. Z. Xie, “Optically tunable multiband UWB pulse generation,” Opt. Express 16, 7447–7452 (2008).
[CrossRef]

Li, W.

Li, X.

Y. Yuan, J. J. Dong, X. Li, and X. L. Zhang, “Ultra-wideband generation based on cascaded Mach-Zehnder modulators,” IEEE Photonics Technol. Lett. 23, 1754–1756 (2011).
[CrossRef]

Li, Y.

Li, Z. H.

Liang, H. G.

J. Y. Zheng, N. H. Zhu, L. X. Wang, J. G. Liu, and H. G. Liang, “Photonic generation of ultrawideband (UWB) pulse with tunable notch-band behavior,” IEEE Photonics J. 4, 657–663 (2012).
[CrossRef]

Lin, F. Y.

Lin, J. T.

Liu, F.

F. Liu, T. Wang, Z. Zhang, M. Qiu, and Y. Su, “On-chip photonic generation of ultra-wideband monocycle pulses,” Electron. Lett. 45, 1247–1249 (2009).
[CrossRef]

Liu, J. G.

J. Y. Zheng, N. H. Zhu, L. X. Wang, J. G. Liu, and H. G. Liang, “Photonic generation of ultrawideband (UWB) pulse with tunable notch-band behavior,” IEEE Photonics J. 4, 657–663 (2012).
[CrossRef]

Liu, T. G.

Liu, Y.

Y. Liu, N. Kikuchi, and J. Ohtsubo, “Controlling dynamical behavior of a semiconductor laser with external optical feedback,” Phys. Rev. E 51, R2697–R2700 (1995).
[CrossRef]

Lu, C.

Lui, K. S.

E. B. Zhou, X. Xu, K. S. Lui, and K. K. Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photonics Technol. Lett. 22, 1063–1065 (2010).
[CrossRef]

Magné, J.

M. Abtahi, M. Mirshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, “Ultra-wideband waveform generator based on optical pulse-shaping and FBG tuning,” IEEE Photonics Technol. Lett. 20, 135–137 (2008).
[CrossRef]

Meng, L. N.

Mirshafiei, M.

M. Abtahi, M. Mirshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, “Ultra-wideband waveform generator based on optical pulse-shaping and FBG tuning,” IEEE Photonics Technol. Lett. 20, 135–137 (2008).
[CrossRef]

Molisch, A. F.

Y. Nakache and A. F. Molisch, “Spectral shape of UWB signals influence of modulation format, multiple access scheme and pulse shape,” in Proceedings of the IEEE Vehicular Technology Conference (2003), Vol. 4, pp. 2510–2516.

Monroy, I. T.

Mora, J.

Nakache, Y.

Y. Nakache and A. F. Molisch, “Spectral shape of UWB signals influence of modulation format, multiple access scheme and pulse shape,” in Proceedings of the IEEE Vehicular Technology Conference (2003), Vol. 4, pp. 2510–2516.

Ohtsubo, J.

Y. Liu, N. Kikuchi, and J. Ohtsubo, “Controlling dynamical behavior of a semiconductor laser with external optical feedback,” Phys. Rev. E 51, R2697–R2700 (1995).
[CrossRef]

Ortega, B.

Pan, S. L.

Panas, A. I.

A. S. Dmitriev, M. Hasler, A. I. Panas, and K. V. Zakharchenko, “Basic principles of direct chaotic communications,” Nonlinear Phenom. Complex Syst. 6, 488–501 (2003).

Pawlik, M.

Peled, Y.

Y. Peled, M. Tur, and A. Zadok, “Generation and detection of ultra-wideband waveforms using stimulated Brillouin scattering amplified spontaneous emission,” IEEE Photonics Technol. Lett. 22, 1692–1694 (2010).
[CrossRef]

Perry, P.

Qi, M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

Qiu, M.

F. Liu, T. Wang, Z. Zhang, M. Qiu, and Y. Su, “On-chip photonic generation of ultra-wideband monocycle pulses,” Electron. Lett. 45, 1247–1249 (2009).
[CrossRef]

Rogerson, G. D.

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36–47 (2003).
[CrossRef]

Roy, S.

S. Roy, J. R. Foerster, V. S. Somayazulu, and D. G. Leeper, “Ultrawideband radio design: the promise of high-speed, short-range wireless connectivity,” Proc. IEEE 92, 295–311 (2004).
[CrossRef]

Rusch, L. A.

M. Abtahi, M. Mirshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, “Ultra-wideband waveform generator based on optical pulse-shaping and FBG tuning,” IEEE Photonics Technol. Lett. 20, 135–137 (2008).
[CrossRef]

Shams, H.

Shen, H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

Shore, K. A.

Shum, P.

Somayazulu, V. S.

S. Roy, J. R. Foerster, V. S. Somayazulu, and D. G. Leeper, “Ultrawideband radio design: the promise of high-speed, short-range wireless connectivity,” Proc. IEEE 92, 295–311 (2004).
[CrossRef]

Su, Y.

F. Liu, T. Wang, Z. Zhang, M. Qiu, and Y. Su, “On-chip photonic generation of ultra-wideband monocycle pulses,” Electron. Lett. 45, 1247–1249 (2009).
[CrossRef]

Tam, H. Y.

Toomey, J. P.

Tur, M.

Y. Peled, M. Tur, and A. Zadok, “Generation and detection of ultra-wideband waveforms using stimulated Brillouin scattering amplified spontaneous emission,” IEEE Photonics Technol. Lett. 22, 1692–1694 (2010).
[CrossRef]

Wai, P. K. A.

Wang, A. B.

Wang, L. X.

W. Li, L. X. Wang, W. Hofmann, N. H. Zhu, and D. Bimberg, “Generation of ultra-wideband triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion,” Opt. Express 20, 20222–20227 (2012).
[CrossRef]

J. Y. Zheng, N. H. Zhu, L. X. Wang, J. G. Liu, and H. G. Liang, “Photonic generation of ultrawideband (UWB) pulse with tunable notch-band behavior,” IEEE Photonics J. 4, 657–663 (2012).
[CrossRef]

Wang, Q.

Wang, T.

F. Liu, T. Wang, Z. Zhang, M. Qiu, and Y. Su, “On-chip photonic generation of ultra-wideband monocycle pulses,” Electron. Lett. 45, 1247–1249 (2009).
[CrossRef]

Wang, T. L.

Wang, X. F.

Wang, Y. C.

Weiner, A. M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

Wong, K. K. Y.

E. B. Zhou, X. Xu, K. S. Lui, and K. K. Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photonics Technol. Lett. 22, 1063–1065 (2010).
[CrossRef]

Wu, J.

Wu, Z. M.

Xia, G. Q.

Xiao, S.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

Xie, S. Z.

Xu, X.

E. B. Zhou, X. Xu, K. S. Lui, and K. K. Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photonics Technol. Lett. 22, 1063–1065 (2010).
[CrossRef]

Xuan, Y.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

Yao, J.

Yao, J. P.

M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating,” IEEE Trans. Microwave Theor. Tech. 59, 3531–3537 (2011).
[CrossRef]

S. L. Pan and J. P. Yao, “Optical generation of polarity- and shape-switchable ultrawideband pulses using a chirped intensity modulator and a first-order asymmetric Mach-Zehnder interferometer,” Opt. Lett. 34, 1312–1314 (2009).
[CrossRef]

Yu, X. B.

Yuan, Y.

Y. Yuan, J. J. Dong, X. Li, and X. L. Zhang, “Ultra-wideband generation based on cascaded Mach-Zehnder modulators,” IEEE Photonics Technol. Lett. 23, 1754–1756 (2011).
[CrossRef]

Zadok, A.

D. Grodensky, D. Kravitz, and A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24, 839–841 (2012).

Y. Peled, M. Tur, and A. Zadok, “Generation and detection of ultra-wideband waveforms using stimulated Brillouin scattering amplified spontaneous emission,” IEEE Photonics Technol. Lett. 22, 1692–1694 (2010).
[CrossRef]

Zakharchenko, K. V.

A. S. Dmitriev, M. Hasler, A. I. Panas, and K. V. Zakharchenko, “Basic principles of direct chaotic communications,” Nonlinear Phenom. Complex Syst. 6, 488–501 (2003).

Zeng, F.

Zhang, F. Z.

Zhang, M. J.

Zhang, X. L.

Y. Yuan, J. J. Dong, X. Li, and X. L. Zhang, “Ultra-wideband generation based on cascaded Mach-Zehnder modulators,” IEEE Photonics Technol. Lett. 23, 1754–1756 (2011).
[CrossRef]

Zhang, Z.

F. Liu, T. Wang, Z. Zhang, M. Qiu, and Y. Su, “On-chip photonic generation of ultra-wideband monocycle pulses,” Electron. Lett. 45, 1247–1249 (2009).
[CrossRef]

Zhang, Z. X.

Zhao, L.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

Zheng, J. Y.

Zhou, E. B.

E. B. Zhou, X. Xu, K. S. Lui, and K. K. Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photonics Technol. Lett. 22, 1063–1065 (2010).
[CrossRef]

Zhu, N. H.

J. Y. Zheng, N. H. Zhu, L. X. Wang, J. G. Liu, and H. G. Liang, “Photonic generation of ultrawideband (UWB) pulse with tunable notch-band behavior,” IEEE Photonics J. 4, 657–663 (2012).
[CrossRef]

W. Li, L. X. Wang, W. Hofmann, N. H. Zhu, and D. Bimberg, “Generation of ultra-wideband triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion,” Opt. Express 20, 20222–20227 (2012).
[CrossRef]

Electron. Lett. (1)

F. Liu, T. Wang, Z. Zhang, M. Qiu, and Y. Su, “On-chip photonic generation of ultra-wideband monocycle pulses,” Electron. Lett. 45, 1247–1249 (2009).
[CrossRef]

IEEE Microw. Mag. (1)

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36–47 (2003).
[CrossRef]

IEEE Photonics J. (1)

J. Y. Zheng, N. H. Zhu, L. X. Wang, J. G. Liu, and H. G. Liang, “Photonic generation of ultrawideband (UWB) pulse with tunable notch-band behavior,” IEEE Photonics J. 4, 657–663 (2012).
[CrossRef]

IEEE Photonics Technol. Lett. (5)

D. Grodensky, D. Kravitz, and A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24, 839–841 (2012).

Y. Yuan, J. J. Dong, X. Li, and X. L. Zhang, “Ultra-wideband generation based on cascaded Mach-Zehnder modulators,” IEEE Photonics Technol. Lett. 23, 1754–1756 (2011).
[CrossRef]

E. B. Zhou, X. Xu, K. S. Lui, and K. K. Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photonics Technol. Lett. 22, 1063–1065 (2010).
[CrossRef]

M. Abtahi, M. Mirshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, “Ultra-wideband waveform generator based on optical pulse-shaping and FBG tuning,” IEEE Photonics Technol. Lett. 20, 135–137 (2008).
[CrossRef]

Y. Peled, M. Tur, and A. Zadok, “Generation and detection of ultra-wideband waveforms using stimulated Brillouin scattering amplified spontaneous emission,” IEEE Photonics Technol. Lett. 22, 1692–1694 (2010).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating,” IEEE Trans. Microwave Theor. Tech. 59, 3531–3537 (2011).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (1)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

Nonlinear Phenom. Complex Syst. (1)

A. S. Dmitriev, M. Hasler, A. I. Panas, and K. V. Zakharchenko, “Basic principles of direct chaotic communications,” Nonlinear Phenom. Complex Syst. 6, 488–501 (2003).

Opt. Express (8)

J. P. Toomey, D. M. Kane, M. W. Lee, and K. A. Shore, “Nonlinear dynamics of semiconductor lasers with feedback and modulation,” Opt. Express 18, 16955–16972 (2010).
[CrossRef]

W. Li, L. X. Wang, W. Hofmann, N. H. Zhu, and D. Bimberg, “Generation of ultra-wideband triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion,” Opt. Express 20, 20222–20227 (2012).
[CrossRef]

M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express 17, 5023–5032 (2009).
[CrossRef]

F. Z. Zhang, J. Wu, S. N. Fu, Y. Li, X. B. Hong, P. Shum, and J. T. Lin, “Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber,” Opt. Express 18, 15870–15875 (2010).
[CrossRef]

X. B. Yu, T. B. Gibbon, M. Pawlik, S. Blaabeg, and I. T. Monroy, “A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser,” Opt. Express 17, 9680–9687 (2009).
[CrossRef]

X. H. Feng, Z. H. Li, B. O. Guan, C. Lu, H. Y. Tam, and P. K. A. Wai, “Switchable UWB pulse generation using a polarization maintaining fiber Bragg grating as frequency discriminator,” Opt. Express 18, 3643–3648 (2010).
[CrossRef]

H. W. Chen, T. L. Wang, M. Li, M. H. Chen, and S. Z. Xie, “Optically tunable multiband UWB pulse generation,” Opt. Express 16, 7447–7452 (2008).
[CrossRef]

Y. S. Juan and F. Y. Lin, “Demonstration of ultra-wideband (UWB) over fiber based on optical pulse-injected semiconductor laser,” Opt. Express 18, 9664–9670 (2010).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. E (1)

Y. Liu, N. Kikuchi, and J. Ohtsubo, “Controlling dynamical behavior of a semiconductor laser with external optical feedback,” Phys. Rev. E 51, R2697–R2700 (1995).
[CrossRef]

Proc. IEEE (1)

S. Roy, J. R. Foerster, V. S. Somayazulu, and D. G. Leeper, “Ultrawideband radio design: the promise of high-speed, short-range wireless connectivity,” Proc. IEEE 92, 295–311 (2004).
[CrossRef]

Other (1)

Y. Nakache and A. F. Molisch, “Spectral shape of UWB signals influence of modulation format, multiple access scheme and pulse shape,” in Proceedings of the IEEE Vehicular Technology Conference (2003), Vol. 4, pp. 2510–2516.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup of the chaotic UWB pulse generation. DFB-LD, distributed feedback laser diode; RNG, random number generator; PC, polarization controller; OC, optical circulator; VA, variable attenuator; ISO, isolator; EDFA, erbium-doped fiber amplifier; SMF, single-mode fiber; PD, photodetector; OSC, oscilloscope; OSA, optical spectrum analyzer; ESA, electronic spectrum analyzer.

Fig. 2.
Fig. 2.

(a) RF spectrum and (b) waveforms of the experimentally generated photonic UWB pulse’s signal.

Fig. 3.
Fig. 3.

Influence on the UWB pulse signal 10dB bandwidth and central frequency by bias current at feedback strength of 4dBm and modulation rate of 960Mb/s.

Fig. 4.
Fig. 4.

Influence on the UWB pulse signal 10dB bandwidth and central frequency by feedback strength at bias current of 32 mA and modulation rate of 960Mb/s.

Fig. 5.
Fig. 5.

Power spectrum variation tendency of chaotic UWB pulse signals in different distance fiber transmission.

Fig. 6.
Fig. 6.

Dependence of the UWB pulse signal 10dB bandwidth and central frequency on the modulation rate when the bias current is 32 mA and the feedback strength is 4dBm.

Metrics